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These notes were prepared for the first week of the Notre Dame Center for Mathematics The-
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By now in your mathematical education, you have studied (or at least heard of) many areas
of mathematics which focus on the “theory” of a certain kind of abstract mathematical structure.
For example: group theory, ring theory, field theory, or graph theory. These notes will introduce
you to model theory, which provides a formal unifying framework, with which one can study any of
these examples (and more).

1 Languages and Structures

To motivate our main definition, recall some common mathematical structures.

Example 1.1.

1. A group is a tuple (G, ∗, e) where

- G is a set,

- ∗ is a binary function on G,

- e is an element of G,

- certain axioms are satisfied.

2. An ordered ring is a tuple (R,+,−, ·, <, 0, 1) where

- R is a set,

- +, −, · are binary functions on R,

- 0, 1 are elements of R,

- < is a binary relation on R (i.e. a subset of R×R),

- certain axioms are satisfied.

3. A graph is a tuple (V,E) where

- V is a nonempty set,

- E is a binary relation on V ,

- certain axioms are satisfied.

Recall that, given a set X and an integer n ≥ 1, an n-ary relation on X is a subset of Xn.

Definition 1.2.

1. A structure is a tuple M =
(
M, (fMi )i∈I , (R

M
j )j∈J , (c

M
k )k∈K

)
where

- M is a nonempty set,

- each fMi is a function on M of arity ni ≥ 1,

- each RMj is a relation on M of arity mj ≥ 1,

- each cMk is an element of M.

2. A structure M has an associated language of symbols

L = {fi : i ∈ I} ∪ {Rj : j ∈ J} ∪ {ck : k ∈ K},

which are called function symbols, relation symbols, and constant symbols, respec-
tively. Each function and relation symbol has an implicit arity n ≥ 1.
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In practice, one often first fixes a language L, and considers different structures in that language
(i.e. L-structures). The following are some languages that we will use frequently.

Definition 1.3.

1. Let Lg = {∗, e} be the language of groups, where ∗ is a binary function symbol and e is a
constant symbol.

2. Let Lr = {+,−, ·, 0, 1} be the language of rings (with unity), where +,−, · are binary function
symbols and 0, 1 are constant symbols.1

3. Let Lo = {<} be the language of orders, where < is a binary relation symbol. Define the
language of ordered groups Log = Lg∪{<} and the language of ordered rings Lor = Lr∪{<}.

4. Let Lgr = {E} be the language of graphs, where E is a binary relation symbol.

Note that there is no substantive difference between Lo and Lgr. Note also that any group can
be interpreted as an Lg-structure, but an Lg-structure does not necessarily need to be group. In
particular, unlike Example 1.1, Definition 1.2 says nothing about “certain axioms being satisfied”
(this comes later in Section 3). For example, we may define an Lg-structure (N, ∗, 472), where
x ∗ y = xy + blog(x+ y + 1)c.

When studying mathematical objects it is useful to work with maps which preserve a certain
amount of structure. We can generalize such notions to arbitrary L-structures.

Definition 1.4. Let L be a language and let M and N be L-structures.

1. A function σ : M −→ N is an L-embedding if σ is injective and:

(i) for any function symbol f in L of arity n, and a1, . . . , an ∈M ,

σ(fM(a1, . . . , an)) = fN (σ(a1), . . . , σ(an));

(ii) for any relation symbol R in L of arity n, and a1, . . . , an ∈M ,

(a1, . . . , an) ∈ RM ⇔ (σ(a1), . . . , σ(an)) ∈ RN ;

(iii) for any constant symbol c in L,
σ(cM) = cN .

In this case, we say σ is an embedding from M to N , and write σ :M−→ N .

2. An L-isomorphism from M to N is a bijective L-embedding from M to N .

3. M and N are isomorphic, written M∼= N , if there is an L-isomorphism σ :M−→ N .

4. M is a L-substructure ofN , writtenM⊆ N , if M ⊆ N and the inclusion map ι : M −→ N ,
such that ι(a) = a for all a ∈ M , is an L-embedding. In other words M ⊆ N if and only if
M ⊆ N and:

(i) for any function symbol f in L of arity n, fM = fN |Mn ,

(ii) for any relation symbol R in L of arity n, RM = RN ∩Mn,

(iii) for any constant symbol c in L, cM = cN .

1We are including the symbol “−” for convenience (see Example 2.13(3)).
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Example 1.5.

1. (Z,+, 0) is an Lg-substructure of (R,+, 0).

2. (N,+, 0) is an Lg-substructure of (Z,+, 0).

3. The function x 7→ ex is an Lr-embedding from (Z,+, 0) to (R+, ·, 1).

4. Recall that if (V,E) is a graph, then an subgraph of (V,E) is a graph (W,F ) where W ⊆ V
and E ⊆ F . A subgraph (W,F ) is an induced subgraph if F = W 2 ∩ E. Now suppose (V,E)
is a graph and (W,F ) is a subgraph. Then (W,F ) is a Lgr-substructure of (V,E) if and only
if it is an induced subgraph.

2 Formulas and Definable Sets

Our next task is to define a formal syntax for expressing properties of L-structures using the symbols
in L. To motivate the definitions, we make the following observations.

Example 2.1. Consider the Lor-structure (R,+, ·, <, 0, 1). There are many more functions and
relations, which are not in Lor, but are still expressible using the symbols in Lor. For example:

1. the unary function f : R −→ R such that f(x) = x+ 1;

2. the ternary relation R = {(x, y, z) ∈ R3 : x < y + z}.

To address this issue, we formally define how to build new functions and relations from the
symbols in a given language. In particular, we define L-terms and L-formulas, which will be
certain special strings of symbols built from:

• the symbols in L,

• the equality sign = (to be interpreted as equality),

• countably many variable symbols: e.g. u, v, w, x, y, z, or vi for i ∈ N, etc...

• the Boolean connectives ∧ and ¬ (to be interpreted as “and” and “not”, respectively),

• the existential quantifier symbol ∃ (to be interpreted as “there exists”, respectively),

• parentheses and commas (for parsing and listing).

We will later observe that several other “natural” logical operators are expressible using these
symbols (see Remark 2.9).

2.1 Terms (new functions)

Definition 2.2. Let L be a language. The set of L-terms is the smallest set T satisfying the
following properties:

(i) c ∈ T for any constant symbol c in L,

(ii) v ∈ T for each variable symbol v,

(iii) if f is an n-ary function symbol in L, and t1, . . . , tn ∈ T , then f(t1, . . . , tn) ∈ T .
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Returning to Example 2.1, we can now express the function f(x) = x+ 1 as an Lor-term. If we
pedantically follow the full formality of the definition, then this term would be:

+(x, 1).

For the sake of better comprehension, we abuse notation and write this term as x+ 1.
As suggested by Example 2.1, we will interpret L-terms as functions on L-structures.

Convention 2.3. In several places, it will be convenient to think of constant symbols as “function
symbols of arity 0”. To make sense of this, we use the convention M0 = {∅} for any set M . Given
a language L, an L-structure M, and a constant symbol c in L, we identify the interpretation cM

with the 0-ary function ∅ 7→ cM from M0 to M .

Definition 2.4. Fix a language L. Let t be an L-term and letM be an L-structure. By induction
on the construction of terms, we define a function tM : Mn −→ M , where n is the number of
distinct variable symbols appearing in t.

(i) If t is a constant symbol c, then tM : M0 −→M such that tM(∅) = cM.

(ii) If t is a variable symbol, then tM : M −→M is the identity function.

(iii) Suppose f is an m-ary function symbol, and t is the L-term f(t1, . . . , tm), where t1, . . . , tm
are L-terms using variables from among v1, . . . , vn. Define tM : Mn −→M such that

tM(ā) = fM(tM1 (ā), . . . , tMm (ā)),

where, for 1 ≤ i ≤ m, tMi (ā) denotes the function tMi evaluated on the subtuple of ā corre-
sponding to the variables used in ti (which can be ∅ if ti is a constant symbol).

2.2 Formulas (new relations)

Definition 2.5. Let L be a language.

1. An atomic L-formula is a string ϕ of symbols of one of the following forms:

(i) t1 = t2, where t1, t2 are L-terms, or

(ii) R(t1, . . . , tn), where R is an n-ary relation symbol in L and t1, . . . , tn are L-terms.

2. The set of L-formulas is the smallest set F satisfying the following properties:

(i) any atomic L-formula is in F ,

(ii) if ϕ ∈ F then ¬ϕ ∈ F ,

(iii) if ϕ,ψ ∈ F then (ϕ ∧ ψ) ∈ F ,

(iv) if ϕ ∈ F and v is a variable symbol, then ∃v(ϕ) ∈ F .

Returning to Example 2.1, we can express the relation R as the atomic Lor-formula

<(x,+(y, z)).

Once again, for the sake of comprehension and readability, we instead write: x < y + z.

Definition 2.6. Given L-formula ϕ, and a variable v used in ϕ, we say v occurs freely if v is
does not occur in the scope of ∃v. If v does not occur freely in ϕ then we say v is bound in ϕ. If
no variable occurs freely in ϕ then ϕ is an L-sentence.
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Remark 2.7. By renaming bound variables, we may assume that no variable v has both free and
bound occurrences in the same formula. For example, if ϕ is the Lor-formula x < y and ψ is the
Lor-formula ∃x(x+ y = 0), we will write the conjunction ϕ ∧ ψ as (x < y) ∧ ∃z(z + y = 0).

We will write ϕ(v1, . . . , vn) to emphasize that ϕ is an L-formula with free variables v1, . . . , vn.
We now define the interpretation L-formulas as relations on L-structures.

Definition 2.8. Let ϕ(v1, . . . , vn) be an L-formula.

1. Given ā ∈ Mn, we inductively define what it means for ā to satisfy ϕ(v̄) in M, written
M |= ϕ(ā).

(i) If ϕ(v1, . . . , vn) is of the form t1 = t2 where t1 and t2 are L-terms using variables among
v1, . . . , vn, then

M |= ϕ(ā) ⇔ tM1 (ā) = tM2 (ā).

(ii) If ϕ(v1, . . . , vn) is of the form R(t1, . . . , tm) where R is an m-ary relation symbol and
t1, . . . , tm are L-terms with variables among v1, . . . , vn then

M |= ϕ(ā) ⇔ (tM1 (ā), . . . , tMm (ā)) ∈ RM.

(iii) If ϕ(v1, . . . , vn) is an L-formula then

M |= ¬ϕ(ā) ⇔ M 6|= ϕ(ā).

(iv) If ϕ(vi1 , . . . , vir) and ψ(vj1 , . . . , vjs) are L-formulas, with {i1, . . . , ir, j1, . . . , js} = {1, . . . , n},
then

M |= (ϕ ∧ ψ)(ā) ⇔ M |= ϕ(ai1 , . . . , air) and M |= ψ(aj1 , . . . , ajs),

(v) If ϕ(v1, . . . , vn, w) is an L-formula then

M |= (∃wϕ)(ā) ⇔ there exists b ∈M such that M |= ϕ(ā, b).

2. Define the subset ϕM = {ā ∈Mn :M |= ϕ(ā)}.

The reader should think about the previous construction of ϕM in the case that the formula ϕ
is a sentence with no free variables. We will discuss this further in Section 3.

Remark 2.9.

1. We will use the following abbreviations for the expression of other “logical notions”.

(i) disjunction: ϕ ∨ ψ (“ϕ or ψ”) is an abbreviation for ¬(¬ϕ ∧ ¬ψ).

(ii) implication: ϕ→ ψ (“ϕ implies ψ”) is an abbreviation for ¬ϕ ∨ ψ.

(iii) equivalence: ϕ↔ ψ (“ϕ if and only if ψ”) is an abbreviation for (ϕ→ ψ) ∧ (ψ → ϕ).

(iv) universal quantification: ∀v(ϕ) (“for all v, ϕ”) is an abbreviation for ¬∃v(¬ϕ).

The reader may verify that these abbreviations are coherent (see Exercise 7.2.5).
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2. Depending on the particular language L, one can define further abbreviations. For example,
consider the language Lor. We often drop the multiplication symbol, and write v1v2 for v1 ·v2.
We can express the squaring function as the Lor-term v · v, which will be abbreviated as v2.
For example, the following formula expresses that every positive element has a square root:

∀x(x > 0→ ∃y(x = y2)).

For another example, we can express the ternary relation |x− y| < z as

(0 ≤ x− y < z) ∨ (0 ≤ y − x < z),

where v1 ≤ v2 < v3 is an abbreviation for: ((v1 = v2) ∨ (v1 < v2)) ∧ (v2 < v3).

Now consider an expanded language L = Lor ∪{f}, where f is a new unary function symbol.
The following L-formula expresses that the function f is continuous at x:

∀v1

(
v1 > 0→ ∃v2

(
v2 > 0 ∧ ∀y

(
|x− y| < v2 → |f(x)− f(y)| < v1

)))
.

Recall that an L-embedding between two structures is defined to preserve all symbols in L. A
natural question is the extent to which L-embeddings preserve more complicated formulas.

Definition 2.10. Given a language L, an L-formula ϕ(v1, . . . , vn) is quantifier-free if it is con-
structed from atomic formulas using only iterations of ¬ and ∧.

Proposition 2.11. Suppose M and N are L-structures, and σ : M −→ N is an L-embedding.
For any quantifier-free formula ϕ(v1, . . . , vn) and ā ∈Mn,

M |= ϕ(a1, . . . , an) ⇔ N |= ϕ(σ(a1), . . . , σ(an)).

Proof. Given a tuple ā ∈ Mn, let σ(ā) = (σ(a1), . . . , σ(an)) ∈ Nn. We must first prove a claim
concerning L-terms.
Claim: If t(v̄) is a term and ā ∈Mn then σ(tM(ā)) = tN (σ(ā)).
Proof : We proceed by induction on the construction of terms. If t is a constant symbol c then
σ(cM) = cN since σ is an L-embedding. If t is a variable and a ∈ M , then σ(tM(a)) = σ(a) =
tN (σ(a)). Now suppose t(v1, . . . , vn) is of the form f(t1, . . . , tm), where f is an m-ary function
symbol and t1, . . . , tm are terms, which satisfy the claim and use variables among v1, . . . , vn. Then,
for ā ∈Mn,

σ(tM(ā)) = σ(fM(tM1 (ā)), . . . , fM(tMm (ā)))

= fN (σ(tM1 (ā)), . . . , σ(tMm (ā))) (since σ is an embedding)

= fN (tN1 (σ(ā)), . . . , tNm(σ(ā))) (by induction)

= tN (σ(ā)). aclaim

We now prove the proposition by induction on the construction of formulas. Suppose ϕ is the
formula R(t1, . . . , tm), where R is an m-ary relation symbol and t1, . . . , tm are terms. Then

M |= ϕ(ā) ⇔ (tM1 (ā), . . . , tMm (ā)) ∈ RM

⇔ (σ(tM1 (ā)), . . . , σ(tMm (ā))) ∈ RN (since σ is an embedding)

⇔ (tN1 (σ(ā)), . . . , tNm(σ(ā))) ∈ RN (by the claim)

⇔ N |= ϕ(σ(ā)).
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Viewing equality as a binary relation, the same argument works when ϕ is the formula t1 = t2 (this
uses injectivity of σ). This proves the result for atomic formulas.

Assume the result for ϕ(v̄). Then

M |= ¬ϕ(ā) ⇔ M 6|= ϕ(ā) ⇔ N 6|= ϕ(σ(ā)) ⇔ N |= ¬ϕ(σ(ā)),

where the second equivalence is by induction. We leave it to the reader to finish the ϕ∧ψ case.

In general, the quantifier-free assumption in the previous result is necessary (see Exercise 7.2.1).
We will consider preservation of arbitrary formulas in Section 5.

Given an L-formula ϕ(v1, . . . , vn), the subset ϕM ⊆Mn is a particular case of the more general
notion of a definable set in the structure M.

Definition 2.12. Let M be an L-structure. Given n > 0, a subset X ⊆ Mn is definable in M
if there is an L-formula ϕ(v1, . . . , vn, w1, . . . , wm) and a tuple b̄ ∈Mm such that

X = {ā ∈Mn :M |= ϕ(ā, b̄)}.

In the above definition, the elements in b̄ are referred to as parameters and one can treat ϕ(v̄, b̄)
as an L-formula with parameters from M . Alternatively, ϕ(v̄, b̄) can be viewed as a formula in the
language LM obtained from L by adding constant symbols for all elements of M (and interpreting
those symbols in the obvious way). For our purposes, we treat these viewpoints as equivalent
(although there are areas of model theory where the distinction is crucial).

Let L be a language and M an L-structure. Suppose X ⊆ Mn is definable in M. Then it is
possible that there is more than one formula which defines X. We give a few examples.

Example 2.13. Consider the Lor-structure (R,+,−, ·, <, 0, 1).

1. Let X =
{

1+
√

5
2 , 1−

√
5

2

}
. Then X is defined by ϕ

(
x, 1+

√
5

2 , 1−
√

5
2

)
, where ϕ(x, v1, v2) is the

formula
x = v1 ∨ x = v2,

and also by the formula: x2 − x− 1 = 0 (with no extra parameters).

2. Let X ⊆ R3 be the set of triples (a, b, c) such that the quadratic function ax2 + bx+ c has a
root in R. Then X is defined by

∃x(ux2 + vx+ w = 0),

and by
v2 − 4uw ≥ 0 ∧ ¬(u = 0 ∧ v = 0 ∧ w 6= 0).

Note that both formulas are in free variables u, v, w, but the second is quantifier-free while
the first is not.

3. We can use definable sets to see that, for this particular structure, some symbols in Lor are
redundant. For example the graph of the binary function “−” can be defined using “+”, since
z = x − y if and only if x = y + z (see also Exercise 7.2.3). Moreover, as subset of R2, the
binary relation < is definable by the Lr-formula

∃z(z 6= 0 ∧ y − x = z2).

However, as we will discuss in Section 5, the fact that a quantifier is necessary in the definition
of < is extremely significant.
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3 Sentences and Theories

Given a formula ϕ(v1, . . . , vn), Definition 2.8 produces a subset ϕM ⊆ Mn, which contains the
tuples ā ∈ Mn for which M |= ϕ(ā). If ϕ has no free variables, then ϕM is a subset of M0,
and is therefore either equal to M0 or ∅. Working carefully through Definition 2.8, we see that
ϕM = M0 if and only if M |= ϕ (see Exercise 7.3.4). In this case, we think of ϕ as expressing a
“true statement” about the structure M.

Definition 3.1. Let M be an L-structure. Define the theory of M to be

Th(M) = {ϕ : ϕ is an L-sentence and M |= ϕ}.

There is an extremely important observation to be made at this point having to do with our
use of quantifiers in L-sentences. In particular, quantifiers range only over elements of structures,
and not more complicated objects (e.g. subsets of structures). This limitation is specified by saying
that L-sentences, as we have defined them, are first-order. In fact, one should technically apply
the adjective first-order to many of the previously defined notions (e.g. first-order L-formulas and
first-order definable subsets of L-structures). In general, everything done here is regarded as under
the umbrella of first-order logic.

For an example to emphasize this distinction, consider Lo-structure (R, <). A very important
feature about this structure is the least upper bound property : any nonempty subset of R with
an upper bound in R contains a least upper bound in R. If we try to express this property as a
first-order Lo-sentence, we run into trouble because it requires quantification over subsets of R. In
fact, there is no way to express the least upper bound property as a first-order L-sentence in any
language L (see Exercise 7.5.3).

Suppose now that M and N are L-structures such that Th(M) = Th(N ). To what extent are
M and N alike? This question motivates the next definition.

Definition 3.2. Let M and N be L-structures. Then M and N are elementarily equivalent,
written M≡ N if Th(M) = Th(N ).

Now we can rephrase the question above as a problem: given an L-structure M, classify the
L-structures elementarily equivalent to M. This question has motivated much of modern model
theory, and has led to deep advances in mathematics.

We begin with an unsurprising example of elementary equivalence.

Proposition 3.3. SupposeM is an L-structure. For any L-structure N , ifM∼= N thenM≡ N .

Proof. Apply Exercise 7.2.6.

The converse of this fact only holds if M is finite (see Exercise 7.3.6). In particular, if M is
an infinite L-structure, then we will see that there are L-structures of arbitrarily large cardinality
elementarily equivalent toM (see Proposition 4.5). We first need to develop tools for working with
theories of structures. For these tools to be the most useful, we want to consider theories in greater
generality.

Definition 3.4. Let L be a language.

1. An L-theory is a set T of L-sentences.

2. Given an L-theory T and an L-structureM, we sayM is a model of T , writtenM |= T , if
M |= ϕ for all L-sentences ϕ in T .
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3. An L-theory T is satisfiable if it has a model.

4. Given an L-theory T , let Mod(T ) be the class of models of T .

5. Given an L-theory T and an L-sentence ϕ, we say ϕ is a logical consequence of ϕ, written
T |= ϕ, if M |= ϕ for any model M of T .

We can use theories to describe or “axiomatize” certain classes of structures we want to study.

Definition 3.5. Let L be a language. A class K of L-structures is an elementary class if there
is an L-theory T such that K = Mod(T ).

Remark 3.6. To avoid inconsequential complications, we often tacitly assume that classes K of
L-structures are closed under isomorphism.

It is worth going through several examples of elementary classes.

Example 3.7.

1. Consider the language Lg of groups. Let G consist of the following sentences

∀x∀y∀z((x ∗ y) ∗ z = x ∗ (y ∗ z))
∀x(x ∗ e = x = e ∗ x)

∀x∃y(x ∗ y = e = y ∗ x)

Then the class of models of G is precisely the class of groups, and so the class of groups is an
elementary class. We also say that G axiomatizes the theory of groups.

Let AG be G together with the Lg-sentence

∀x∀y(x ∗ y = y ∗ x).

Then AG axiomatizes the theory of abelian groups.

Let DAG be AG∪{ϕn : n > 0}, where ϕn is the Lg-sentence

∀x∃y(yn = x),

and yn is an abbreviation for y ∗ y ∗ . . . ∗ y (n times). Then DAG axiomatizes the theory of
divisible abelian groups.

Let TFDAG = DAG∪{∃x(x 6= e)} ∪ {ψn : n > 0}, where ψn is the Lg-sentence

∀x(xn = e→ x = e).

Then TFDAG axiomatizes the theory of nontrivial torsion-free divisible abelian groups.

2. Let Lgr = {E} be the language of graphs. Then the class of graphs is an elementary class,
whose theory is axiomatized by

∀x(¬E(x, x)) ∧ ∀x∀y(E(x, y)→ E(y, x)).

3. Vector spaces over a field. Fix a field F and define a language L = {+, 0, (λa)a∈F }, where +
is a binary relation symbol, 0 is a constant symbol, and, for a ∈ F , λa is a unary function
symbol. Define the theory T consisting of AG (in the language {+, 0}), together with
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• for every a, b ∈ F ,
∀x
(
λa(λb(x)) = λab(x)

)
,

• for every a ∈ F ,
∀x∀y

(
λa(x+ y) = λa(x) + λa(y)

)
,

• for every a, b ∈ F ,
∀x
(
λa+b(x) = λa(x) + λb(x)

)
,

• ∀x
(
λ1(x) = x

)
.

Then T axiomatizes vector spaces over F .

4 The Compactness Theorem

In the last section, we considered several examples of elementary classes. A more difficult problem
is to show that certain classes of structures are not elementary classes. In particular, given a
class K of L-structures, in order to show that K is not elementary class one needs to show that
K 6= Mod(T ) for any L-theory T . One way to accomplish this would be to isolate a collection of
sentences ∆ such that no structure in K is a model of ∆ and then show that T ∪∆ is satisfiable
for any L-theory T such that K ⊆ Mod(T ). To do this, one often takes ∆ to be sentences in some
larger language (see Proposition 4.4 below). But in any case, we need general tools for proving
satisfiability of theories. This brings us to the Compactness Theorem, which is the cornerstone
result lying at the foundation of all of first-order model theory.

Definition 4.1. An L-theory T is finitely satisfiable if every finite subset of T is satisfiable.

Theorem 4.2 (The Compactness Theorem). Every finitely satisfiable L-theory is satisfiable.

A proof of this result is given in Appendix A. The power and use of the Compactness Theorem
cannot be understated; it is used in every facet of first-order model theory. As previously discussed,
applications of the Compactness Theorem often involve moving to a larger language (e.g. by adding
new constant symbols). Therefore we make the following definition.

Definition 4.3. Let L and L∗ be languages with L ⊆ L∗, and supposeM∗ is an L∗-structure. We
define the reduct of M∗ to L∗, denoted M∗|L, to be the unique L-structure M satisfying the
following properties:

(i) the universe of M is the universe of M∗, and

(ii) the interpretation in M of any symbol in L is the same as the interpretation in M∗.

In this case, we also call M∗ an expansion of M to L∗.

The following is our first application of the Compactness Theorem.

Proposition 4.4. Suppose T is an L-theory with arbitrarily large finite models. Then T has an
infinite model.

Proof. First, we expand the language L∗ = L ∪ {cn : n > 0}, where each cn is a new constant
symbol. Note that T is still an L∗-theory. Define the set of L∗-sentences

∆ = {cm 6= cn : m,n > 0, m 6= n}.
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Set T ∗ = T ∪∆ and fix a finite subset T0 ⊆ T ∗. Then there is an integer k > 0 such that

T0 ⊆ T ∪ {cm 6= cn : 0 < m,n ≤ k, m 6= n}.

By assumption, there is an L-structure M |= T such that |M | ≥ k. Let M∗ be the L∗-structure,
with universe M , such that

• M∗|L =M,

• cM∗
1 , . . . , cM

∗
k are distinct elements of M , and

• cM∗
n , for n > k, is any arbitrarily element of M .

Then M∗ |= T0 by construction.
By the Compactness Theorem, T ∗ is satisfiable and so we may fix an L∗-structure N ∗ |= T ∗.

Clearly, the universe N of N ∗ must be infinite. Moreover N = N ∗|L is a model of T .

From this result, we see that if K is a class of finite L-structures, containing elements of arbi-
trarily large finite size, then K is not an elementary class. For example, the classes of finite sets,
finite groups, finite graphs, and finite fields (etc...) are not elementary.

The following application is of a similar flavor, and is proved using a strengthening of the
Compactness Theorem (see Exercise 7.4.5).

Proposition 4.5. If T is an L-theory with infinite models, and κ ≥ max{|L|,ℵ0}, then T has a
model of cardinality κ.

Next, we consider the class of torsion groups (i.e groups in which every element has finite order).

Proposition 4.6. Let T be an L-theory, where L contains Lg. Then K := {M|Lg : M |= T} is
not the class of torsion groups.

Proof. Suppose, for a contradiction, that K is the class of torsion groups. Let L∗ = L∪ {c}, where
c is a new constant symbol. Define the set of L∗-sentences:

∆ = {cn 6= e : n > 0}.

Let T ∗ = T ∪∆, and suppose T0 ⊆ T ∗ is finite. We may fix an integer k > 0 such that

T0 ⊆ T ∪ {cn 6= e : 0 < n < k}.

By assumption there is a model N |= T such that N|Lg =
(
Z/kZ,+k, 0

)
, where +k is addition

modulo k. Let N ∗ be the expansion of N to L∗ by interpreting c as 1. Then N ∗ models T0.
By the Compactness Theorem, there is an L∗-structureM∗ |= T ∗. ThenM =M∗|L is a model

of T , and so M|Lg ∈ K. But the interpretation of c in M∗ witnesses that M|Lg is not a torsion
group, which is a contradiction.

See Exercise 7.4.6 for an interesting refinement of the previous result.
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5 Elementary Extensions

Recall that in Section 1 we defined the notion of L-embeddings between L-structures, which are
simply injective functions preserving the symbols in L. Using basic logic, this preservation auto-
matically extends to quantifier-free L-formulas (see Proposition 2.11). This motivates the following
definition.

Definition 5.1. Let M and N be L-structures.

1. An L-embedding σ : M −→ N is elementary if, for any L-formula ϕ(v1, . . . , vn) and any
ā ∈Mn,

M |= ϕ(a1, . . . , an) ⇔ N |= ϕ(σ(a1), . . . , σ(an)).

2. M is an elementary substructure of N , writtenM≺ N , if M ⊆ N and the inclusion map
from M to N is an elementary L-embedding. In this case, we also say N is an elementary
extension of M.

Remark 5.2. In the definition of elementary embeddings, we implicitly allow ϕ to be an L-sentence,
in which case the definition just says M |= ϕ if and only if N |= ϕ. Therefore, if M and N are
L-structures, and there is an elementary embedding fromM to N , thenM and N are elementarily
equivalent.

The distinction between substructures and elementary substructures is important (see Exercises
7.5.5 and 7.5.7). However, we will eventually see examples where the two notions are the same.

Definition 5.3. A theory T is model complete if, for any models M,N of T , if M is a sub-
structure of N then M is an elementary substructure of N .

In previous sections, we used the Compactness Theorem to build models of theories. By taking
a little extra care, we can refine these methods to build elementary extensions of structures.

Definition 5.4. Let M be an L-structure. Let LM = L ∪ {m̃ : m ∈ M}, where each m̃ is a
constant symbol. We interpret M as an LM -structure by setting m̃M = m.

1. Given an L-formula ϕ(v1, . . . , vn) and m1, . . . ,mn ∈ M , we let ϕ(m̃1, . . . , m̃n) denote the
LM -sentence obtained by replacing each free occurrence of vi in ϕ(v̄) with the constant m̃i.

2. The diagram of M is the following set of LM -sentences:

Diag(M) = {ϕ(m̃1, . . . , m̃n) : ϕ(v̄) is a quantifier-free L-formula and M |= ϕ(m1, . . . ,mn)}.

3. The elementary diagram of M is the following set of LM -sentences:

Diagel(M) = {ϕ(m̃1, . . . , m̃n) : ϕ(v̄) is an L-formula and M |= ϕ(m1, . . . ,mn)}.

Remark 5.5. Similar to before, we allow ϕ to be an L-sentence in the definition of Diagel(M),
and so Th(M) ⊆ Diagel(M).

Proposition 5.6. Suppose M is an L-structure and N ∗ is an LM -structure. Let N = N ∗|L.

(a) If N ∗ |= Diag(M) then there is an L-embedding from M to N .

(b) If N ∗ |= Diagel(M) then there is an elementary L-embedding from M to N .
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Proof. Suppose N ∗ |= Diag(M). Define the function σ : M −→ N such that σ(m) = m̃N
∗
. Then

σ is an L-embedding from M to N . If N ∗ |= Diagel(M) then σ is elementary. Details are left to
the reader (see Exercise 7.5.6).

The primary use of elementary diagrams to build elementary extensions and substructures is
summarized by the Löwenheim-Skolem Theorems.

Theorem 5.7. Let M be an infinite L-structure.

(a) (Upward Löwenhein-Skolem Theorem) Given an infinite cardinal κ, with κ ≥ max{|M |, |L|},
there is an elementary extension N �M such that |N | = κ.

(b) (Downward Löwenheim-Skolem Theorem) Given X ⊆ M , there is an elementary substructure
N ≺M such that X ⊆ N and |N | ≤ max{|X|, |L|,ℵ0}.

The proof is given in Section A.2 of Appendix A. Part (a) uses a strengthening of the Com-
pactness Theorem (see Theorem A.1), while part (b) requires a bit more technology.

We can use diagrams to prove the following result in group theory.

Theorem 5.8 (Levi 1942). Every torsion-free abelian group can be totally ordered.

Proof. Let M = (M,+, 0) be a torsion-free abelian group. Let L = Log, and define

T = Diag(M) ∪ T0,

where T0 is a set of L-sentences expressing that < is a group ordering.
Fix a finite subset ∆ ⊆ Diag(M). Let X ⊆M be the finite subset of M consisting of elements

m such that m̃ appears in some LM -sentence in ∆. Let M0 be the subgroup of M generated by X,
and let M0 = (M0,+, 0). Then M0 is a substructure of M and so ∆ ⊆ Diag(M0) by Proposition
2.11. Moreover, M0 is a finitely generated torsion-free abelian group, and therefore isomorphic to
Zn for some n > 0. Therefore we can expand M0 to an LM -structure M∗0 by interpreting < as
the lexicographic order, and we have M∗0 |= ∆ ∪ T0. Altogether, we have shown that T is finitely
satisfiable. By the Compactness Theorem, there is an LM -structure N ∗ |= T . By Proposition 5.6,
there is an L-embedding from M to N = N ∗|L. In particular, M is isomorphic to a subgroup of
the ordered group N , and therefore inherits the ordering of N .

6 Quantifier Elimination

Definition 6.1. An L-theory T has quantifier elimination if, for any formula ϕ(v1, . . . , vn) (with
n ≥ 1) there is a quantifier-free L-formula ψ(v1, . . . , vn) such that

T |= ∀v̄
(
ϕ(v̄)↔ ψ(v̄)

)
.

Remark 6.2. A useful feature of quantifier elimination is that the quantifier-free formula ψ(v̄) is
assumed to be in the same free variables as the formula ϕ(v̄). This can become an issue if there
are no quantifier-free L-sentences (i.e. if L has no constant symbols), and it is for this reason that
we emphasize n ≥ 1 in the previous definition.

However, if T has quantifier elimination and ϕ is a sentence then, applying the definition with
the formula ϕ ∧ (v = v), we obtain a quantifier-free formula ψ(v), in one free variable, such that

T |= ∀v
(
ϕ↔ ψ(v)

)
.

On the other hand, if L has at least one constant symbol, then there is in fact a quantifier-free
sentence ψ such that T |= ϕ↔ ψ (see Exercise 7.6.5).
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Quantifier elimination can be viewed as a strengthening of model completeness.

Proposition 6.3. If T has quantifier elimination then it is model complete.

Proof. See Exercise 7.6.4.

Example 6.4. In Example 2.13, we saw an instance of eliminating quantifiers in a single formula.
In particular, if T = Th(R,+,−, ·, <, 0, 1) and ϕ(u, v, w) is the L-formula ∃x(ux2 + vx + w = 0)
then

T |= ∀u∀v∀w
(
ϕ(u, v, w)↔ (v2 − 4uw ≥ 0 ∧ ¬(u = 0 ∧ v = 0 ∧ w 6= 0)

)
.

In fact, T has quantifier elimination (see, e.g., Marker’s text). On the other hand, Th(R,+,−, ·, 0, 1)
does not have quantifier elimination, but is model complete.

Definition 6.5. An L-theory T is complete if, for any sentence ϕ, either T |= ϕ or T |= ¬ϕ.

Theorem 6.6. An L-theory T has quantifier elimination if and only if for any M |= T and any
finitely generated M0 ⊆M, T ∪Diag(M0) is a complete LM0-theory.

Proof. The left-to-right direction is Exercise 7.6.6. Assume T ∪ Diag(M0) is complete for any
M |= T and M0 ⊆ M. Fix an L-formula ϕ(v1, . . . , vn), with n ≥ 1. Define Γ(v̄) to be the
collection of quantifier-free L-formulas ψ(v̄) such that T |= ∀v̄(ϕ(v̄) → ψ(v̄)). Note that Γ(v̄) is
closed under conjunctions. Let L∗ = L ∪ {c1, . . . , cn}, where c1, . . . , cn are new constant symbols.
Claim: T ∪ Γ(c̄) |= ϕ(c̄).
Proof : FixM |= T ∪Γ(c̄). Set m̄ = c̄M and letM0 be the substructure ofM generated by m̄. Let
m̃ = (m̃1, . . . , m̃n). We want to showM |= ϕ(m̃). SinceM |= T ∪Diag(M0) (by Proposition 2.11),
it suffices to show T ∪Diag(M0) |= ϕ(m̃). Suppose not. Since T ∪Diag(M0) is complete, we have
T ∪Diag(M0) |= ¬ϕ(m̃). By the Compactness Theorem, we may fix a finite subset ∆ ⊆ Diag(M0)
such that T ∪∆ |= ¬ϕ(m̃). By Exercise 7.3.3, we may assume that the formulas in ∆ only use the
extra constants in m̃. Let ψ(v̄) be an L-formula such that ψ(m̃) is the conjunction of the LM0-
sentences in ∆. Then T |= ∀v̄(ϕ(v̄)→ ¬ψ(v̄)), and so ¬ψ(v̄) ∈ Γ(v̄). By assumption,M |= ¬ψ(m̃).
But ψ(m̃) ∈ Diag(M0) ⊆ Diag(M), which is a contradiction. aclaim

By the claim and the Compactness Theorem, there is a finite subset ∆ ⊆ Γ(c̄) such that
T ∪∆ |= ϕ(c̄). Let ψ(v̄) be an L-formula such that ψ(c̄) is the conjunction of the L∗-sentences in
∆. Then T |= ∀v̄(ψ(v̄)→ ϕ(v̄)). Since ψ(v̄) ∈ Γ(v̄), we altogether have T |= ∀v̄(ϕ(v̄)↔ ψ(v̄)).

Next, we give a standard tool for demonstrating completeness of a theory.

Proposition 6.7 (Vaught’s Test). Let T be an L-theory with no finite models. Suppose there is
some κ ≥ max{|L|,ℵ0} such that all models of T of size κ are elementarily equivalent. Then T is
complete.

Proof. For a contradiction, suppose T is not complete. Then there is a sentence ϕ such that
T1 = T ∪ {ϕ} and T2 = T ∪ {¬ϕ} are both satisfiable. Since T has no finite models, it follows
that T1 and T2 have infinite models. By Proposition 4.5, we may fix Mi |= Ti such that Mi has
cardinality κ. Then M1 and M2 are not elementarily equivalent, which is a contradiction.

The rest of this section focuses on quantifier elimination for the theory of algebraically closed
fields, along with several applications.

Definition 6.8. Let ACF be the Lr-theory consisting of axioms for fields along with, for any n > 0,
the sentence: ∀v0 . . . ∀vn−1∃x(xn + vn−1x

n−1 + . . .+ v1x+ v0 = 0).
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Theorem 6.9. ACF has quantifier elimination.

Proof. By Theorem 6.6, it suffices to show that if F is a finitely generated integral domain, then
ACF∪Diag(F ) is complete. Let L = Lr∪{c̃ : c ∈ F}, and fix models K1 and K2 of ACF∪Diag(F )
of size ℵ1. We show K1 and K2 are isomorphic (as L-structures), and hence elementarily equivalent
by Proposition 3.3. Completness of ACF∪Diag(F ) will then follow from Vaught’s Test.

For i ∈ {1, 2}, we set Fi = {c̃Ki : c ∈ F}. By (the proof of) Proposition 5.6, Fi is a subring
of Ki isomorphic to F and, moreover, the function τ : F1 −→ F2 such that τ(c̃K1) = τ(c̃K2) is a
ring isomorphism. Let Ei ⊆ Ki be the field of fractions of Fi. Then τ extends to a unique field
isomorphism σ : E1 −→ E2. Given i ∈ {1, 2}, Ei has finite transcendence degree (since Fi is finitely
generated). If X ⊆ Ki is countable, then Ei ∪X can only generate a countable algebraically closed
subfield of Ki. It follows that the transcendence degree of Ki over Ei is ℵ1. By Fact B.51, σ extends
to a field isomorphism σ̂ : K1 −→ K2. By construction, σ̂ is an L-isomorphism.

Note that ACF is not a complete theory since algebraically closed fields of different character-
istics are not elementarily equivalent.

Definition 6.10. Given n > 0, let ϕn denote the Lr-sentence 0 = 1 + 1 + . . .+ 1 (n times).

1. Let ACF0 = ACF∪{¬ϕn : n > 0}.

2. Given a prime p, let ACFp = ACF∪{¬ϕn : 0 < n < p} ∪ {ϕp}.

Note that ACFp |= ACF for any p (prime or 0), and so ACFp also has quantifier elimination.
Using Vaught’s Test (as in the proof of Theorem 6.9), we also see that ACFp is complete.

Definition 6.11. Let F be a field. Given integers m,n > 0, a polynomial map from Fm to Fn is
a function of the form

Φ(x̄) = (p1(x̄), . . . , pn(x̄)),

where pi(x̄) ∈ F [x̄] and x̄ = (x1, . . . , xm).

Theorem 6.12 (Ax’s Theorem). Fix n > 0. If Φ : Cn −→ Cn is an injective polynomial map,
then Φ is surjective.

We first prove the analogous result for the algebraic closure Falgp of Fp, where p is a prime.

Lemma 6.13. Fix a prime p and an integer n > 0. If Φ : (Falgp )n −→ (Falgp )n is an injective
polynomial map, then Φ is surjective.

Proof. Let F = Falgp and, for m > 0, let Fm = Fpm . Recall that F =
⋃
m>0 Fm and Fm ⊆ Fk if

and only if m divides k. So we may fix some m > 0 such that Fm contains the coefficients of the
map Φ. It follows that, for any k > 0, Φ((Fkm)n) ⊆ (Fkm)n, and so Φ((Fkm)n) = (Fkm)n since Φ
is injective and (Fkm)n is finite. Since F =

⋃
k>0 Fkm, it follows that Φ is surjective.

We now prove Ax’s Theorem.

Proof of Theorem 6.12. Fix n > 0 and d > 0. By quantifying over coefficients of polynomials (as
in the definition of ACF), we may construct an Lr-sentence ψn,d such that a field F |= ψn,d if and
only if every injective polynomial map Φ : Fn −→ Fn, whose coordinates are polynomials over F
of degree at most d, is surjective. We want to show (C,+,−, ·, 0, 1) |= ψn,d. It suffices to show
ACF0 |= ψn,d. Since ACF0 is complete, it is enough to prove that ACF0 ∪{ψn,d} is satisfiable. By
the Compactness Theorem, it suffices to fix a finite subset ∆ ⊆ ACF0 ∪{ψn,d}, and prove that ∆ is
satisfiable. By definition of ACF0, there is a sufficiently large prime p such that ∆ ⊆ ACFp ∪{ψn,d}.
By Lemma 6.13, (Falgp ,+,−, ·, 0, 1) |= ∆.

15



Note that the statement of Ax’s Theorem holds for any algebraically closed field in place of
C. Exercise 7.6.8 captures the model theoretic content of Ax’s Theorem, commonly known as the
Lefschetz principle, and is proved using similar techniques.

Definition 6.14. Let F be a field.

1. Given S ⊆ F [x1, . . . , xn], define V (S) = {ā ∈ Fn : p(ā) = 0 for all p(x̄) ∈ S}.

2. A subset X ⊆ Fn is Zariski closed if is of the form V (S) for some finite S ⊆ F [x1, . . . , xn].

3. A subset X ⊆ Fn is constructible if it is a finite Boolean combination of Zariski closed sets.

Lemma 6.15. Let K be an algebraically closed field. A subset X ⊆ Kn is definable if and only if
it is constructible.

Proof. The reverse direction is clear. Suppose X is definable by some formula ϕ(x̄, ā), with ā ∈ Km

for some m > 0. By quantifier elimination, we may assume ϕ(x̄, ȳ) is quantifier-free, and therefore
a Boolean combination of atomic formulas. So we may assume ϕ(x̄, ȳ) is atomic, which means it
is equivalent to p(x̄, ȳ) = 0 for some polynomial p(x̄, ȳ) ∈ Z[x̄, ȳ]. Then X = V (p(x̄, ā)), which is
constructible.

Theorem 6.16 (Chevalley). Let K be an algebraically closed field. If X ⊆ Kn is constructible and
Φ(x̄) is a polynomial map, then Φ(X) is constructible.

Proof. X is definable and Φ is a a definable function. So Φ(X) is definable, and therefore con-
structible by Lemma 6.15. (See Exercise 7.2.3.)

Theorem 6.17 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field and suppose I, J ⊆
K[x̄] are radical ideals. If V (I) = V (J) then I = J .

Proof. Assume I 6= J and suppose, without loss of generality, there is p ∈ J\I. By Fact B.54(b), we
may find a prime ideal P ⊇ I such that p 6∈ P . Since P is prime, K[X̄]/P is an integral domain, and
so we may define F to be the algebraic closure of its field of fractions. Let ā = ([X1], . . . [Xn]) ∈ Fn.
Then q(ā) = 0 for all q(x̄) ∈ I, and p(ā) 6= 0. By Fact B.54(a), we may fix generators q1, . . . , qm ∈ I.
Let b̄ be the coefficients (in K) of q1, . . . , qm and p. Let ϕ(x̄, b̄) be a formula expressing qi(x̄) = 0
for all 1 ≤ i ≤ m, and p(x̄) 6= 0. We have F |= ∃x̄ϕ(x̄, b̄). Since ACF is model complete (by
Proposition 6.3) and K is a substructure of F , it follows that K |= ∃x̄ϕ(x̄, b̄). A solution in Kn to
this formula witnesses V (I) 6= V (J).

Remark 6.18.

1. Suppose F is a field and X = V (S) ⊆ Fn, where S ⊆ F [x1, . . . , xn] (not necessarily finite).
Using Hilbert’s Basis Theorem (Fact B.54(a)), one can show that X = V (S0) for some finite
S0 ⊆ F [x1, . . . , xn].

2. Suppose K is an algebraically closed field. Hilbert’s Nullstellensatz is used to establish a
bijection between radical ideals in K[x1, . . . , xn] and Zariski closed subsets of Kn, given by
I 7→ V (I).
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7 Exercises

Exercises marked with an asterisk (∗) may be more challenging.

7.1 Languages and Structures

Exercise 7.1.1. Let M be an L-structure.

(a) Show that the L-substructure relation ⊆ is transitive, i.e., if M1 ⊆ M2 and M2 ⊆ M3 then
M1 ⊆M3.

(b) Suppose M0 ⊆M1 ⊆M2 ⊆ . . . is an infinite chain of substructures of M. Let N =
⋃
n≥0Mn.

Prove that there is a unique substructure N of M, with universe N , such that Mn ⊆ N for all
n ≥ 0.

Exercise 7.1.2. Let M be an L-structure and fix a nonempty subset A ⊆M . Define

N = {tM(ā) : n ≥ 0, ā ∈ An, tM(v1, . . . , vn) is an L-term}.

(a) Suppose f is an n-ary function symbol in L (with n ≥ 0). Prove that, for any ā ∈ Nn,
fM(ā) ∈ N .

(b) Let N be the L-structure, with universe N , such that:

(i) given an n-ary function symbol f (with n ≥ 0), fN = fM|Nn, and

(ii) given an n-ary relation symbol R, RN = Nn ∩RM.

Prove that N is a substructure of M containing A.

(c) Let N be as in part (b) and suppose that M′ is a substructure of M containing A. Prove that
N is a substructure of M′. We call N the substructure of M generated by A.

(d) Suppose (K,+, ·,−, 0, 1) is a field. Given A ⊆ K, describe the substructure generated by A.

Exercise 7.1.3. Let L be a language and κ an infinite cardinal. Prove that there are at most 2κ

non-isomorphic L-structures of cardinality κ.

7.2 Formulas and Definable Sets

Exercise 7.2.1. Find an example of L-structures M⊆ N and a formula ϕ(v1, . . . , vn) such that,
for some tuple ā ∈Mn, M |= ϕ(a1, . . . , an) and N |= ¬ϕ(a1, . . . , an).

Exercise 7.2.2. Prove that the even numbers are definable in the structure (N,+, 0).

Exercise 7.2.3. Let M be an L-structure. We say that a function f : Mm −→ Mn is definable
if

{(x̄, f(x̄)) : x̄ ∈Mm} ⊆Mm+n

is definable in M.

(a) Prove that if f : Mk −→Mm and g : Mm −→Mn are definable functions then g ◦ f : Mk −→
Mn is definable.

(b) Suppose that f : Mm −→Mn is definable. Prove that the set f(Mm) ⊆Mn is definable.
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Exercise 7.2.4. Let K = (K,+, ·,−, 0, 1) be a field of characteristic 0. Given n > 0, let GLn(K)
be the set of n× n matrices with entries in K and nonzero determinant.

(a) Prove that GLn(K) is definable in K (where GLn(K) is viewed as a subset of Kn2
).

(b) Prove that the subset of GLn(K) consisting of the diagonalizable matrices is definable.

Exercise 7.2.5. Let M be an L-structure.

(a) Fix L-formulas ϕ(vi1 , . . . , vir) and ψ(vj1 , . . . , vjs), with {i1, . . . , ir, j1, . . . , js} = {1, . . . , n}.
Given ā ∈Mn, prove the following statements:

(i) M |= (ϕ ∨ ψ)(ā) if and only if: M |= ϕ(ai1 , . . . , air) or M |= ψ(aj1 , . . . , ajs).

(ii) M |= (ϕ→ ψ)(ā) if and only if: M |= ϕ(ai1 , . . . , air) implies M |= ψ(aj1 , . . . , ajs).

(iii) M |= (ϕ↔ ψ)(ā) if and only if: M |= ϕ(ai1 , . . . , air) if and only if M |= ψ(aj1 , . . . , ajs).

(b) Fix an L-formula ϕ(v1, . . . , vn, w). Given ā ∈Mn, prove

M |= ∀wϕ(ā, w) ⇔ for all b ∈M , M |= ϕ(ā, b).

Exercise 7.2.6. Suppose M and N are L-structures and σ :M−→ N is an isomorphism. Prove
that, for any L-formula ϕ(v1, . . . , vn) and ā ∈Mn,

M |= ϕ(ā) ⇔ N |= ϕ(σ(ā)).

(Hint: start with the proof of Proposition 2.11.)

Exercise 7.2.7.∗ Consider the ring M = (Z,+,−, ·, 0, 1). Prove that ordering on Z is definable in
M (as a set {(x, y) ∈ Z2 : x < y}).

Definition 7.2.8. Let M be an L-structure, and fix A ⊆M .

1. A set X ⊆ Mn is A-definable in M if X is definable using an L-formula with parameters
in A.

2. The definable closure of A in M is the set

dclM(A) = {b ∈M : {b} is A-definable in M}.

Exercise 7.2.9. Let M be an L-structure.

(a) Prove that for any n > 0, if X ⊆Mn is finite then X is definable in M.

(b) Prove that if X ⊆ Mn is definable in M then there is a finite set A ⊆ M such that X is
A-definable in M.

(c) Prove that dclM is a closure operator, i.e.,

(i) for all A ⊆M , A ⊆ dclM(A) and dclM(dclM(A)) = dclM(A),

(ii) for all A,B ⊆M , if A ⊆ B then dclM(A) ⊆ dclM(B).

(d) Prove that the closure operator dclM has finite character, i.e. for any A ⊆M ,

dclM(A) =
⋃

A0⊆A, |A0|<ℵ0

dclM(A0).
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(e) Let X ⊆Mn be A-definable in M, and suppose A ⊆ dclM(B). Prove that X is B-definable in
M.

(f) Suppose L contains a binary relation <, and M is an L-structure such that <M is a linear
order on M . Prove that aclM(A) = dclM(A) for any A ⊆M .

(g) Suppose L = Lor and M = (R,+,−, ·, <, 0, 1). Prove that dclM(∅) contains all real algebraic
numbers.

Definition 7.2.10. Let M be an L-structure. Given A ⊆ M and b ∈ M , we say b is algebraic
over A in M if there is a formula ϕ(x, a1, . . . , an) with parameters a1, . . . , an ∈ A such that
M |= ϕ(b, ā) and ϕ(M, ā) is finite. In other words, b ∈ M is algebraic over A in M if and only if
there is a finite A-definable subset of M containing b.

The algebraic closure of A in M is the set

aclM(A) = {b ∈M : b is algebraic over A in M}.

Exercise 7.2.11. Let M be an L-structure. Prove that aclM is a closure operator with finite
character.

Definition 7.2.12. Let M be an L-structure. Given A ⊆ M , define Aut(M/A) to be the set of
L-automorphisms σ of M such that σ(a) = a for all a ∈ A.

Exercise 7.2.13. Let M be an L-structure.

(a) Prove that, for any A ⊆M , Aut(M/A) is a group under composition of L-automorphisms.

(b) Suppose A ⊆M and σ ∈ Aut(M/A).

(i) Prove that, for any L-formula ϕ(v1, . . . , vn, a1, . . . , am), with parameters a1, . . . , am ∈ A,
and b1, . . . , bn ∈M ,

M |= ϕ(b1, . . . , bn, ā) ⇔ M |= ϕ(σ(b1), . . . , σ(bn), ā).

(ii) Prove that, for any b ∈M , b ∈ dclM(A) if and only if σ(b) ∈ dclM(A), and b ∈ aclM(A)
if and only if σ(b) ∈ aclM(A).

(c) Let L = Lr be the language of rings and M = (C,+,−, ·, 0, 1). Prove that, for any A ⊆ C,
dclM(A) contains the field generated by A, and aclM(A) contains the field-theoretic algebraic
closure of the field generated by A. (In fact, dclM(A) and aclM(A) are precisely these sets; see
Exercise 7.6.7.)

7.3 Sentences and Theories

Exercise 7.3.1. For any n > 0, Zn is a group under coordinate-wise addition of tuples. Prove that
if m 6= n then (Zm,+, 0) and (Zn,+, 0) are not elementarily equivalent.

Exercise 7.3.2.

(a) Consider Lr. Show that the following are elementary classes and give axiomatizations of their
theories:

(i) the class of rings,
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(ii) the class of fields,

(iii) the class of fields of characteristic 0,

(iv) the class of fields of characteristic p for some fixed prime p,

(v) the class of algebraically closed fields.

(b) Consider Lgr. Show that the following are elementary classes and give axiomatizations of their
theories:

(i) the class of triangle-free graphs,

(ii) the class of graphs where every vertex has infinite degree (the degree of a vertex v is the
number of vertices adjacent to v),

(iii) the class of bipartite graphs.

(c) Consider Lo. Show that the following are elementary classes and give axiomatizations of their
theories:

(i) the class of dense linear orders,

(ii) the class of discrete linear orders (i.e. where every non-maximal element has an imme-
diate successor and every non-minimal element has an immediate predecessor).

Exercise 7.3.3. Suppose M is an L-structure, which is generated by a subset A ⊆ M . Let
LM = L∪ {m̃ : m ∈M}, where each m̃ is a new constant symbol. Let LA = L∪ {m̃ : m ∈ A}, and
note that LA ⊆ LM . We can view M as an LM -structure by interpreting each constant symbol m̃
as the element m. Let T ∗ be the LM -theory of M, and fix a subset T ⊆ T ∗.

Prove that there is an LA-theory T0 such that, for any LA-sentence ϕ, if T |= ϕ then T0 |= ϕ.

Exercise 7.3.4. Let L be a language, and suppose t is an L-term with no variables (i.e. composi-
tions of function symbols and constant symbols). Then we have the 0-ary function tM : M0 −→M
as given by Definition 2.4. We identify tM with the element tM(∅) ∈M .

Recall that, for any L-sentence ϕ, M |= ϕ if and only if ϕM = M0, where ϕM is constructed
as in Definition 2.8. Prove the following explicit statements:

(a) If ϕ is t1 = t2, where t1 and t2 are terms with no variables, then

M |= ϕ ⇔ tM1 = tM2 .

(b) If ϕ is R(t1, . . . , tn), where R is an n-ary relation symbol and t1, . . . , tn are terms with no
variables, then

M |= ϕ ⇔ (tM1 , . . . , tMn ) ∈ RM.

(c) If ϕ and ψ are sentences then

M |= ϕ ∧ ψ ⇔ M |= ϕ and M |= ψ.

(d) If ϕ(v) is a formula then

M |= ∃vϕ(v) ⇔ there exists a ∈M such that M |= ϕ(a).

Exercise 7.3.5. Suppose T is an unsatisfiable L-theory. Prove that any L-sentence is a logical
consequence of T .
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Exercise 7.3.6. Suppose L is a language and M is a finite L-structure.

(a) Assume L is finite. Prove that there is an L-sentence ϕ such that any model of ϕ is isomorphic
to M.

(b)∗ Prove that any model of Th(M) is isomorphic to M.

7.4 The Compactness Theorem

Exercise 7.4.1.

(a) Let T be an L-theory, where L contains Lgr. Prove that K := {M|Lgr : M |= T} is not the
class of connected graphs.

(b) Let T be an L-theory, where L contains Lg. Prove that K := {M|Lg :M |= T} is not the class
of cyclic groups.

Exercise 7.4.2.

(a) An ordered abelian group (G,+, <, 0) is archimedean if, for all x, y > 0 there is some n > 0
such that x ≤ ny. Prove that there is a non-archimedean ordered abelian group elementarily
equivalent to (R,+, <, 0).

(b) A linear order (X,<) is a well-order if it contains no infinite descending chains. Prove that
there is a non-well-order (X,<) elementarily equivalent to (N, <).

Exercise 7.4.3. Suppose T is an Lr-theory extending the theory of fields. Prove that if T has
models of arbitrarily large characteristic, then T has a model of characteristic 0.

Exercise 7.4.4. Let T1 and T2 be satisfiable L-theories.

(a) Suppose T1 ∪ T2 is unsatisfiable. Prove that there is an L-sentence ϕ such that T1 |= ϕ and
T2 |= ¬ϕ.

(b) Suppose that if M is an L-structure then M |= T1 if and only if M 6|= T2. Prove that T1 and
T2 are finitely axiomatizable.

Exercise 7.4.5. Use Theorem A.1 in Appendix A to prove Proposition 4.5.

Exercise 7.4.6. Let L be a language, with Lg ⊆ L, and let T be an L-theory extending the theory
of groups. Assume that for any n > 0 there is a group in Mod(T ) containing a torsion point of
order greater than n. Prove that there is no L-formula ϕ(x) such that, for any M |= T , ϕM is
precisely the set of torsion points in M.

7.5 Elementary Extensions

Exercise 7.5.1 (Tarski-Vaught Test). Fix L-structures M and N such that M is a substructure
of N . Prove that the following are equivalent.

(i) M is an elementary substructure of N .

(ii) For any formula ϕ(v, w1, . . . , wn) and ā ∈ Mn, if N |= ∃vϕ(v, ā) then there is some b ∈ M
such that N |= ϕ(b, ā).
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Exercise 7.5.2. Suppose M is an L-structure and M0 ≺M1 ≺M2 ≺ . . . is an infinite chain of
elementary substructures of M. Let N be the substructure of M with universe

⋃
n≥0Mn. Prove

that N ≺M, and that Mn ≺ N for all n > 0.

Exercise 7.5.3.

(a) Let L be a language extending the language of ordered groups, and fix an L-structure R expand-
ing (R,+, <, 0). Prove that there is an elementary extension M of R and an element µ ∈ M
such that 0 < µ < r for all real numbers r > 0.

(b) A linear order (X,<) satisfies the least upper bound property if every nonempty Y ⊆ X,
with an upper bound in X, has a least upper bound in X. Let L be a language, extending the
language of orders, and suppose R is an L-structure expanding (R, <).

(i) Let M be an elementary extension of R and suppose X ⊆M is nonempty and definable
in M. Prove that if X has an upper bound in M then it has a least upper bound in M .

(ii) Show that that there is an elementary extension M of R such that the underlying order
on M does not satisfy the least upper bound property. (Hint: use part (a).)

Exercise 7.5.4. Given k > 0, a graph is k-colorable if there is a coloring of the vertices, using
at most k colors, such that no two adjacent vertices are the same color. Prove that a graph is
k-colorable if and only if every finite subgraph is k-colorable.2

Exercise 7.5.5. Find an example of L-structures M and N such that M is a substructure of N ,
but not an elementary substructure of N .

Exercise 7.5.6. Finish the proof of Proposition 5.6.

Exercise 7.5.7.

(a) Suppose M is an elementary substructure of N and A ⊆ M . Prove that aclM(A) = dclN (A)
and aclM(A) = aclN (A). (See Definitions 7.2.8 and 7.2.10).

(b) Find examples showing that part (a) can fail if we only assume M≡ N and M⊆ N .

7.6 Quantifier Elimination

Exercise 7.6.1. Consider the theory T = TFDAG in the language of groups.

(a) Let (G,+, 0) |= T . Given q ∈ Q, write q = m
n in lowest terms and define a function λq : G −→ G

such that, given g ∈ G, λq(g) is the unique solution in G of the equation

x+ x+ . . .+ x︸ ︷︷ ︸
n times

= g + g + . . .+ g︸ ︷︷ ︸
m times

,

Prove that (G,+, 0, (λq)q∈Q) is a vector space over Q (see Example 3.7(3)).

(b) Prove that that if (V,+, 0, (λq)q∈Q) is a vector space over Q then (V,+, 0) |= T .

(c) Suppose M |= T and M0 ⊆ M. Prove that any two models of T ∪ Diag(M0), of cardinality
ℵ1, are isomorphic.

2In particular, using the Four-Color Theorem for finite planar graphs, this can be used to conclude that any
infinite planar graph is also four colorable.
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(d) Prove that T is complete and has quantifier elimination.

(e) Classify the models of T up to isomorphism.

Exercise 7.6.2. Consider the language Lo of orders. A linear order (M,<) is dense if, for all
x, y ∈M there is some z ∈M such that x < y < z.

(a) Write down a finite Lo-theory T such that M |= T if and only if M is a dense linear order
with no greatest element or least element.

(b)∗ Suppose M |= T and M0 ⊆ M. Prove that any two countable models of T ∪ Diag(M0) are
isomorphic. Conclude that any two countable models of T are isomorphic.

(c) Prove that T is complete and has quantifier elimination.

(d) By part (b), (Q, <) is the unique countable model of T . Prove that (Q, <) has the following
properties:

(i) (universality) any finite linear order is isomorphic to a substructure of (Q, <);

(ii) (ultrahomogeneity) any isomorphism between finite substructures of (Q, <) extends to an
automorphism of (Q, <) (Hint: use part (b)).

(e) Prove that any countable linear order is isomorphic to a substructure of (Q, <).

Exercise 7.6.3. Consider the language Lgr of graphs.

(a) Write down an Lgr-theory T such that M |= T if and only if M is a graph such that for any
finite disjoint A,B ⊆ M there is a vertex v ∈ M such that v is connected to every element of
A and no element of B.

(b) Prove that T is satisfiable.

Hint: Consider an infinite binary sequence σ = (s0, s1, s2, . . .), with si ∈ {0, 1} obtained by
concatenating all finite binary sequences in some arbitrary order (e.g. by length, then lexico-
graphically). Now consider the graph (Z, E) such that (m,n) ∈ E if and only if m 6= n and
s|m−n| = 1.

(c)∗ Suppose M |= T and M0 ⊆ M. Prove that any two countable models of T ∪ Diag(M0) are
isomorphic. Conclude that any two countable models of T are isomorphic.

(d) Prove that T is complete and has quantifier elimination.

(e) The unique countable model of T is called the random graph (or Rado graph), which we
denote R = (V (R), E(R)). Prove that R has the following properties:

(i) (universality) any finite graph is isomorphic to an induced subgraph of R;

(ii) (ultrahomogeneity) any isomorphism between finite subgraphs of R extends to an auto-
morphism of R (Hint: use part (c)).

(f) Prove that any countable graph is isomorphic to an induced subgraph of R.

Exercise 7.6.4. Prove Proposition 6.3 (use Proposition 2.11).
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Exercise 7.6.5.∗ Suppose L contains a constant symbol and T is an L-theory with quantifier
elimination. Prove that, for any L-sentence ϕ there is a quantifier-free L-sentence ψ such that
T |= ϕ↔ ψ. (Hint: adapt the right-to-left direction of Theorem 6.6).

Exercise 7.6.6. Prove the left-to-right direction of Theorem 6.6.

Exercise 7.6.7. Let K be an algebraically closed field and fix a subset A ⊆ K.

(a) Prove that dclK(A) is the field generated by A.

(b) Prove that aclK(A) is the algebraic closure of the field generated by A.

Exercise 7.6.8 (The Lefschetz Principle). Let ϕ be a sentence in the language of rings. Prove that
the following are equivalent.

(i) ϕ is true in the complex numbers (i.e. (C,+,−, ·, 0, 1) |= ϕ).

(ii) ϕ is true in any algebraically closed field of characteristic 0 (i.e. ACF0 |= ϕ).

(iii) ϕ is true in some algebraically closed field of characteristic 0 (i.e. ACF0 ∪{ϕ} is satisfiable).

(iv) There are arbitrarily large primes p such that ϕ is true in some algebraically closed field of
characteristic p (i.e. ACFp ∪{ϕ} is satisfiable for arbitrarily large p).

(v) There is an integer m such that ϕ is true in any algebraically closed field of characteristic
p > m (i.e. there is an integer m such that ACFp |= ϕ for all p > m).
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A Compactness and Löwenheim-Skolem

In this appendix, we consider the following strengthening of the Compactness Theorem.

Theorem A.1. Suppose T is a finitely satisfiable L-theory and κ ≥ max{|L|,ℵ0}. Then T has a
model of cardinality at most κ.

We will give two proofs of Theorem A.1. Specifically:

1. In Section A.2 we prove the Downward Löwenheim-Skolem Theorem, which requires Lemma
A.3 from Section A.1. We then use this result, together with the Compactness Theorem, to
prove Theorem A.1. A proof of the Compactness Theorem using ultraproducts will be given
in the next course.

2. In Section A.3, we prove Theorem A.1 directly using a Henkin construction. This proof
requires Lemma A.3 from Section A.1.

A.1 Skolemization

Definition A.2. An L-theory T has built-in Skolem functions if, for all L-formulas ϕ(v, w1, . . . , wn)
(with n possibly 0) there is an n-ary function symbol f in L such that the L sentence

∀w̄
(
∃vϕ(v, w̄)→ ϕ(f(w̄), w̄)

)
is in T .

A theory T with built-in Skolem functions is also called Skolemized.

Lemma A.3. Let T be a finitely satisfiable L-theory. Then there is a language L∗ ⊇ L and an
L∗-theory T ∗ ⊇ T satisfying the following properties:

(i) |L∗| = max{|L|,ℵ0};

(ii) T ∗ is finitely satisfiable and has built-in Skolem functions;

(iii) any model M of T can be expanded to a model M∗ of T ∗.

Proof. We inductively construct chains L = L0 ⊆ L1 ⊆ L2 ⊆ . . . and T = T0 ⊆ T1 ⊆ T2 ⊆ . . . such
that, for all m ≥ 0,

(a) |Lm| = max{|L|,ℵ0} and Tm is a finitely satisfiable Lm-theory;

(b) for any subset ∆ ⊆ Tm−1, any modelM of ∆ can be expanded to a modelM′ of ∆∪(Tm\Tm−1).

Given Lm and Tm, set

Lm+1 = {fϕ : ϕ(v, w1, . . . , wn) is an Lm-formula and n ≥ 0},

where each fϕ is a new n-ary function symbol. Then |Lm+1| = max{|L|,ℵ0} by induction. Given
an Lm-formula ϕ(v, w1, . . . , wn), let Ψϕ denote the Lm+1-sentence

∀w̄
(
∃vϕ(v, w̄)→ ϕ(f(w̄), w̄)

)
.

Define Tm+1 = Tm ∪ {Ψϕ : ϕ is an Lm-formula}.
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We prove (b) for m+1. Fix a subset ∆ ⊆ Tm and a modelM of ∆ and expandM to a modelM′
of ∆ ∪ (Tm+1\Tm). Fix an Lm-formula ϕ(v, w1, . . . , wn), where n ≥ 0. We define fMϕ : Mn −→M
such that

fMϕ (ā) =

{
some fixed element of Xā := {b ∈M :M |= ϕ(b, ā)} if Xā 6= ∅,
an arbitrary c ∈M if Xā = ∅.

Let M′ be the expansion of M by interpreting each fϕ as fMϕ . Then M′ |= Ψϕ for all ϕ, and so
M′ |= ∆ ∪ (Tm+1\Tm).

Finally, we prove Tm+1 is finitely satisfiable. Any finite subset of Tm+1 is contained in a set of
the form

∆ ∪ (Tm+1\Tm)

where ∆ ⊆ Tm is finite. By induction, there is a model M of ∆. By the above we may expand M
to a model M′ of ∆ ∪ (Tm+1\Tm). Therefore Tm+1 is finitely satisfiable.

Now set L∗ =
⋃
m≥0 Lm and T ∗ =

⋃
m≥0 Tm. Then |L∗| = max{|L|,ℵ0} and T ∗ is finitely

satisfiable by property (a). By iterating property (b) (with ∆ = Tm), it follows that any model M
of T can be expanded to a model of T ∗. Since any L∗-formula is an Lm-formula for some m ≥ 0,
it follows that T ∗ has built-in Skolem functions.

A.2 The Löwenheim-Skolem Theorems

Theorem 5.7. Let M be an infinite L-structure.

(a) (Upward Löwenhein-Skolem Theorem) Given an infinite cardinal κ, with κ ≥ max{|M |, |L|},
there is an elementary extension N �M such that |N | = κ.

(b) (Downward Löwenheim-Skolem Theorem) Given X ⊆ M , there is an elementary substructure
N ≺M such that X ⊆ N and |N | ≤ max{|X|, |L|,ℵ0}.

Proof. Part (a). Let L∗ = LM ∪ {ci : i ∈ κ}, where each ci is a new constant symbol. Note that
|L∗| = κ. Define the L∗-theory

T ∗ = Diagel(M) ∪ {ci 6= cj : i, j ∈ κ, i 6= j}.

Since M is infinite, it satisfies any finite subset of T ∗. By Theorem A.1, T ∗ has a model N ∗ of
cardinality at most κ. By definition of T ∗, it follows that |N | = κ. By Proposition 5.6, N = N ∗|L
is an elementary extension of M.

Part (b). Note that Th(M) is a satisfiable L-theory. By Lemma A.3, we may fix a language
L∗ ⊇ L and an L∗-theory T ∗ ⊇ Th(M) such that |L∗| = max{|L|,ℵ0}, T ∗ has built-in Skolem
functions, and M can be expanded to a model M∗ of T ∗. To simplify notation, we may as well
assume that Th(M) has built-in Skolem functions (with respect to L).

We construct a sequence X = X0 ⊆ X1 ⊆ X2 ⊆ . . . of subsets of M as follows. Given Xm,
define

Xm+1 = Xm ∪ {fM(ā) : f is an n-ary function symbol for some n ≥ 0, and ā ∈ Xn
m}.

Note that, |Xm+1| ≤ max{|Xm|, |L|, |ℵ0|}.
Let N =

⋃
m≥0Xm. By induction, |N | ≤ max{|X|, |L|, |ℵ0|} and X ⊆ N . We define an L-

structure N with universe N as follows. Suppose f is an n-ary function symbol, for some n ≥ 0.
For any ā ∈ Nn, we have ā ∈ Xn

m for some m ≥ 0, and so fM(ā) ∈ Xm+1 ⊆ N . Therefore
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fM(Nn) ⊆ N , and so we may interpret fN = fM|Nn . If R is an n-ary relation symbol, then we
interpret RM = Nn ∩ (RM ).

We now have an L-structure N , with universe N . By construction, N ⊆M. We use the Tarski-
Vaught Test (see Exercise 7.5.1) to prove that N ≺M. In particular, fix a formula ϕ(v, w1, . . . , wn)
and ā ∈ Nn such that M |= ∃vϕ(v, ā). We want to find b ∈ N such that M |= ϕ(b, ā). Since
Th(M) has built-in Skolem functions, we have M |= ϕ(f(ā), ā) for some function symbol f . Since
ā ∈ Nn, we have fM(ā) = fN (ā) ∈ N , and so we may choose b = fN (ā).

Note that the proof of the Downward Löwenheim-Skolem Theorem uses only the Tarski-Vaught
Test, which can be proved directly from definitions and induction on formulas (see Exercise 7.5.1).
Therefore, we can use the Downward Löwenheim-Skolem Theorem and the Compactness Theorem
(see Theorem 4.2) to prove Theorem A.1.

Theorem A.1. Suppose T is a finitely satisfiable L-theory and κ ≥ max{|L|,ℵ0}. Then T has a
model of cardinality at most κ.

Proof. First, T is satisfiable by Theorem 4.2. If T has finite models then the result holds trivially.
Therefore we may assume T has an infinite model. Let L∗ = L ∪ {ci : i ∈ κ}, where each ci is a
new constant symbol and set

T ∗ = T ∪ {ci 6= cj : i, j ∈ κ, i 6= j}.

Since T has an infinite model, it follows that T ∗ is finitely satisfiable and therefore has a model
M by Theorem 4.2. By construction |M | ≥ κ, so we may fix a subset X ⊆ M , with |X| = κ.
By the Downward Löwenhein-Skolem Theorem there is an elementary substructure N ≺ M such
that X ⊆ N and |N | ≤ max{|X|, |L|, |ℵ0|} = κ. Then N is elementarily equivalent to M, and so
N |= T .

A.3 Proof of the Compactness Theorem via a Henkin construction

In this section, we give a direct proof of Theorem A.1, which yields the Compactness Theorem as
an immediate corollary. The method of proof is what is known as a Henkin construction. We will
need a definition and two lemmas.

Definition A.4. An L-theory T is maximal if, for every L-sentence ϕ, either ϕ ∈ T or ¬ϕ ∈ T .

Lemma A.5. Suppose T is a maximal, finitely satisfiable L-theory. For any finite ∆ ⊆ T and
L-sentence ϕ, if ∆ |= ϕ then ϕ ∈ T .

Proof. If ϕ 6∈ T then ¬ϕ ∈ T since T is maximal, and so ∆∪{¬ϕ} is a finite subset of T . Since T is
finitely satisfiable, there is a modelM |= ∆∪ {¬ϕ}, which contradicts the assumption ∆ |= ϕ.

Lemma A.6. If T is a finitely satisfiable L-theory then there is a maximal finitely satisfiable
L-theory T ′ ⊇ T .

Proof. Let Σ be the set of finitely satisfiable L-theories extending T . Note that T ∈ Σ, and so Σ
is nonempty. Suppose C ⊆ Σ is linearly ordered by ⊆. Let T0 =

⋃
C. Then any finite subset of T0

is contained in some element of C, and this therefore satisfiable. So T0 ∈ Σ. By Zorn’s Lemma, Σ
contains a ⊆-maximal element T ′. Therefore, to prove T ′ is maximal, it suffices to show that, for
any L-sentence φ, either T ′ ∪ {ϕ} or T ′ ∪ {¬ϕ} is finitely satisfiable.

So fix an L-sentence ϕ. If neither T ′ ∪ {ϕ} nor T ′ ∪ {¬ϕ} is finitely satisfiable then there are
finite subsets ∆1,∆2 ⊆ T ′ such that ∆1 ∪ {ϕ} and ∆2 ∪ {¬ϕ} are unsatisfiable. It follows that
∆1 ∪ ∆2 must be unsatisfiable. But ∆1 ∪ ∆2 is a finite subset of T ′, which contradicts that T is
finitely satisfiable.
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We now give a direct proof Theorem A.1.

Theorem A.1. Suppose T is a finitely satisfiable L-theory and κ ≥ max{|L|,ℵ0}. Then T has a
model of cardinality at most κ.

Proof. First, fix a language L∗ ⊇ L and a L∗-theory T ∗ ⊇ T satisfying the conclusions of Lemma
A.3. In particular, |L∗| ≤ κ. By Lemma A.6, there is a maximal, finitely satisfiable L∗-theory
T ′ ⊇ T ∗. Note that T ′ still has built-in Skolem functions. To simplify notation, replace L with L∗
and T with T ′.

For any L-formula ϕ(v), in one free variable, we have the 0-ary function symbol fϕ in L, which
we will treat as a constant symbol cϕ. Since T has built-in Skolem functions, we have the following
property:

(∗) for any L-formula ϕ(v), ∃vϕ(v)→ ϕ(cϕ) is in T .

We now build a model M |= T of cardinality at most κ. Let C be the set of constant symbols
in L. We define a binary relation ∼ on C such that

c ∼ d ⇔ c = d is in T .

Claim 1 : ∼ is an equivalence relation on C.
Proof : For any c ∈ C, since ∅ |= {c = c}, we have c = c in T by Lemma A.5. For any c, d ∈ C, if
c = d is in T then d = c is in T by Lemma A.5. For any c, d, e,∈ C, if {c = d, d = e} ⊆ T then
c = e is in T by Lemma A.5. aclaim

Now set M = C/∼ and, for c ∈ C, let c∗ denote [c]∼ ∈ M . Since |C| ≤ |L| ≤ κ, we have
|M | ≤ κ. We construct an L-structure M, with universe M , such that M |= T . First, we give
the interpretation of the symbols in L. Given a constant symbol c in L, we set cM = c∗. Now fix
an n-ary relation symbol R in L. Suppose c1, . . . , cn, d1, . . . , dn ∈ C are such that ci ∼ di for all
1 ≤ i ≤ n. Then {c1 = d1, . . . , cn = dn} ⊆ T , and so it follows from Lemma A.5 that R(c̄) ∈ T if
and only if R(d̄) ∈ T . Therefore, we have a well-defined set

RM = {(c∗1, . . . , c∗n) ∈Mn : R(c1, . . . , cn) ∈ T}.

Finally, fix an n-ary function symbol f in L.

Claim 2 : For any c1, . . . , cn ∈ C, there is cn+1 ∈ C such that f(c1, . . . , cn) = cn+1 is in T .
Proof : Let ϕ(v) denote the L-formula v = f(c1, . . . , cn), and set cn+1 = cϕ. We have ∅ |= {∃vϕ(v)},
and so ∃vϕ(v) ∈ T by Lemma A.5. Combined with (∗), we have {∃vϕ(v)→ ϕ(cn+1),∃vϕ(v)} ⊆ T ,
and so ϕ(cn+1) ∈ T by Lemma A.5. aclaim

For any c1, . . . , cn+1, d1, . . . , dn+1 ∈ C, if ci ∼ di for all 1 ≤ i ≤ n + 1 and f(c1, . . . , cn) = cn+1

is in T , then f(d1, . . . , dn) = dn+1 is in T by Lemma A.5. Combined with Claim 2, we have a
well-defined function fM : Mn −→M such that

fM(c∗1, . . . , c
∗
n) = c∗n+1 ⇔ f(c1, . . . , cn) = cn+1 is in T .

This finishes the definition of the L-structureM. It remains to show thatM |= T . In particular,
we prove the following statement:
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(†) for all L-formulas ϕ(v1, . . . , vn) and c1, . . . , cn ∈ C, M |= ϕ(c̄∗) if and only if ϕ(c̄) ∈ T .

To do this, we first need a claim about terms.
Claim 3 : For any L-term t(v1, . . . , vn) and c1, . . . , cn, d ∈ C,

tM(c̄∗) = d∗ ⇔ t(c̄) = d is in T .

Proof : We first prove the forward direction by induction on terms. Suppose t is a constant symbol
c ∈ C (and so n = 0). We want to show c∗ = d∗ if and only if c = d is in T , which is true by
definition of ∼. Now suppose t is the variable v1. We want to show c∗1 = d∗ if and only if c1 = d is
in T , which is true for the same reason. Assume the result for terms t1, . . . , tm using free variables
from among v1, . . . , vn, and suppose f is an m-ary function symbol in L.

Suppose fM(tM1 (c̄∗), . . . , tMm (c̄∗)) = d∗. By definition of M , we may set tMj (c̄∗) = d∗j , for some

d1, . . . , dm ∈ C. Then fM(d∗1, . . . , d
∗
m) = d∗, and so f(d1, . . . , dm) = d is in T by definition of fM.

By induction tj(c̄) = d is in T for all 1 ≤ j ≤ m. Altogether,

{t1(c̄) = d1, . . . , tm(c̄) = dm} ∪ {f(d1, . . . , dm) = d} ⊆ T,

and so f(t1(c̄), . . . , tm(c̄)) = d is in T by Lemma A.5.
For the reverse direction, suppose t(c̄) = d is in T . By definition of M , we may set tM(c̄∗) = e∗

for some e ∈ C. By the forward direction of this claim, t(c̄) = e is in T , and so {t(c̄) = e, t(c̄) =
d} ⊆ T . By Lemma A.5, d = e is in T , and so tM(c̄∗) = e∗ = d∗. aclaim

Finally, we prove (†) by induction on formulas. Suppose ϕ is the formula t1 = t2, for some
L-terms t1 and t2. Let tMi (c̄∗) = d∗i , for i ∈ {1, 2}. Then

M |= ϕ(c̄∗) ⇔ tM1 (c̄∗) = tM2 (c̄∗)

⇔ d∗1 = d∗2

⇔ d1 = d2 is in T

⇔ t1(c̄) = t2(c̄) is in T ,

where the final equivalence follows from Lemma A.5, and the fact that {t1(c̄) = d1, t2(c̄) = d2} ⊆ T
by Claim 3.

Next, suppose ϕ is the formula R(t1, . . . , tm). Let tMi (c̄∗) = d∗i for some d1, . . . , dm ∈ C. Then

M |= ϕ(c̄∗) ⇔ (d∗1, . . . , d
∗
m) ∈ RM

⇔ R(d1, . . . , dm) ∈ T
⇔ ϕ(c̄) ∈ T,

where the final equivalence follows from Lemma A.5, and the fact that {t1(c̄) = d1, . . . , t1(c̄) =
dm} ⊆ T by Claim 3.

This finishes the verification of (†) for atomic L-formulas. Assume the result for the formula
ϕ(v1, . . . , vn) and fix c1, . . . , cn in C. Then

M |= ¬ϕ(c̄∗) ⇔ M 6|= ϕ(c̄∗) ⇔ ϕ(c̄) 6∈ T ⇔ ¬ϕ(c̄) ∈ T,

where the second equivalence follows from induction, and the third equivalence follows from the
fact that T is maximal and finitely satisfiable.

Next, assume the result for ϕ and ψ, and fix c1, . . . , cn ∈ C. Then

M |= (ϕ ∧ ψ)(c̄∗) ⇔ M |= ϕ(c̄∗) and M |= ψ(c̄∗) ⇔ {ϕ(c̄), ψ(c̄)} ⊆ T ⇔ (ϕ ∧ ψ)(c̄) ∈ T,
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where the second equivalence follows from induction, and the third equivalence from Lemma A.5.
Finally, assume the result for ϕ(v1, . . . , vn, w), and fix c1, . . . , cn ∈ C. Then

M |= ∃wϕ(c̄∗, w) ⇔ M |= ϕ(c̄∗, d∗) for some d∗ ∈M ⇔ ϕ(c̄, d) ∈ T for some d ∈ C,

where the second equivalence follows from induction. If ϕ(c̄, d) ∈ T for some d ∈ C, then we have
∃wϕ(c̄, w) ∈ T by Lemma A.5. On the other hand, if ∃wϕ(c̄, w) ∈ T then, setting d = cψ where
ψ(w) is the L-formula ϕ(c̄, w), we have ϕ(c̄, d) ∈ T by Lemma A.5 and (∗).

The only added Skolem functions necessary for the previous proof were the constants (i.e. 0-ary
function symbols) cϕ for ϕ(v) a formula in one free variable. In other words, we only needed T to
satisfy property (∗). This property is often called the witness property, and theories T satisfying
the witness property are called Henkinized.
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B Review: Sets, Cardinality, Algebra, Graphs

The following is a fairly terse list of definitions and facts that will be helpful for these notes. The
material on sets, cardinality, and algebra should be fairly familiar, and the topics discussed in these
sections will be used frequently in the summer school. The material on graphs will not be as heavily
used, and prior exposure to these topics is not imperative.

B.1 Sets and Cardinality

We work in the ZFC axioms of set theory.3

Definition B.1. Fix sets X and Y .

1. A function f : X −→ Y is injective (f is an injection) if, for all x1, x2 ∈ X, f(x1) = f(x2)
implies x1 = x2.

2. A function f : X −→ Y is surjective (f is a surjection) if, for all y ∈ Y , there is some
x ∈ X such that f(x) = y.

3. A function f : X −→ Y is bijective (f is a bijection) if it is injective and surjective.

Fact B.2. The binary relation given by “there is a bijection from X to Y ” is an equivalence relation
on sets.

Definition B.3. Given a set X, the cardinality of X, denoted |X|, is the equivalence class of X
with respect to the equivalence relation in the previous fact.

Definition B.4. Fix sets X and Y .

1. |X| ≤ |Y | if there is an injection f : X −→ Y .

2. |X| < |Y | if |X| ≤ |Y | and |X| 6= |Y |.

Fact B.5 (Cantor-Shröder-Bernstein). Given sets X and Y , |X| = |Y | if and only if |X| ≤ |Y |
and |Y | ≤ |X|.

Definition B.6. A cardinal is an equivalence class |X| for some set X.

Let ∅ denote the set with no elements. Let N denote the set of natural numbers {0, 1, 2, 3, . . .}.
We use the symbol ℵ0 to denote the cardinal |N|. Given n ∈ N, we identify n with the cardinal
|{0, 1, . . . , n − 1}| (in particular, 0 is identified with |∅|). Note that if we restrict the ordering on
cardinals to the elements of N, then we recover the usual ordering of N.

Definition B.7. A set X is finite if |X| = n for some n ∈ N. A set is infinite if it is not finite.

Fact B.8. Suppose X and Y are finite sets of the same cardinality. Then a function f : X −→ Y
is injective if and only if it is surjective.

Definition B.9. A set X is countable if |X| ≤ ℵ0.

Fact B.10. If X is infinite then |X| ≥ ℵ0.

Definition B.11. Given a cardinal κ = |X|, we let 2κ denote the cardinality of the powerset of X
(i.e. the set of all subsets of X).

3Ignore this if you don’t know what it means.
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Fact B.12 (Cantor). If κ is a cardinal then κ < 2κ.

Fact B.13. 2ℵ0 = |R|.

Definition B.14. A partial order is a pair (X,<) where X is a set and < is irreflexive, antisym-
metric, and transitive. A chain in (X,<) is a subset C ⊆ X such that (C,<) is totally ordered.
An upper bound in (X,<) for a chain C is an element x ∈ X such that c ≤ x for all c ∈ C. A
maximal element for (X,<) is an element x ∈ X such that y ≤ x for all y ∈ Y .

Fact B.15 (Zorn’s Lemma). Suppose (X,<) is a nonempty partial order. If every chain in (X,<)
has an upper bound in X, then (X,<) has a maximal element.

Fact B.16. If C is a nonempty collection of cardinals then C contains a minimal element, i.e. there
is some κ ∈ C such that κ ≤ λ for all λ ∈ C.

Definition B.17. ℵ1 is the smallest cardinal strictly greater than ℵ0.

By Cantor’s theorem, ℵ1 ≤ 2ℵ0 .

Definition B.18. The Continuum Hypothesis is the assertion that ℵ1 = 2ℵ0 .

Fact B.19 (Gödel-Cohen). The Continuum Hypothesis is independent of ZFC.

B.2 Groups

Definition B.20.

1. A group is a set G, together with a binary operation ∗ on G, and a distinguished element
e ∈ G such that:

(i) ∗ is associative,

(ii) for all x ∈ G, e ∗ x = x = x ∗ e,
(iii) for all x ∈ G there is a y ∈ G such that x ∗ y = e = y ∗ x.

2. A group (G, ∗, e) is abelian if x ∗ y = y ∗ x for all x, y ∈ G.

Example B.21. The following are examples of groups.

1. (Z,+, 0), (Q,+, 0), and (R,+, 0). Note that (N,+, 0) is not a group since it fails axiom (iii).

2. (R+, ·, 1), (Q+, ·, 1).

3. Given n > 0,
(
Z/nZ,+n, 0

)
where Z/nZ = {0, 1, . . . , n− 1} and +n is addition modulo n.

4. Given n > 0, (GLn(R), ·, In), where GLn(R) is the set of n × n square matrices, with real
entries and nonzero determinant, and In is the n× n identity matrix.

5. Given a set X, (SX , ◦, idX), where SX is the set of permutations of X (i.e. bijections from X
to itself), ◦ is composition of functions, and idX is the identity function on X.

Each group in (1), (2), and (3) is abelian. The groups in (4) and (5) are not necessarily abelian.

Definition B.22. Let (G, ∗G, eG) and (H, ∗H , eH) be groups.
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1. A function f : G −→ H is a group homomorphism if f(eG) = eH and, for all x, y ∈ G,
f(x ∗G y) = f(x) ∗H f(y).

2. An isomorphism from (G, ∗G, eG) to (H, ∗H , eH) is a bijective group homomorphism f :
G −→ H.

3. (G, ∗G, eG) and (H, ∗H , eH) are isomorphic if there is an isomorphism from (G, ∗G, eG) to
(H, ∗H , eH).

Definition B.23. Let (G, ∗, e) be a group.

1. Given x ∈ G, the order of x is the minimum integer n > 0, if it exists, such that xn = e
(where xn = x ∗ x ∗ . . . ∗ x, n times). If no such n exists then x has infinite order.

2. An element x ∈ G is a torsion point if it has finite order.

3. (G, ∗, e) is torsion-free if e is the only torsion point.

4. (G, ∗, e) is cyclic if there is some x ∈ G such that, for all y ∈ G there is n > 0 such that
y = xn.

We usually write abelian groups using additive notation (G,+, 0). Given x ∈ G, we write nx
for x+ x+ . . .+ x, n times.

Definition B.24. An abelian group (G,+, 0) is divisible if, for all x ∈ G and n > 0, there is some
y ∈ G such that x = ny.

B.3 Rings

Definition B.25. A ring is a set R, together with binary operations + and · on R, and distin-
guished elements 0, 1 ∈ R such that:

(i) (R,+, 0) is an abelian group,

(ii) (R, ·, 1) is a semigroup with identity (i.e. satisfies (i) and (ii) of Definition B.20(1)),

(iii) for all a, b, c ∈ R

a · (b+ c) = (a · b) + (a · c)
(b+ c) · a = (b · a) + (c · a).

Definition B.26. Let (R,+, ·, 0, 1) be a ring.

1. (R,+, ·, 0, 1) is commutative if a · b = b · a for all a, b ∈ R.

2. (R,+, ·, 0, 1) is an integral domain if it is commutative and, for all a, b ∈ R, if a · b = 0 then
a = 0 or b = 0.

Example B.27. The following are examples of rings.

1. (Z,+, ·, 0, 1), (Q,+, ·, 0, 1), (R,+, ·, 0, 1), (C,+, ·, 0, 1).

2.
(
Z/nZ,+n, ·n, 0, 1

)
, where n > 0 and +n, ·n are addition and multiplication modulo n,

respectively.
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3. (Mn(R),+, ·, 0n, In), where Mn(R) is the set of n× n square matrices with entries in R, 0n is
the n× n matrix of all 0′s, and In is the n× n identity matrix.

Each ring in (1) is an integral domain.

Definition B.28. Let R be a commutative ring.

1. A subset I ⊆ R is an ideal if it is a subgroup of (R,+, 0), and a · b ∈ I for any a ∈ R and
b ∈ I.

2. An ideal I ⊆ R is radical if, for any a ∈ R, if an ∈ I for some n > 0 then a ∈ I.

3. An ideal I ⊆ R is prime if, for any a, b ∈ R, if a · b ∈ I then a ∈ I or b ∈ I.

Definition B.29. Let R be a commutative ring and I ⊆ R an ideal. Define R/I = {[a] : a ∈ R}
where, given a ∈ R, [a] = {b ∈ R : a− b ∈ I}.

Fact B.30. Let R be a commutative ring and I ⊆ R an ideal.

(a) (R/I,+, ·, [0], [1]) is a commutative ring, where [a] + [b] = [a+ b] and [a] · [b] = [a · b].

(b) If I is a prime ideal, then R/I is an integral domain.

B.4 Fields

Definition B.31. A field is a set F , together with binary operations + and · on F , and distin-
guished elements 0, 1 ∈ F such that:

(i) (F,+, ·, 0, 1) is a commutative ring,

(ii) for all a ∈ F , if a 6= 0 then there is some b ∈ F such that a · b = 1.

Example B.32. The following are examples of fields.

1. (Q,+, ·, 0, 1), (R,+, ·, 0, 1), (C,+, ·, 0, 1).

2. Fp :=
(
Z/pZ,+p, ·p, 0, 1

)
, where p is a prime and +p, ·p are addition and multiplication

modulo p, respectively.

When working with fields, we often omit the symbol · and write the multiplicative operation
as concatenation (i.e. ab = a · b for a, b ∈ F ). We also identify the tuple (F,+, ·, 0, 1) with F when
there is no possibility for confusion.

Definition B.33. Let E and F be fields.

1. A function σ : E −→ F is an isomorphism if σ is a group isomorphism from (E,+, 0)
to (F,+, 0) and the restriction of σ to E\{0} is a group isomorphism from (E\{0}, ·, 1) to
(F\{0}, ·, 1).

2. E and F are isomorphic if there is an isomorphism from E to F .

Definition B.34. Given a field F and variables x1, . . . , xn, we let F [x1, . . . , xn] denote the set of
polynomials in the variables x1, . . . , xn with coefficients in F .

Fact B.35. If F is a field then F [x1, . . . , xn] is a commutative ring under usual addition and
multiplication of polynomials.
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Given p(x) ∈ F [x], we let deg(p) denote the degree of p(x). The constant 0 polynomial has
degree -∞ by convention. Any nonzero constant polynomial has degree 0.

Fact B.36. Let F be a field.

(a) For any polynomials p(x), q(x) ∈ F (x), with q(x) nonzero, there are polynomials r(x), s(x) ∈
F [x] such that p(x) = q(x)s(x) + r(x) and deg(r) < deg(q).

(b) If p(x) ∈ F [x] and a ∈ F is such that p(a) = 0, then p(x) = (x− a)q(x) for some q(x) ∈ F [x].

Definition B.37. A field F is algebraically closed if, for any polynomial p(x) ∈ F [x], there is
some a ∈ F such that p(a) = 0.

Fact B.38. Every algebraically closed field is infinite.

Example B.39. (Qalg,+, ·, 0, 1) and (C,+, ·, 0, 1) are algebraically closed fields (where Qalg is the
set of algebraic numbers).

Fact B.40. For any field F , there is a field F alg, called the algebraic closure of F , which is the
smallest (up to isomorphism) algebraically closed field containing F as a subfield.

Example B.41. (Qalg,+, ·, 0, 1) is the algebraic closure of (Q,+, 0, 1).

Fact B.42. If F is a field and X is a subset of F then the intersection of all subfields of F
containing X is a field, called the subfield of F generated by X.

Definition B.43. Given a field F , the prime subfield of F is the subfield generated by ∅.

Definition B.44. Let F be a field. Define ch(F ) ⊆ Z+ to be the set of n > 0 such that

1 + 1 + . . .+ 1︸ ︷︷ ︸
n times

= 0.

1. If ch(F ) = ∅ then F has characteristic 0.

2. If ch(F ) 6= ∅ then F has characteristic p, where p is the minimal element of ch(F ).

Example B.45.

1. (Q,+, ·, 0, 1), (R,+, ·, 0, 1), and (C,+, ·, 0, 1) have characteristic 0.

2. Fp has characteristic p.

Fact B.46. Let F be a field.

(a) If F has characteristic 0 then F is infinite and the prime subfield of F is isomorphic to
(Q,+, ·, 0, 1).

(b) If F has characteristic p > 0 then p is prime and the prime subfield of F is isomorphic to Fp.

Fact B.47 (Finite fields). Fix a prime p > 0. There is a family (Fpn)n>0 of fields satisfying the
following properties.

(i) For all n > 0, Fpn has characteristic p and cardinality pn.

(ii) For m,n > 0, Fpm is a subfield of Fpn if and only if m divides n.
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(iii) If F is a finite field of characteristic p then F is isomorphic to Fpn for some n > 0.

(iv) Falgp :=
⋃
n>0 Fpn is the algebraic closure of Fp.

Definition B.48. Let F be a field.

1. Given a subfield E of F and a subset X ⊆ E, X is algebraically independent over E if,
for any a1, . . . , an ∈ X and any nonzero p(x1, . . . , xn) ∈ E[x1, . . . , xn],

p(a1, . . . , an) 6= 0.

2. A subset X ⊆ F is algebraically independent if it is algebraically independent over the
prime subfield of F .

3. Given a subfield E of F , F is an algebraic extension of E if, for every a ∈ F , there is a
polynomial p(x) ∈ E[x] such that p(a) = 0.

4. A subset X ⊆ F is a transcendence basis for F if X is algebraically independent and F
is an algebraic extension of the subfield of F generated by X.

5. Given a subfield E of F , a subset X ⊆ F is a transcendence basis for F over E if
X is algebraically independent over E and F is an algebraic extension of the subfield of F
generated by E ∪X.

Fact B.49. If F is a field and X,Y ⊆ F are both transcendence bases for F then |X| = |Y |.

Definition B.50. The transcendence degree of a field F is the cardinality of a transcendence
basis for F . If E is a subfield of F then the transcendence degree of F over E is the cardinality
of a transcendence basis for F over E.

Fact B.51. Let E and F be algebraically closed fields. Suppose E0 ⊆ E and F0 ⊆ F are subfields
such that the transcendence degree of E over E0 equals the transcendence degree of F over F0. If
σ : E0 −→ F0 is a field isomorphism, then σ extends to a field isomorphism σ̂ : E −→ F .

Fact B.52. Two algebraically closed fields are isomorphic if and only if they have the same char-
acteristic and transcendence degree.

Fact B.53. Any integral domain R is a subring of a field. The smallest such field is called the
field of fractions of R.

Fact B.54. Let F be a field.

(a) (Hilbert Basis Theorem) Any ideal in F [x̄] is finitely generated.

(b) (Primary Decomposition) If I ⊆ F [x̄] is a radical ideal then there are prime ideals P1, . . . , Pm
such that I = P1 ∩ . . . ∩ Pm.

B.5 Vector Spaces

Fix a field F .

Definition B.55. A vector space over F is an abelian group (V,⊕,0), together with a function
F × V −→ V , called scalar multiplication, such that:
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(i) for all a, b ∈ F and v ∈ V , a(bv) = (ab)v;

(ii) for all a ∈ F and v,w ∈ V , a(v ⊕w) = av ⊕ aw;

(iii) for all a, b ∈ F and v ∈ V , (a+ b)v = av ⊕ bv;

(iv) for all v ∈ V , 1v = v.

Example B.56. For any field F and n > 0, (Fn,⊕,0) is a vector space over F , where ⊕ is
coordinate addition of vectos and 0 is the tuple with every coordinate 0.

Definition B.57. Let V and W be vector spaces over F .

1. A function σ : V −→ W is a linear map if σ is a group homomorphism from (V,⊕,0) to
(W,⊕,0) and, for all a ∈ F and v ∈ V , σ(av) = aσ(v).

2. V and W are isomorphic if there is a bijective linear map from V to W .

Definition B.58. Let V be a vector space over F .

1. A subset X ⊆ V is linearly independent if, for all v1, . . . ,vn ∈ V and a1, . . . , an ∈ F ,

a1v1 ⊕ . . .⊕ anvn = 0 ⇔ ai = 0 for all 1 ≤ i ≤ n.

2. A subset X ⊆ V is a basis for V if it is linearly independent and the subspace of V generated
by X is all of V .

Fact B.59. Suppose V and W are vector spaces of the same dimension. If X ⊆ V and Y ⊆W are
linearly independent subsets of the same cardinality, then any bijection from X to Y extends to a
unique isomorphism from the subspace of V generated by X to the subspace of W generated by Y .

Fact B.60. If V is a vector space over F and X,Y ⊆ V are both bases for V then |X| = |Y |.

Definition B.61. The dimension of a vector space V is the cardinality of a basis for V .

Fact B.62. Two vector spaces over F are isomorphic if and only if the have the same dimension.

B.6 Graphs

Definition B.63. A graph is a set V together with a subset E ⊆ V × V such that:

(i) for all v ∈ V , (v, v) 6∈ E,

(ii) for all v, w ∈ V , if (v, w) ∈ E then (w, v) ∈ E.

V is the set of vertices of the graph and E is the set of edges of the graph.

Visually, a graph (V,E) can be imagined as a collection of points V with a line drawn from v
to w if (v, w) is an edge in E.

Definition B.64. Two graphs Γ1 = (V1, E1) and Γ2 = (V2, E2) are isomorphic if there is a
bijection f : V1 −→ V2 such that, for all v, w ∈ V1, (v, w) ∈ E1 if and only if (f(v), f(w)) ∈ E2.

Example B.65. Fix n > 0.
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1. The complete graph on n vertices is the graph, denoted Kn, whose vertex set V (Kn) has
size n and whose edge set E(Kn) is (V × V )\{(v, v) : v ∈ V } (i.e. all possible edges).

2. The empty graph on n vertices is the graph, denoted Kn, whose vertex set V (Kn) has
size n and whose edge set is ∅.

Fact B.66 (Ramsey’s Theorem). Given integers m1,m2 > 0 there is an integer R(m1,m2) such
that any graph of cardinality at least R(m1,m2) either contains a complete graph of size m1 or an
empty graph of size m2. Formally: for any graph Γ = (V,E) with |V | ≥ R(m1,m2), there is a
subset W ⊆ V such that, if Γ0 = (W,E ∩ (W ×W )), then Γ0 is either isomorphic to Km1 or Km2.

Definition B.67. Given a graph Γ = (V,E), an edge-coloring of Γ is a function f : E −→ X,
where X is some set, such that, for any (v, w) ∈ E, f((v, w)) = f((w, v)).

Fact B.68 (Ramsey’s Theorem (general form)). Given integers k > 0 and m1, . . . ,mk > 0, there
is an integer R(m1, . . . ,mk) such that, for any n ≥ R(m1, . . . ,mk), if the edges of Kn are colored
with k colors {1, . . . , k} then, for some 1 ≤ t ≤ k, there there is copy of Kmt all of whose edges are
colored t. Formally: for any n ≥ R(m1, . . . ,mk) and any edge-coloring f : E(Kn) −→ {1, . . . , k},
there is some 1 ≤ t ≤ k and a set W ⊆ V (Kn) of cardinality mt such that, for any distinct
v, w ∈W , f((v, w)) = t.

Definition B.69. Let Γ = (V,E) be a graph.

1. Given k > 0, a k-coloring of Γ is a function c : V −→ {1, . . . , k} such that if (v, w) ∈ E then
f(v) 6= f(w).

2. Γ is triangle-free if there do not exists three distinct vertices u, v, w ∈ V such that

(u, v), (v, w), (w, u) ∈ E.

3. Γ is bipartite if there is a partition V = V1 ∪ V2 such that, for any (v, w) ∈ E, either v ∈ V1

and w ∈ V2 or w ∈ V1 and v ∈ V2.

4. Γ is planar if it can be drawn in the Euclidean plane in such a way that no two edges cross.
Formally: there is an injection f : V −→ R2 and a family (e(v,w))(v,w)∈E of functions such
that:

(i) for all (v, w) ∈ E, e(v,w) : [0, 1] −→ R2 is a homeomorphism with e(v,w)(0) = f(v) and
e(v,w)(1) = f(w);

(ii) for all (v1, w1), (v2, w2) ∈ E, with {v1, w1} 6= {v2, w2},

e(v1,w1)((0, 1)) ∩ e(v2,w2)((0, 1)) = ∅.

Fact B.70.

(a) A graph is bipartite if and only if it has a 2-coloring.

(b) Any bipartite graph is triangle-free.

Fact B.71 (Four-Color Theorem). Any finite planar graph has a 4-coloring.
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