Math 20580
Midterm 1
February 13, 2020
Calculators are NOT allowed. Do not remove this answer page - you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

1. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$
2. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
3. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
4. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
5. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
6. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
7. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$
8. a, b c d

Multiple Choice.
9.
10.
11.
12.

Total.

Part I: Multiple choice questions (7 points each)

1. What can be said about the following system of linear equations?

$$
\left\{\begin{array}{r}
2 x_{1}-4 x_{3}=5 \\
x_{2}-3 x_{3}=3
\end{array}\right.
$$

(a) The solution set is a subspace of \mathbb{R}^{3}
(b) The system is inconsistent
(c) There are only finitely many solutions
(d) Every solution is in \mathbb{R}^{2}
(e) none of the above
2. What are the values of h and k for which the matrix below is not invertible?

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & k \\
-1 & h & -1
\end{array}\right]
$$

(a) $h=0$ and $k=0$
(b) $h=-1$ or $k=-1$
(c) $h=1$ and any k
(d) $h=0$ and $k=1$
(e) none of the above
3. Under which of the scenarios below does the equation $A \vec{x}=\overrightarrow{0}$ have a nontrivial solution.

1. A is a 3×3 matrix with three pivot positions.
2. A is a 4×4 matrix with two pivot positions.
3. A is a 2×5 matrix with two pivot positions.
4. A is a 5×3 matrix with three pivot positions.
(a) 2 only
(b) 2,3 only
(c) 1,4 only
(d) 2,3,4 only
(e) 4 only
5. If the matrices A, B are such that

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right], \quad A B=\left[\begin{array}{lll}
2 & 3 & 1 \\
3 & 5 & 2
\end{array}\right]
$$

then what is the matrix B ?
(a) $\left[\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]$
(c) $\left[\begin{array}{cc}-3 & 2 \\ 2 & 1\end{array}\right]$
(d) $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$
(e) It can't be determined.
5. Suppose that a 5×6 matrix A has a nullspace of dimension 2 . How many rows of zeros does the reduced echelon form of A contain?
(a) 3
(b) 2
(c) 5
(d) 4
(e) 1
6. Which of the following matrices has linearly independent columns?

$$
A=\left[\begin{array}{ll}
3 & -4 \\
4 & -3
\end{array}\right], \quad B=\left[\begin{array}{cc}
0 & -1 \\
2 & 0 \\
0 & 1 \\
-2 & 0
\end{array}\right], \quad C=\left[\begin{array}{cc}
2 & -3 \\
4 & -5 \\
5 & -6
\end{array}\right], \quad D=\left[\begin{array}{ccc}
0 & 2 & 4 \\
0 & 3 & 6 \\
0 & 5 & 10
\end{array}\right]
$$

(a) A only
(b) A,B only
(c) A,B,C only
(d) D only
(e) B, C only
7. Consider a basis $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right\}$ of \mathbb{R}^{3}, and a linear transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ with the property that

$$
T\left(\vec{b}_{1}\right)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad T\left(\vec{b}_{2}\right)=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad T\left(\vec{b}_{3}\right)=\left[\begin{array}{l}
0 \\
3
\end{array}\right] .
$$

If \vec{u} has coordinate vector $[\vec{u}]_{\mathcal{B}}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ relative to \mathcal{B}, then $T(\vec{u})$ is equal to
(a) $\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{c}-1 \\ 4\end{array}\right]$
(c) $\vec{b}_{1}-\vec{b}_{2}+2 \vec{b}_{3}$
(d) $\left[\begin{array}{l}0 \\ 6\end{array}\right]$
(e) $\left[\begin{array}{l}-2 \\ -1\end{array}\right]$
8. The rank of the matrix

$$
A=\left[\begin{array}{lllll}
2 & -1 & 1 & 3 & 1 \\
6 & -3 & 3 & 3 & 1 \\
4 & -2 & 2 & 0 & 0
\end{array}\right]
$$

is
(a) 1
(b) 3
(c) 4
(d) 2
(e) 0

Part II: Partial credit questions (11 points each). Show your work.

9. (a) Find the standard matrix for each of the following transformations $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$:

- Counterclockwise rotation with angle $\pi / 4$.
- Projection to the y-axis.
(b) Find the standard matrix of the linear transformation that consists of counterclockwise rotation with angle $\pi / 4$, followed by projection to the y-axis.
(c) Find the standard matrix of the linear transformation that consists of projection to the y-axis, followed by counterclockwise rotation with angle $\pi / 4$.

10. Find the inverse of the matrix

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 2 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

11. Consider the matrix

$$
A=\left[\begin{array}{cccccc}
1 & -3 & 0 & -1 & 0 & -2 \\
0 & 1 & 0 & 0 & -4 & 1 \\
0 & 0 & 0 & 1 & 9 & 4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find the rank of A, and find a basis \mathcal{B} for $\operatorname{Col}(A)$.
(b) If \vec{a}_{5} is the fifth column of A, determine its coordinate vector $\left[\vec{a}_{5}\right]_{\mathcal{B}}$ relative to \mathcal{B}.
12. Consider the linear transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ given by

$$
T\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
x_{1}-2 x_{2} \\
x_{1}+2 x_{2} \\
2 x_{1}-3 x_{2}
\end{array}\right]
$$

(a) Find the standard matrix of T.
(b) Explain why every vector $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ in the range of T satisfies $7 b_{1}+b_{2}-4 b_{3}=0$.
(c) Write down two distinct vectors \vec{v}_{1}, \vec{v}_{2} that are not contained in the range of T (and make sure to explain why they are not contained in the the range).

