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Overview of the four lectures:

1 Polish groups and ample generics (w/ A. S. Kechris)

2 Topological rigidity of automorphism groups (w/ A. S. Kechris)

3 Coarse geometry of Polish groups

4 Geometry of automorphism groups
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Fräıssé classes and limits

In the following L will always denote a countable first-order language and
K will be a class of finitely generated L-structures.

Definition

K is said to have the hereditary property (HP) provided that, if A ∈ K and
B is a finitely generated L-structure embeddable in A, then also B ∈ K.

Definition

K has the joint embedding property (JEP) provided that, for all
B1,B2 ∈ K, there is some C ∈ K into which both B1 and B2 embed.
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Definition

K has the amalgamation property (AP) provided that, for all
A,B1,B2 ∈ K and embeddings ηi : A→ Bi , there is some C ∈ K and
embeddings ζi : Bi → C so that ζ1 ◦ η1 = ζ2 ◦ η2.
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Definition

K is a Fräıssé class if K satisfies (HP), (JEP) and (AP) and, moreover,
there are only countably many isomorphism types of structures in K.

Observe that by (HP), a Fräıssé classe is automatically closed under
isomorphism.

Examples (Examples of Fräıssé classes)

The class of all finite linear orderings.

The class of all finite Boolean algebras.

The class of all finite graphs.

The class of all finite metric spaces with distances in Q.

The class of all finite groups.
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K is a Fräıssé class if K satisfies (HP), (JEP) and (AP) and, moreover,
there are only countably many isomorphism types of structures in K.
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Example (Finite measured Boolean algebras)

For every dyadic rational r = k
2n ∈ [0, 1], let Pr be a unary predicate.

Let also K denote the class of all finite Boolean algebras expanded with
the predicates {Pr}r so that

µ(x) = r ⇔ Pr (x)

defines a probability measure on the algebra.

Then K is the Fräıssé class of all finite dyadic probability algebras.

Christian Rosendal Descriptive Set Theory and Model Theory Notre Dame, June 2016 6 / 22



Example (Finite measured Boolean algebras)

For every dyadic rational r = k
2n ∈ [0, 1], let Pr be a unary predicate.

Let also K denote the class of all finite Boolean algebras expanded with
the predicates {Pr}r so that

µ(x) = r ⇔ Pr (x)

defines a probability measure on the algebra.
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Definition

A structure K is said to be ultrahomogeneous if every isomorphism

φ : A→ B

between finitely generated substructures A,B ⊆ K extends to a full
automorphism of K.

Definition

If K is a structure, the age of K is the class of all finitely generated
structures embeddable in K.

Theorem (R. Fräıssé)

If K is a Fräıssé class, then there is a (unique up to isomorphism)
countable ultrahomogeneous structure K, called its Fräıssé limit, so that
K = Age K.
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Examples (Examples of Fräıssé limits)

(Q, <) is the limit of the class of all finite linear orderings.

The countable atomless Boolean algebra B∞ = clopen(2N) is the
limit of the class of all finite Boolean algebras.

The random graph R is the limit of the class of all finite graphs.

The rational Urysohn metric space QU is the limit of the class of all
finite metric spaces with distances in Q.

The algebra of clopen subsets of the Cantor group∏
n

Z/2Z

equipped with Haar measure µ is the limit of the class of all finite
dyadic probability algebras.

Hall’s universal locally finite group is the limit of the class of all finite
groups.
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(Q, <) is the limit of the class of all finite linear orderings.

The countable atomless Boolean algebra B∞ = clopen(2N) is the
limit of the class of all finite Boolean algebras.

The random graph R is the limit of the class of all finite graphs.

The rational Urysohn metric space QU is the limit of the class of all
finite metric spaces with distances in Q.

The algebra of clopen subsets of the Cantor group∏
n

Z/2Z

equipped with Haar measure µ is the limit of the class of all finite
dyadic probability algebras.

Hall’s universal locally finite group is the limit of the class of all finite
groups.

Christian Rosendal Descriptive Set Theory and Model Theory Notre Dame, June 2016 8 / 22



Examples (Examples of Fräıssé limits)
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Note that by Stone duality, automorphisms of B∞ = clopen(2N)
correspond to homeomorphisms of Cantor space 2N.

Thus, Aut(B∞) = Homeo(2N).

Similarly, viewing 2N as the Cantor group
∏

n Z/2Z, the group of
measure-preserving automorphisms of the clopen algebra of the Cantor
group can be identified with the group

Homeo(2N, µ)

of measure-preserving homeomorphisms of Cantor space.

Here, if Ns = {x ∈ 2N | s ⊆ x} is a basic open set determined by a finite
binary string s ∈ 2n, we have

µ(Ns) = 2−n.
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Automorphism groups of Fräıssé limits

Suppose that K is the Fräıssé limit of some Fräıssé class K and let Aut(K)
denote its automorphism group.

We equip Aut(K) with the permutation group topology whose basic open
sets are of the form

[φ : B → C ] = {g ∈ Aut(K) | g extends φ}
= {g ∈ Aut(K) | g(b) = φ(b) for all b ∈ B},

where φ is an isomorphism between finitely generated substructures
B,C ⊆ K.

This can be seen to be a group topology meaning that the group
multiplication and inversion are continuous operations on Aut(K).

Also, as K is ultrahomogeneous, any φ : B → C defines a non-empty set
[φ : B → C ].
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denote its automorphism group.

We equip Aut(K) with the permutation group topology whose basic open
sets are of the form

[φ : B → C ] = {g ∈ Aut(K) | g extends φ}
= {g ∈ Aut(K) | g(b) = φ(b) for all b ∈ B},

where φ is an isomorphism between finitely generated substructures
B,C ⊆ K.

This can be seen to be a group topology meaning that the group
multiplication and inversion are continuous operations on Aut(K).

Also, as K is ultrahomogeneous, any φ : B → C defines a non-empty set
[φ : B → C ].

Christian Rosendal Descriptive Set Theory and Model Theory Notre Dame, June 2016 10 / 22



Automorphism groups of Fräıssé limits
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denote its automorphism group.

We equip Aut(K) with the permutation group topology whose basic open
sets are of the form

[φ : B → C ] = {g ∈ Aut(K) | g extends φ}
= {g ∈ Aut(K) | g(b) = φ(b) for all b ∈ B},

where φ is an isomorphism between finitely generated substructures
B,C ⊆ K.

This can be seen to be a group topology meaning that the group
multiplication and inversion are continuous operations on Aut(K).

Also, as K is ultrahomogeneous, any φ : B → C defines a non-empty set
[φ : B → C ].

Christian Rosendal Descriptive Set Theory and Model Theory Notre Dame, June 2016 10 / 22



A n-system over K is a tuple

S = 〈A, φ1 : B1 → C1, . . . , φn : Bn → Cn〉,

where A,Bi ,Ci ∈ K, the Bi and Ci are substructures of A and φi are
isomorphisms from Bi to Ci .

Let also Kn
p denote the class of all n-systems over K.

If T = 〈D, ψ1 : E1 → F1, . . . , ψn : En → Fn〉 is another n-system, then an
embedding of S into T is an isomorphic embedding

ι : A→ D

so that ι[Bi ] ⊆ Ei , ι[Ci ] ⊆ Fi and the diagram commutes for all i .

Bi Ci

Ei Fi

φi

ι ι

ψi
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Definition

The class of n-systems Kn
p has the joint embedding property (JEP)

provided that, for all S0,S1 ∈ Kn
p, there is some R ∈ Kn

p into which both
S0 and S1 embed.

S0 S1• •

R
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Definition

The class of n-systems Kn
p has the weak amalgamation property (WAP)

provided that, for all S ∈ Kn
p, there is some S̃ ∈ Kn

p and embedding

ι : S→ S̃ so that the following property holds:

For all pairs of systems and embeddings ηi : S̃→ Ti , i = 0, 1, there are a
system and embeddings ζi : Ti → R, so that

ζ0 ◦ η0 ◦ ι = ζ1 ◦ η1 ◦ ι.

By changing S̃, one may always assume that ι is actually the inclusion
map.

Such an S̃ is said to be an amalgamation base over S.
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An amalgamation basis for dyadic measure algebras

Suppose
S = 〈A, φ1 : B1 → C1, . . . , φn : Bn → Cn〉

is an n-system of dyadic measure algebras.

Without loss of generality, we may suppose that A is a finite subalgebra of
the algebra clopen(2N) of clopen subsets of Cantor space with measure µ.

Since A is finite, there is a large enough k , so that all the elements of A
are unions of basic open sets Ns , where s ∈ 2k .

So let Ã ⊇ A be the algebra with atoms {Ns}s∈2k .

Now, b ∈ B1 and φ1(b) ∈ C1 have the same measure and thus are the
union of the same number of atoms Ns of Ã.
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Mapping these atoms bijectively to each other, we may extend φ1 to a
measure-preserving automorphism

φ̃1 : Ã→ Ã.

Doing this for all φ1, . . . , φn, we have a natural extension

S̃ = 〈Ã, φ̃1 : Ã→ Ã, . . . , φ̃n : Ã→ Ã〉

of
S = 〈A, φ1 : B1 → C1, . . . , φn : Bn → Cn〉.

It is now fairly easy to see that any two systems embedding S̃ may in fact
be amalgamated over S̃ and not just over S.

One simply uses the free product amalgamation over Ã.
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of
S = 〈A, φ1 : B1 → C1, . . . , φn : Bn → Cn〉.

It is now fairly easy to see that any two systems embedding S̃ may in fact
be amalgamated over S̃ and not just over S.

One simply uses the free product amalgamation over Ã.
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S̃ = 〈Ã, φ̃1 : Ã→ Ã, . . . , φ̃n : Ã→ Ã〉
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Free product amalgamation D ⊗
Ã
E of two extensions D and E of Ã:

a1⊗a1

a2⊗a2

a3⊗a3

a4⊗a4

a1 a2 a3 a4

a1

a2

a3

a4

D

E
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Criterion for ample generics

Theorem

Let K be a Fräıssé class and K denote its corresponding Fräıssé limit.
Then Aut(K) has ample generics if and only if Kn

p has the joint
embedding and weak amalgamation properties for all n.

Idea of proof: Suppose that Kp has the weak amalgamation property.

Then the conjugacy action Aut(K) y Aut(K) satisfies the condition:

For any non-empty open V ⊆ Aut(K) and identity neighbourhood
U ⊆ Aut(K), there is a smaller non-empty open set W ⊆ V so that the
action of U on W is topologically transitive.

Similarly, the joint embedding property ensures Aut(K) y Aut(K) is
topologically transitive. Taken together, there exists a comeagre conjugacy
class in Aut(K).

So let us check this condition.
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First, by shrinking V and U, we may suppose that they have the form

V = [φ : B → C ]

and
U = [id : A→ A]

for some finitely generated substructures B,C ⊆ A ⊆ K.

Applying the weak amalgamation property to the system

S = 〈A, φ : B → C 〉,

we obtain an amalgamation basis S̃ = 〈Ã, φ̃ : B̃ → C̃ 〉 over S.

Since K is ultrahomogeneous, we may suppose that actually

A ⊆ Ã ⊆ K,

whence we have a non-empty open subset

W = [φ̃ : B̃ → C̃ ] ⊆ V .

Christian Rosendal Descriptive Set Theory and Model Theory Notre Dame, June 2016 19 / 22



First, by shrinking V and U, we may suppose that they have the form

V = [φ : B → C ]

and
U = [id : A→ A]

for some finitely generated substructures B,C ⊆ A ⊆ K.

Applying the weak amalgamation property to the system

S = 〈A, φ : B → C 〉,

we obtain an amalgamation basis S̃ = 〈Ã, φ̃ : B̃ → C̃ 〉 over S.
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To see that the action of U on W is topologically transitive, suppose

Wi = [ψi : Ei → Fi ] ⊆ W = [φ̃ : B̃ → C̃ ]

for i = 0, 1, are two open subsets.

We can assume that φ̃ ⊆ ψi and find Di ⊆ K containing all of Ei ,Fi , Ã.

Then there is a system 〈L, α : M → N〉 with L ⊆ K and embeddings

ηi : 〈Di , ψi : Ei → Fi 〉 → 〈L, α : M → N〉

so that η0|A = η1|A.

Extending ηi to full automorphisms gi of K, we have

g0|A = g1|A and ∅ 6= [α : M → N] ⊆ g0[W0] ∩ g1[W1].

Then g−10 g1 ∈ U = [id : A→ A] and g−10 g1[W1] ∩W0 6= ∅, showing that
the action U y W is topologically transitive.
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Examples (Automorphism groups with ample generics)

Homeo(2N, µ),

Aut(R) (E. Hrushovski),

Aut(T∞, r), where T∞ is the countably regular rooted tree and r is
an arbitrary vertex,

Aut(B∞) = Homeo(2N) (A. Kwiatkowska),

Isom(QU) (S. Solecki).

Theorem (Hodges–Hodkinson–Lascar–Shelah, Ben Yaacov–Tsankov)

Let M be a countable ℵ0-stable and ℵ0-categorical structure.
Then Aut(M) has an open subgroup with ample generics.
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For another example of groups with open subgroups having ample
generics, consider Aut(T∞).

Aut(T∞) does not have ample generics, since there are two types of
automorphisms of the tree, namely elliptic and hyperbolic.

On the other hand, the vertex stabiliser Aut(T∞, r) is an open subgroup,
which consists only of elliptic elements and does have ample generics.
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