Name: Date: 09/13/2018

M20550 Calculus III Tutorial Worksheet 3

- 1. Find an equation of the tangent line to the space curve $\mathbf{r}(t) = \langle e^t, 3t, \sin t \rangle$ at the point $(e^{\pi}, 3\pi, 0)$.
- 2. Find the distance from the point (1,0,0) to the space curve given by $\mathbf{r}(t) = \langle e^t, \sin t, \cos t \rangle$.
- 3. Find $\mathbf{r}(t)$ if $\mathbf{r}''(t) = 2\sec^2 t \tan t \mathbf{i}$, $\mathbf{r}(0) = 2\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$, and $\mathbf{r}'(0) = \mathbf{i} + \mathbf{j} + \mathbf{k}$.
- 4. Find the unit tangent vector, the principal unit normal vector, and the unit binormal vectors to the curve $\mathbf{r}(t) = \langle \cos 3t, \sin 2t, t^3 \rangle$ at $t = \pi$.
- 5. Find the equation for the normal and osculating planes to the curve $\mathbf{r}(t) = \arctan t\mathbf{i} + \sin t\mathbf{j} + \cos t\mathbf{k}$ at the point (0,0,1). Challenge: Without graphin' software, sketch the curve. Can you describe the limit as $t \to \pm \infty$?
- 6. Find the length of the curve $\mathbf{r}(t) = \langle \sin t, \cos t, 2t \rangle$ from (0, 1, 0) to $(0, 1, 4\pi)$.
- 7. A particle moves with position function $\mathbf{r}(t) = \langle \sin t, \cos t, \sin^2 t \rangle$. Find the tangential and normal components of acceleration when $t = \pi/4$.