
AMPLE GENERICS IN POLISH GROUPS

CHRISTIAN ROSENDAL

1. Baire category and Comeagre orbits

Suppose G is a group of homeomorphisms of a topological space X. We say
that G is topologically transitive if for all non-empty open subsets U, V ⊆ X there
is g ∈ G such that g ·U ∩V 6= ∅.

Proposition 1. The following are equivalent for a group G of homeomorphisms of a
Polish space X.

(i) G is topologically transitive,
(ii) there is a dense orbit G · x,

(iii) there is a comeagre set of points with dense orbits.

Proof. That (iii)⇒(ii)⇒(i) is trivial. Also, if {Un}n∈N is a basis for the topology
on X consisting of non-empty open sets and G is topologically transitive, then
G ·Un is dense for every n, whereby⋂

n∈N

G ·Un =
⋂

n∈N

{x ∈ X
∣∣ G · x ∩Un 6= ∅} = {x ∈ X

∣∣ G · x is dense }

is comeagre, showing (i)⇒(iii). �

If A is a subset of a Polish space X, we let U(A) be the union of all open sets
V ⊆ X so that A is comeagre in V, i.e., so that V \ A is a meagre subset of X. By
Lindelöf’s Theorem, we can write U(A) =

⋃
n Vn, where A is comeagre in each of

the Vn. Thus U(A) \ A =
⋃

n Vn \ A is meagre and thus A is comeagre in U(A).
It follows that U(A) is the largest open set in which A is comeagre.

Lemma 2 (S. Banach and B. J. Pettis). Suppose G is a Polish group and A, B ⊆ G are
subsets. Then

U(A) ·U(B) ⊆ AB.

Proof. We note that if x ∈ U(A)U(B), then the open set

V = xU(B)−1 ∩U(A) = U(xB−1) ∩U(A)

is non-empty and so xB−1 and A are comeagre in V. It follows that xB−1∩ A 6= ∅,
whereby x ∈ AB. �

Lemma 3 (E. Effros). Suppose G is a Polish group acting continuously on a Polish space
X and let x ∈ X. Then the following are equivalent:

(1) For every identity neighbourhood V, the set V · x is comeagre in a neighbourhood
of x.

(2) For every identity neighbourhood V, the set V · x is somewhere dense.
(3) The orbit G · x is non-meagre.
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Proof. (1)⇒(3) is trivial. Also, for (3)⇒(2), suppose G · x is non-meagre and V
is an identity neighbourhood. Then we can find gn ∈ G such that G =

⋃
n gnV,

whence G · x =
⋃

n gnV · x. So some gnV · x, and therefore also V · x, is non-
meagre and hence somewhere dense.

Finally, for (2)⇒(1), suppose that V · x is somewhere dense for every identity
neighbourhood V. Suppose towards a contradiction that for some identity neigh-
bourhood U, the set U · x is meagre, whence there are closed nowhere dense sets
Fn ⊆ X covering U · x. But then the sets Kn = {g ∈ G

∣∣ g · x ∈ Fn} are closed and
cover U and thus, by the Baire category theorem, some Kn contains a non-empty
open set gV, where V is an identity neighbourhood and g ∈ G. So gV · x ⊆ Fn
and V · x must be nowhere dense, which is a contradiction.

Now, if V is any identity neighbourhood, let U ⊆ V be a smaller identity
neighbourhood such that U−1U ⊆ V. Then U · x is comeagre in some neighbour-
hood of a point g · x, where g ∈ U, and thus g−1U · x ⊆ V · x is comeagre in a
neighbourhood of x. �

Lemma 4. Suppose G is a Polish group acting continuously on a Polish space X. Then
the following are equivalent:

(1) There is a non-meagre orbit O ⊆ X.
(2) There is a non-empty open set O ⊆ X with the following property: For all

open ∅ 6= V ⊆ O and identity neighbourhood U ⊆ G, there is a smaller open
∅ 6= W ⊆ V such that the action of U on W is topologically transitive, i.e., for
any non-empty open W0, W1 ⊆W there is g ∈ U such that gW0 ∩W1 6= ∅.

Moreover, if O is an orbit comeagre in an open set O ⊆ X, then (2) holds for O.

Proof. (1)⇒(2): If O ⊆ X is a non-meagre orbit, let O ⊆ X be a non-empty open
set in which O is comeagre. Now, if V ⊆ O is non-empty open and U ⊆ G
is a neighbourhood of 1, pick x ∈ V ∩ O and choose an open neighbourhood
U0 ⊆ U of 1 such that U0U−1

0 ⊆ U. Then, by Lemma 3, U0 · x is dense in some
open neighbourhood W ⊆ V of x and it follows that the action of U on W is
topologically transitive.

(2)⇒(1): Suppose O ⊆ X is an open set satisfying the assumption in (2). Fix
a neighbourhood basis {Un}n∈N at 1 ∈ G and a basis {Vn}n∈N for the induced
topology on O consisting of non-empty open sets. Now, for every n and m, let
Wn,m ⊆ Vn be a non-empty open subset such that the action of U−1

m on Wn,m is
topologically transitive. Then Wm =

⋃
n Wn,m is open dense in O since it intersects

every Vn. Also, for any Vk ⊆ Wn,m, Wn,m ∩
(
U−1

m ·Vk
)

is open dense in Wn,m, and
so

Dn,m = Wn,m ∩
⋂

Vk⊆Wn,m

(
U−1

m ·Vk
)

is comeagre in Wn,m. Note also that if x ∈ Dn,m, then for any Vk ⊆ Wn,m, Um · x ∩
Vk 6= ∅, showing that Um · x is dense in Wn,m. We notice that Dm =

⋃
n Dn,m is

comeagre in O and that for any x ∈ Dm, Um · x is somewhere dense. It follows
that for any x belonging to the comeagre subset

⋂
m Dm ⊆ O, and for any k,

Uk · x is somewhere dense, which by the previous lemma implies that G · x is
non-meagre. �
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Combining Lemmas 1 and 4, we have the following characterisation of the
existence of comeagre orbits.

Proposition 5. Suppose G is a Polish group acting continuously on a Polish space X.
Then there is a comeagre orbit on X if and only if

(1) the action of G is topologically transitive, and
(2) for any non-empty open V ⊆ X and identity neighbourhood U ⊆ G, there is a

smaller non-empty open set W ⊆ V on which the action of U is topologically
transitive.

Proof. That these conditions are implied by the existence of a comeagre orbit
is immediate from Lemma 4. Conversely, (2) implies that some orbit G · x is
comeagre in an open set O, while (1) implies that there is a comeagre set of points
with dense orbits. In particular, the orbit of x is both dense in X and comeagre in
O. But then the orbit must be nowhere meagre and therefore comeagre. �

2. Ample generics

Suppose G is a Polish group acting continuously on a Polish space X. Then for
any positive integer n, we can define the diagonal action G y Xn by

g · (x1, . . . , xn) = (g · x1, . . . , g · xn).

Definition 6. Suppose G is a Polish group acting continuously on a Polish space X. We
say that the action has ample generics if for every n > 1 there is a comeagre orbit in Xn

under the diagonal action of G.
We shall refer to elements (x1, . . . , xn) of the comeagre orbit of dimension n as gener-

ics.

Easy examples of such actions are, for example, the natural action of S∞ on
Cantor space P(N). The generic in P(N)n is then simply a tuple (A1, . . . , An) of
subsets of N so that every intersection

Aε1
1 ∩ . . . ∩ Aεn

n

is infinite and coinfinite, where εi ∈ {−1, 1}, A−1 = N \ A and A1 = A.
For more interesting examples, consider a Polish group G acting on itself by

conjugation. Then the diagonal action is given by

g · (h1, . . . , hn) = (gh1g−1, . . . , ghng−1).

If this action has ample generics, we simply say that G has ample generics itself.
We shall now present some of the main consequences of ample generics.

Lemma 7. Let G y X be a Polish group acting continuously on a Polish space with
ample generics and suppose A, B ⊆ X are arbitrary subsets such that

• A is non-meagre,
• B is nowhere meagre.

Then, if x = (x1, . . . , xn) ∈ Xn is generic and V 3 1 is open, there are g ∈ V, y ∈ A
and z ∈ B such that (x1, . . . , xn, y) and (x1, . . . , xn, z) are generic, while

g · (x1, . . . , xn, y) = (x1, . . . , xn, z).



4 CHRISTIAN ROSENDAL

Notice that the last condition implies that g ∈ Gxi for i 6 n, where Gxi is the
pointwise stabiliser of xi.

Proof. LetO ⊆ Xn+1 be the comeagre orbit of dimension n+ 1. Then, by Kuratowski-
Ulam,

∀∗u ∈ Xn ∀∗y ∈ X (u, y) ∈ O.

Also, for any u ∈ Xn and g ∈ G,

∀∗y ∈ X (u, y) ∈ O ⇒ ∀∗y ∈ X (g · u, g · y) ∈ O
⇒ ∀∗z ∈ X (g · u, z) ∈ O.

So
D = {u ∈ Xn ∣∣ ∀∗y ∈ X (u, y) ∈ O}

is comeagre and G-invariant. Thus, D contains the comeagre orbit in Xn and
hence x ∈ D. It follows that

(∗) ∀∗y ∈ X (x1, . . . , xn, y) ∈ O.

So, as A is non-meagre, we can find y ∈ A such that (x1, . . . , xn, y) ∈ O. Notice
now that

Gx · y = {z ∈ X
∣∣ (x1, . . . , xn, z) ∈ O},

which is comeagre in X by (∗).
Now, since (Gx ∩ V) · y covers Gx · y by countably many translates, the set

(Gx ∩ V) · y is somewhere comeagre in X and hence intersects B. So letting z ∈
B ∩ (Gx ∩V) · y, we can find g ∈ Gx ∩V, such that

g · y = z,

whereby
g · (x, y) = (x, z),

proving the lemma. �

Lemma 8. Suppose G y X is a Polish group acting continuously on a Polish space with
ample generics and that An, Bn ⊆ X are respectively non-meagre and nowhere meagre.
Then there is a continuous map

α ∈ 2N 7→ hα ∈ G

such that if α|n = β|n but α(n) = 0 and β(n) = 1, then

hα · An ∩ hβ · Bn 6= ∅.

Proof. Using Lemma 7, we define by induction on the length of s ∈ 2<N \ {∅},
points xs ∈ X and group elements fs ∈ G such that for all s,

(1) (xs|1, xs|2, . . . , xs) is generic,
(2) xs0 ∈ A|s| and xs1 ∈ B|s|,
(3) for all α ∈ 2N, the infinite product fα|1 fα|2 fα|3 . . . converges,
(4) fs0 = 1,
(5) fs1 · (xs|1, xs|2, . . . , xs, xs1) = (xs|1, xs|2, . . . , xs, xs0).
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Set hα = fα|1 fα|2 fα|3 . . .. And notice also that by (5), if t < s, then fs · xt = xt. It
follows that for all α, β ∈ 2N, if α|n = β|n = s, α(n) = 0 and β(n) = 1, then

hα · xα|n+1 = fα|1 fα|2 fα|3 . . . · xα|n+1

= fα|1 fα|2 fα|3 . . . fα|n+1 · xα|n+1

= fs|1 fs|2 . . . fs fs0 · xs0

= fs|1 fs|2 . . . fs · xs0

= fs|1 fs|2 . . . fs fs1 · xs1

= fβ|1 fβ|2 . . . fβ|n fβ|n+1 · xβ|n+1

= fβ|1 fβ|2 . . . · xβ|n+1

= hβ · xβ|n+1.

Since xα|n+1 ∈ An and xβ|n+1 ∈ Bn, we have

hα · An ∩ hβ · Bn 6= ∅

as required. �

Though we do not have any interesting applications of this lemma in the con-
text of general actions with ample generics, when applied to Polish groups with
ample generics, the consequences are quite intriguing.

Theorem 9 (Fundamental Theorem for Ample Generics). Let G be a Polish group
with ample generics and {ki Ai fi}i∈N a covering of G, where ki, fi ∈ G and Ai ⊆ G are
arbitrary subsets of G. Then there is an i such that

A−1
i Ai A−1

i A−1
i Ai A−1

i Ai Ai A−1
i Ai

is an identity neighbourhood.

Proof. By leaving out all terms ki Ai fi, such that Ai is meagre, and reenumerating,
we can suppose that

(1) for every i there are infinitely many n such that

ki Ai fi = kn An fn,

(2)
⋃

i ki Ai fi is comeagre,
(3) each f−1

i Ai fi is non-meagre.
Notice also that if there is some n such that

A−1
n An An A−1

n An

is somewhere comeagre, then by Lemma 2 we would be done. So assume towards
a contradiction that this fails. Then

Bn = G \ ( fn A−1
n An An A−1

n An f−1
n )

is nowhere meagre. So by Lemma 8 there is a continuous mapping

α ∈ 2N 7→ hα ∈ G

so that if α|n = β|n but α(n) = 0 and β(n) = 1, then

hα f−1
n An fnh−1

α ∩ hβBnh−1
β 6= ∅,
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i.e.,
hα f−1

n An fnh−1
α 6⊆ hβ fn A−1

n An An A−1
n An f−1

n h−1
β .

Now, the mapping

(g, α) ∈ G× 2N 7→ g−1hα ∈ G

is continuous and open, and therefore inverse images of comeagre sets are comea-
gre. So, as

⋃
i∈N ki Ai fi is comeagre in G, we have by the Kuratowski-Ulam Theo-

rem that
∀∗g ∈ G ∀∗α ∈ 2N g−1hα ∈

⋃
i∈N

ki Ai fi.

So pick some g ∈ G with

∀∗α ∈ 2N g−1hα ∈
⋃

i∈N

ki Ai fi,

and find some i such that

{α ∈ 2N
∣∣ g−1hα ∈ ki Ai fi}

is dense in some basic open set

Nt = {α ∈ 2N
∣∣ t ⊆ α}.

Let now n > |t| be such that ki Ai fi = kn An fn and find α, β ∈ Nt such that

hα, hβ ∈ gkn An fn

and α|n = β|n while α(n) = 0 and β(n) = 1. Then, if hα = gkna fn and hβ =
gknb fn, where a, b ∈ An, we have

h−1
β hα f−1

n An fnh−1
α hβ = f−1

n b−1aAna−1b f−1
n

⊆ fn A−1
n An An A−1

n An f−1
n .

But this clearly contradicts

hα f−1
n An fnh−1

α 6⊆ hβ fn A−1
n An An A−1

n An f−1
n h−1

β

and hence proves the theorem. �

Corollary 10. If G is a Polish group with ample generics, then any homomorphism
π : G → H from G into a Polish group H is continuous.

Proof. Suppose π : G → H is a homomorphism and that V is an identity neigh-
bourhood in H. Pick a symmetric open identity neighbourhood W in H so
that W10 ⊆ V. Then, as W covers H by countably many left-translates, also
U = π−1(W) covers G by countably many left-translates. It therefore follows
from Theorem 9 that U10 is an identity neighbourhood so that π[U10] ⊆W10 ⊆ V.
This shows continuity of π at 1, whence π is a continuous map. �

Corollary 11. Suppose G has ample generics. If {ki Hi fi}i∈N is a covering of G by
two-sided translates of subgroups, then some Hi is open.

In particular, every countable index subgroup is open.
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3. Further results on ample generics

Theorem 12 (J. Mycielski). Let X be a non-empty perfect Polish space and R ⊆ X× X
a comeagre set. Then there is a homeomorphic copy C ⊆ X of Cantor space such that
(x, y) ∈ R for all x, y ∈ C, x 6= y.

Proof. Fix a compatible complete metric d on X. Note first that if V0, V1 ⊆ X are
non-empty open subsets and D ⊆ X × X is dense open, then there are disjoint,
non-empty open subsets U0 ⊆ V0, U1 ⊆ V1 such that U0 ×U1 ⊆ D. Moreover,
by shrinking the Ui further, one can ensure that the Ui have arbitrarily small
diameter.

Now, suppose that R ⊆ X × X is comeagre and find a decreasing sequence
(Dn)n∈N of dense open subsets of X×X such that R ⊇ ⋂n∈N Dn. We then define
a Cantor scheme (Us)s∈2<N on X satisfying

(1) each Us is a non-empty open set of diameter < 1
|s|+1 ,

(2) Us0 ∩Us1 = ∅ for all s ∈ 2<N,
(3) Us ×Ut ⊆ Dn for all s, t ∈ 2n, s 6= t.

Letting f : 2N → X be defined by { f (x)} =
⋂

n∈N Ux|n, we see that f is con-
tinuous, injective and that ( f (x), f (y)) ∈ ⋂n∈N Dn ⊆ R for all x 6= y. Let now
C = f [2N]. �

Theorem 13. Suppose G is a Polish group with ample generics and A ⊆ G is a sym-
metric subset containing 1. Then either A admits a continuum of disjoint left translates
in G or A12 is an identity neighbourhood.

Proof. Suppose A does not admit a continuum of disjoint left translates. Note
first that if A2 is meagre, then the binary relation R on G given by

xRy⇔ x−1y ∈ A2

is meagre too, since the mapping (x, y) ∈ G2 7→ x−1y ∈ G is surjective, contin-
uous and open. But, by Theorem 12, if R is meagre, then there is a Cantor set
C ⊆ G such that for distinct x, y ∈ C, (x, y) /∈ R, i.e., xA ∩ yA = ∅, contradicting
the assumption on A. So A2 must be non-meagre.

We claim that A6 must be somewhere comeagre. For if not, let An = A2 and
set Bn = G \ A6, which then is nowhere meagre. Applying Lemma 8 to this
sequence of pairs, we find an injective mapping α ∈ 2N 7→ hα ∈ G such that if
α|n = β|n but α(n) = 0 and β(n) = 1, then

hα Anh−1
α ∩ hβBnh−1

β 6= ∅.

It follows that for distinct α, β ∈ 2N, we have

h−1
β hα A2h−1

α hβ ∩ G \ A6 6= ∅,

and so, as A2 is symmetric, h−1
β hα /∈ A2, whereby hα A ∩ hβ A = ∅, again contra-

dicting the assumption on A.
Thus, A6 is somewhere comeagre and therefore, by Lemma 2, A12 is a neigh-

bourhood of 1. �
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We notice that the above result gives rise to a notion of smallness, namely
admitting a continuum of disjoint translates, in Polish groups, which is not closed
under unions and hence does not correspond to an ideal.

Of course, ample generics is not something you are likely to find in many
groups, and, in fact, most bigger Polish transformation groups even have meagre
conjugacy classes. To see this, we can state a fairly general condition that implies
that all conjugacy classes in a non-discrete Polish group are meagre. Namely,

Proposition 14. Suppose G 6= {1} is Polish such that for all infinite S ⊆ N and all
open V 3 1, the set

A(S, V) = {g ∈ G
∣∣ ∃n ∈ S gn ∈ V}

is dense in G. Then all conjugacy classes in G are meagre.

Proof. Let V0 ⊇ V1 ⊇ . . . 3 1 be a neighbourhood basis at the identity and note
that for every infinite S ⊆N

C(S) = {g ∈ G
∣∣ ∃(sn) ⊆ S gsn → 1}

= {g ∈ G
∣∣ ∀k ∃s ∈ S \ [1, k] gs ∈ Vk}

=
⋂
k

A(S, Vk).

Then C(S) is comeagre and conjugacy invariant. So if O ⊆ G were some comea-
gre conjugacy class, we would have

O ⊆
⋂

S⊆N
infinite

C(S).

But then if g ∈ O, any sequence gni , ni < ni+1, would have a subsequence
converging to 1, and so g = 1 and O = {1}. This contradicts that O is comeagre
in G 6= {1}. �

Among the groups that satisfy this condition are, for example, Aut([0, 1], λ),
Isom(U) and U (`2).

The principal examples of Polish groups known with ample generics are non-
Archimedean Polish groups, i.e., automorphism groups of countable structures.
However, recent examples due independently to M. Malicki and F. LeMaı̂tre–A.
Kaı̈chouh are not of this sort.

Theorem 15 (LeMaı̂tre–Kaı̈chouh). There are connected Polish groups with ample
generics.

On the other hand, P. Wesolek was recently able to show that no locally com-
pact group has a comeagre conjugacy class, thus establishing that this is only a
phenomenon for large Polish groups.

Theorem 16 (Wesolek). No non-trivial locally compact group has a comeagre conjugacy
class.
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