
Descriptive Set Theory and Model Theory
Fourth Lecture

Christian Rosendal,
University of Illinois at Chicago

Thematic Program on Model Theory,
Notre Dame, June 2016

Christian Rosendal Descriptive Set Theory and Model Theory Notre Dame, June 2016 1 / 24



Overview of the four lectures:

1 Polish groups and ample generics (w/ A. S. Kechris)

2 Topological rigidity of automorphism groups (w/ A. S. Kechris)

3 Coarse geometry of Polish groups

4 Geometry of automorphism groups
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Applications to model theory

The goal of the last lecture is to apply the geometric machinery developed
for general topological groups to the special case of non-Archimedean
Polish groups.

The non-Archimedean Polish groups are simply those isomorphic to closed
subgroups of S∞ or equivalently to automorphism groups

Aut(M)

of countable first-order structures M.

The topology on Aut(M) is always that obtained by declaring pointwise
stabilisers

Va = {g ∈ Aut(M)
∣∣ g(a) = a}

of finite tuples a in M to be open.
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Concepts from the previous talk

Given an automorphism group Aut(M), we wish to find a canonical
generating set S ⊆ Aut(M) and then to compute the corresponding word
metric ρS on Aut(M).

Canonical here means that S should be coarsely bounded, i.e., that, for
every identity neighbourhood V ⊆ Aut(M), there is a finite set F and a
k > 1 with

S ⊆ (FV )k .

Provided this holds, then, up to quasi-isometry,

ρS is independent of the choice of S

so defines an isomorphic invariant of the group, the quasi-isometry type.
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To ensure a proper translation between properties of the structure M and
its automorphism group, we shall work under the relatively mild
assumption that M is ω-homogeneous.

That is, for all finite tuples a and b in M,

O(a) = O(b) ⇔ tpM(a) = tpM(b),

where O(a) denotes the orbit of a under the action of Aut(M) on M|a|.

Some of the tasks awaiting us are then

1 to develop criteria in terms of M for when Aut(M) is locally bounded
or generated by a coarsely bounded set,

2 similarly, provide realisations of and tools for analysing the large scale
geometry of Aut(M),

3 show how the geometry of Aut(M) interacts with the structure M.
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Orbital graphs and quasi-isometry types

A basic organisational tool will be that of orbital graphs functioning as a
replacement for the Cayley graphs of finitely generated groups.

So assume M is a countable ω-homogeneous structure, a is a finite tuple
in M and S is a finite collection of parameter-free complete types on M.

Without loss of generality, we may assume that S consists of types of the
form p = tpM(b, c), where

tpM(a) = tpM(b) = tpM(c).

We define a graph Xa,S on the set O(a) of realisations of tpM(a) in M by
connecting distinct b, c ∈ O(a) by an edge if and only if

tpM(b, c) ∈ S or tpM(c , b) ∈ S.
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Observe that, since
tpM(gb, gc) = tpM(b, c)

for all tuples b, c and automorphisms g ∈ Aut(M), the diagonal action of
Aut(M) on O(a) is an action by automorphisms on the graph Xa,S .

Moreover, since Vert Xa,S = O(a) is a single orbit, the action

Aut(M) y Xa,S

is vertex transitive.

Also, we let ρa,S be the corresponding path-metric on Xa,S .

By stipulation, we have that ρa,S(b, c) =∞ if and only if b and c lie in
distinct connected components of Xa,S .

We thus have a transitive isometric action Aut(M) y
(
Xa,S , ρa,S

)
.
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Theorem

Let M be a countable ω-homogeneous structure.

Then Aut(M) is generated by a coarsely bounded set if and only if there is
a finite tuple a in M satisfying the following two requirements.

1 There is a finite set R of parameter-free types so that Xa,R is
connected, and

2 for every tuple b extending a, there is a finite set S of parameter-free
types so that

{c ∈ O(b)
∣∣ c extends a}

has finite diameter in the graph Xb,S .

Condition (2), which in itself is equivalent to the pointwise stabiliser Va

being coarsely bounded, is clearly the most difficult to verify.
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While the previous result characterises when Aut(M) is generated by a
coarsely bounded set, the next result computes the actual quasi-isometry
type.

Theorem (Milnor–Schwarz Theorem)

For a and R as above, the map

g ∈ Aut(M) 7→ g · a ∈ Xa,R

is a quasi-isometry between Aut(M) and Xa,R.
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Example: the countably regular tree T∞

Since the automorphism group Aut(T∞) acts transitively on the vertices,
if we let a be any vertex, then O(a) = VertT∞.

Moreover, one may then verify that Condition (2) is satisfied.

Secondly, let R consist of a single type, namely that which is isolated by
the edge relation E .

Then, since Xa,R = T∞ is connected, Condition (1) is also verified.

By the Milnor–Schwarz Theorem, we see that the map

g ∈ Aut(T∞) 7→ g(a) ∈ T∞

is a quasi-isometry between Aut(T∞) and Xa,R = T∞.
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Consequences

One outcome of the preceding calculation is a rigidity phenomenon similar
to many reconstruction results.

Reconstruction results common to this area often states that the structure
M can be fully recovered or be recovered up to bi-interpretability from
Aut(M) as a topological or even abstract group.

However, the initial data given, namely Aut(M) as an abstract group, is
an incredibly detailed piece of information.

Instead the result here says that T∞ is recoverable up to quasi-isometry
from much coarser topological-algebraic information about Aut(T∞).

Namely, T∞ is given as the quasi-isometry type of a word metric ρS for
some coarsely bounded generating set S .
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Orbital independence relations

The verification that Aut(M) is locally bounded often relies on identifying
an appropriate independence relation |̂ A between finite subsets of M
relative to a fixed finite subset A ⊆M or tuple a in M.

Definition

Let M be a countable structure and A ⊆M a finite subset. An orbital
A-independence relation on M is a binary relation |̂ A defined between
finite subsets of M so that, for all finite subsets B,C ,D ⊆M,

(i) (symmetry) B |̂ A C ⇔ C |̂ A B,

(ii) (monotonicity) B |̂ A C & D ⊆ C ⇒ B |̂ AD,

(iii) (existence) there is f ∈ VA so that fB |̂ A C ,

(iv) (stationarity) if B |̂ A C and g ∈ VA satisfies gB |̂ A C , then
g ∈ VCVB , i.e., there is some f ∈ VC agreeing pointwise with g on B.
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When restricting our attention to ω-homogeneous structures M,
Conditions (iii) and (iv) of the definition of orbital A-independence
relations can be reformulated as follows.

(iii) For all a and B, there is b with

tpM(b/A) = tpM(a/A) and b |̂
A
B.

(iv) For all a, b and B,

a |̂
A
B & b |̂

A
B & tpM(a/A) = tpM(b/A)

⇒ tpM(a/B) = tpM(b/B).

Independence notions similar the those above have recently been studied
by K. Tent and M. Ziegler in connection with questions of simplicity of
automorphism groups.
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Theorem

Suppose M is a countable structure, A ⊆M a finite subset and |̂ A an
orbital A-independence relation. Then the pointwise stabiliser subgroup
VA is coarsely bounded (relative to itself).

In fact, for every identity neighbourhood W ⊆ VA, there is f ∈ VA so that

VA = W ·f ·W ·f −1 ·W .

Thus, if A = ∅, the automorphism group Aut(M) = V∅ is coarsely
bounded and so the associated word-metric has diameter 1.

It follows that, in that case, Aut(M) is quasi-isometric to a point.

If instead, A 6= ∅, then Aut(M) is locally bounded and hence has a
coarsely proper metric.
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Functorial amalgamations

Among other examples, the independence relations studied by Tent and
Ziegler are shown to arise from canonical amalgamation schemes in Fräıssé
classes.

For our purposes, we require a stronger scheme.

Definition

Given an Fräıssé class K with limit K and a finite substructure A ⊆ K, we
say that K satisfies functorial amalgamation over A if there is a way of
choosing the amalgamations over A in the class K to be functorial with
respect to embeddings.
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The rational Urysohn metric space

Consider the Fräıssé class MQ of finite metric spaces with rational
distances whose limit is the rational Urysohn metric space QU.

Lemma

MQ admits a functorial amalgamation over a single point a.

That is, let B and C be two finite metric spaces with only a single point a
in common.

The free amalgam of B and C over a is the union B ∪ C with

d(b, c) : = d(b, a) + d(a, c)

for all b ∈ B \ {a} and c ∈ C \ {a}.

An important fact here is that, unless we bound the diameters of the
metric spaces in question, there is no functorial amalgamation over the
empty set.
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Given a Fräıssé class K with limit K and a functorial amalgamation
scheme over some finite A ⊆ K, we obtain an orbital A-independence
relation |̂ A on K by setting

B |̂
A
C ⇔ B & C are functorially amalgamated over A

Theorem

Suppose K is a Fräıssé class with limit K and assume that A is a finite
substructure of K so that K admits a functorial amalgamation over A.
Then VA coarsely bounded and thus Aut(K) is locally bounded.
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Returning to QU, this implies that the stabiliser Va of any point a ∈ QU is
coarsely bounded.

To show that the automorphism group Isom(QU) is generated by a
coarsely bounded set and to compute the quasi-isometry type, we seek a
finite set R of parameter-free complete types, so that the graph

Xa,R

with vertex set QU = O(a) is connected.

For this, set R = {d(x , y) = 1} and note that any two points x , y ∈ QU
can be connected by a path in Xa,R of length

at most dd(x , y)e+ 1, but no less than d(x , y).

Therefore, Xa,R is quasi-isometric to QU and we conclude that the map

g ∈ Isom(QU) 7→ g(a) ∈ QU

is a quasi-isometry.
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Groups with trivial geometry

In many familiar cases, though we are able to identify the large scale
geometry of a topological group, it turns out that this is trivial.

Theorem (P. Cameron)

Let M be an ℵ0-categorical countable structure.
Then Aut(M) is coarsely bounded and thus quasi-isometric to a point.

Similarly, using forking calculus and the associated independence relation,
we may show the same conclusion for saturated ω-stable structures.

Theorem

Let M be a saturated countable model of an ω-stable theory.
Then Aut(M) is coarsely bounded and thus quasi-isometric to a point.
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Tame geometry from model theoretical considerations

Recall that a structure M is atomic if every complete type is isolated.

It follows that, if R is a finite collection of complete types, then, for every
n, the relation on b and c ,

ρa,R(b, c) 6 n,

is definable in M.

Definition (J.-L. Krivine and B. Maurey)

A metric d on a set X is said to be stable if, for all d-bounded sequences
(xn) and (ym) in X , we have

lim
n→∞

lim
m→∞

d(xn, ym) = lim
m→∞

lim
n→∞

d(xn, ym),

whenever both limits exist.
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Definition

Let T be a complete theory of a countable language L and let κ be an
infinite cardinal number.

We say that T is κ-stable if, for all models M |= T and subsets
B ⊆M with |B| 6 κ, we have |SM

n (B)| 6 κ.

Also, T is stable if it is κ-stable for some infinite cardinal κ.

The stability of the underlying structure is similarly reflected in the large
scale geometry.

Theorem

Suppose M is a countable atomic model of a stable theory T .

1 If Aut(M) is locally bounded, it admits a coarsely proper stable
metric,

2 if Aut(M) is generated by a coarsely bounded set, it admits a
coarsely proper stable metric witnessing its quasi-isometry type.
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Noting the independence relations present in models of stable theories, one
could be hopeful that the assumption that Aut(M) be locally bounded
would be superfluous.

However, this is not so.

Theorem (J. Zielinski)

There is a countable atomic model M of an ω-stable theory so that
Aut(M) is not locally bounded.
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