
Glivenko’s theorem

Valéry Glivenko was one of several Soviet logicians who, like Kolmogorov, worked on the in-
tersection of algebraic logic and probability theory. There are a few fundamental theorems bearing
his name. This note is about his embedding of classical logic in intuitionistic logic.

Specifically, Glivenko proved that

1. THEOREM (1929): If CPC φ, then IPC ¬¬φ.

Because the converse of this theorem is obviously also true, Glivenko’s theorem assures us that
IPC can be used to discover the classical validities. For this reason, it is sometimes suggested that
IPC should be thought of as a “stronger” logic than CPC: With it one can see everything that one
can see with CPC, and in addition one can make many distinctions that CPC “overlooks” (Gödel
sometimes suggested this attitude).

Glivenko’s theorem was improved upon in a couple of ways in the decade following its publi-
cation, in the “negative translations” of Gentzen and Gödel. But Glivenko’s original result remains
of interest because (1) it is readily applied in many contexts, (2) it was a breakthrough at the time,
introducing completely new concepts, and (3) it can be recast in order to relate logics other than
CPC and IPC, such as logics intermediate between these and predicate calculi.

Glivenko’s original proof is a fairly strightforward induction on the complexity of the formula
φ, and this is the approach found in many texts. A more modern presentation uses semantic meth-
ods, proving the theorem by relating truth-functional validities and Kripke frames. The following
proof seems to be in some ways simpler than either of those. (Throughout this note we think of a
natural deduction presentation of IPC.)

We observe some preliminary facts.

2. FACT: IPC ¬¬(φ ∨ ¬φ)

3. FACT: ¬¬φ IPC+p∨¬p φ

4. FACT: ¬¬¬φ IPC ¬φ

For the proof of the main theorem, suppose CPC φ. Then by 3 we have IPC+p∨¬p φ, hence a
proof in IPC+p ∨ ¬p:

ψ1 ∨ ¬ψ1 axiom
. . .
ψn ∨ ¬ψn axiom
.
.
.
φ
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From this proof one can construct a pure IPC proof:

¬¬(ψ1 ∨ ¬ψ1) fact 2
¬¬(ψ2 ∨ ¬ψ2) fact 2
. . .
¬¬(ψn−1 ∨ ¬ψn−1) fact 2
¬¬(ψn ∨ ¬ψn) fact 2

¬φ

ψ1 ∨ ¬ψ1

ψ2 ∨ ¬ψ2

. . .

ψn−1 ∨ ¬ψn−1

ψn ∨ ¬ψn

.

.

.
φ
⊥ ¬ -elim
¬(ψn ∨ ¬ψn) ¬ -int
⊥ ¬ -elim

. . .
⊥ ¬ -elim
¬(ψ2 ∨ ¬ψ2) ¬ -int
⊥ ¬ -elim
¬(ψ1 ∨ ¬ψ1) ¬ -int
⊥ ¬ -elim
¬¬φ ¬ -int

That completes the proof of the main theorem. We observe three corollaries:

5. COROLLARY: If CPC ¬φ, then IPC ¬φ.

This follows immediately from the main theorem and fact 4.

6. COROLLARY: CPC is inconsistent only if IPC is.

For if CPC is inconsistent, then there is a formula φ such that CPC φ and CPC ¬φ. But then

IPC ¬¬φ and IPC ¬φ.
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7. COROLLARY: If φ is any formula and σ(φ) is created by substituting p ⊃ p for some of the
sentence letters in φ and substituting p ∧ ¬p for the others, then IPC σ(φ) if CPC σ(φ).

To prove this it is convenient to observe first that if the immediate subformulas χi of a
formula ψ are each such that either IPC χi or IPC ¬χi, then IPC ψ if CPC ψ and IPC ¬ψ
if CPC ¬ψ: Suppose CPC ¬ψ. Then IPC ¬ψ by corollary 5. Suppose on the other hand
that CPC ψ, and consider whether ψ is of the form χ1 ∧ χ2, χ1 ∨ χ2, χ1 ⊃ χ2, or ¬χ.

a (ψ is of the form χ1 ∧ χ2.) If IPC ¬χ1, then because by the main theorem, IPC ¬¬ψ,
there is an IPC proof:

¬¬(χ1 ∧ χ2) known

χ1 ∧ χ2

χ1 ∧ -elim
¬χ1 supposition
⊥ ¬ -elim
¬(χ1 ∧ χ2) ¬ -int
⊥ ¬ -elim

Therefore, IPC χ1. By the same reasoning, IPC χ1. Hence IPC ψ.

b (ψ is of the form χ1∨χ2.) If IPC ¬χ1 and IPC ¬χ2, then because by the main theorem,

IPC ¬¬ψ, there is an IPC proof:

¬¬(χ1 ∨ χ2) known

χ1 ∨ χ2

χ1

¬χ1 supposition
⊥ ¬ -elim

χ2

¬χ2 supposition
⊥ ¬ -elim
⊥ ∨ -elim
¬(χ1 ∨ χ2) ¬ -int
⊥ ¬ -elim

Therefore, either IPC χ1 or IPC χ2, and either way IPC ψ.
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c (ψ is of the form χ1 ⊃ χ2.) If IPC χ1 and IPC ¬χ2, then because by the main theorem,

IPC ¬¬ψ, there is an IPC proof:

¬¬(χ1 ⊃ χ2) known

χ1 ⊃ χ2

χ1 supposition
χ2 ⊃ -elim
¬χ2 supposition
⊥ ¬ -elim
¬(χ1 ⊃ χ2) ¬ -int
⊥ ¬ -elim

Therefore, either IPC ¬χ1 or IPC χ2, and either way IPC ψ (verify this!).

d (ψ is of the form ¬χ.) Then by corollary 5, IPC ψ.

Consider now the formula σ(φ). Because it contains only finitely many connectives, one
need only iterate the result just demonstrated to establish that its immediate subformulas are
each such that either IPC χi or IPC ¬χi (p ⊃ p and p ∧ ¬p were chosen for σ because
each is either provable or refutable in IPC, and obviously any “truth functional” compound
of formulas provable or refutable in IPC will itself be either provable or refutable in CPC,
hence also in IPC, . . . ). Therefore if CPC σ(φ), then IPC σ(φ).

This last corollary (7) is sometimes presented as Glivenko’s theorem itself. Although this
formulation seems somewhat technical and obscure, it is readily applicable. As one application,
let Γ∼L A denote the fact that the rule Γ

A
is admissible in L (i.e., that the set of theorems of L is

closed under the action of this rule). We demonstrate that CPC derives all the admissible rules of
any propositional logic intermediate between IPC and CPC.

8. For any intermediate logic L, i.e., Thm( IPC ) ⊆ Thm( L ) ⊆ Thm( CPC ), if Γ ∼L A

then Γ CPC A.

Because any intermediate logic L has strictly more theorems than IPC, corollary 7 generalizes
to the fact that, if CPC σ(A), then L σ(A).

Assume now that Γ ∼L A, i.e., if L

∧
Γ, then L A, and let σ be a substitution instance

as defined above. If CPC σ(
∧

Γ), then L σ(
∧

Γ), and so L σ(A), from which it follows
that CPC σ(A). Therefore by the completeness of CPC with respect to the truth functional
semantics, it follows that Γ CPC A.
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