Math 20580
Midterm 2
March 5, 2020
Name: \qquad

Calculators are NOT allowed. Do not remove this answer page - you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

1. a, b, d, d
2. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
3. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
4. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
5. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
6. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
7. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$
8. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$

Multiple Choice.
9.
10.
11.
12.

Total.

Part I: Multiple choice questions (7 points each)

1. Assume that A and B are two 4×4 matrices with determinants $\operatorname{det} A=2$, $\operatorname{det} B=3$. Find the determinant $\operatorname{det}\left(A^{T} B A^{-1} B\right)$.
(a) 0
(b) $9 / 4$
(c) 36
(d) 9
(e) cannot be determined.
2. Consider the four functions $f_{1}=(\sin t)^{2}, f_{2}=(\cos t)^{2}, f_{3}=1, f_{4}=\cos 2 t$. They generate a subspace $H=\operatorname{Span}\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ in the vector space $C[0,1]$ of continuous functions on the interval $[0,1]$. Which among the following sets is a basis for H ?
Hint: You may use the trig identity
$\cos 2 t=(\cos t)^{2}-(\sin t)^{2}=2(\cos t)^{2}-1=1-2(\sin t)^{2}$.
(a) $\left\{f_{1}, f_{2}\right\}$
(b) $\left\{f_{1}, f_{2}, f_{3}\right\}$
(c) $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$
(d) $\left\{f_{1}\right\}$
(e) none of the above.
3. Which among the following subsets of \mathbb{R}^{3} is a subspace?
4. $\left\{\left.\left[\begin{array}{c}t \\ s \\ \sin t\end{array}\right] \right\rvert\, t, s \in \mathbb{R}\right\}$
5. $\left\{\left.\left[\begin{array}{c}t \\ 2 t \\ 1\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}$
6. $\left\{\left.\left[\begin{array}{c}t \\ s \\ t+s\end{array}\right] \right\rvert\, t \in \mathbb{R}, s \geq 0\right\}$
7. $\left\{\left.\left[\begin{array}{c}t \\ t+s \\ s\end{array}\right] \right\rvert\, t, s \in \mathbb{R}\right\}$
(a) 3 and 4 only
(b) 4 only
(c) 1, 3 and 4 only
(d) all of them
(e) none of them.
8. Let S be the parallogram determined by the vectors $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 3\end{array}\right]$. Find the area of S.
(a) 0
(b) 1
(c) -1
(d) 42
(e) none of the above.
9. Consider the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ defined by $T: p(t) \mapsto t p^{\prime}(t)-p(t)$. Which of the following polynomials is in the null space (kernel) of T ?
(I) t^{2}
(II) $2 t$
(III) $1-t^{2}$
(IV) $-t$
(a) I and II only
(b) IV only
(c) III only
(d) I and III only
(e) II and IV only
10. Let H be the subspace of \mathbb{P}_{3} consisting of all polynomials $p(t)$ of degree at most 3 such that $p(-1)=0$. Which of the following is a basis of H ?
(a) $\left\{1, t, t^{2}, t^{3}\right\}$
(b) $\left\{t-1, t^{2}+1, t^{3}-1\right\}$
(c) $\left\{t+1, t^{2}-1, t^{3}+1\right\}$
(d) $\left\{t+1, t^{2}-1, t^{2}+t^{3}, t^{3}+1\right\}$
(e) $\left\{t+1, t^{3}+1\right\}$
11. Let $T: \mathbb{R}^{12} \rightarrow \mathbb{R}^{8}$ be a linear transformation of \mathbb{R}^{12} onto \mathbb{R}^{8}. What is the dimension of the null space (kernel) of T ?
(a) 3
(b) 4
(c) 6
(d) 8
(e) 11 .
12. The vector $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ is an eigenvector of the matrix $A=\left[\begin{array}{ccc}4 & -2 & 3 \\ 2 & 2 & 0 \\ 1 & -4 & 10\end{array}\right]$. What is the corresponding eigenvalue?
(a) 2
(b) 6
(c) 4
(d) 8
(e) 3

Part II: Partial credit questions (11 points each). Show your work.

9. Consider the matrix

$$
A=\left[\begin{array}{ccc}
s & 0 & 1 \\
-1 & 1 & 1 \\
-1 & 1 & s
\end{array}\right]
$$

with s a parameter.
(a) Calculate the determinant of A.
(b) For which values of the parameter s is the matrix A invertible?
(c) When A is invertible, find the entry in row 1 , column 3 of the inverse matrix A^{-1} (the formula will depend on the parameter s).
10. Consider the two ordered bases \mathcal{B} and \mathcal{C} of \mathbb{R}^{3} given by

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\}, \quad \mathcal{C}=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right]\right\}
$$

(a) Find the change of coordinate matrix $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$ from \mathcal{C} to \mathcal{B} (recall that $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$ is the matrix such that $[\vec{x}]_{\mathcal{B}}=\underset{\mathcal{B} \leftarrow \mathcal{C}}{P} \cdot[\vec{x}]_{\mathcal{C}}$ for all vectors \vec{x} in \mathbb{R}^{3}).
(b) If \vec{v} is a vector in \mathbb{R}^{3} with $[\vec{v}]_{\mathcal{C}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, determine $[\vec{v}]_{\mathcal{B}}$ and \vec{v}.
11. Let A be the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

(a) Find all the eigenvalues of A.
(b) For each eigenvalue of A, determine a basis of the corresponding eigenspace.
12. Consider the vector space \mathbb{P}_{2} of polynomials of degree at most 2 in the variable t. Let $\mathcal{E}=\left\{1, t, t^{2}\right\}$ denote the standard basis of \mathbb{P}_{2}. Define the following polynomials in \mathbb{P}_{2} : $p_{0}(t)=1+t+t^{2}, \quad p_{1}(t)=1+2 t+3 t^{2}, \quad p_{2}=1+4 t+9 t^{2}, \quad p_{3}=1+8 t+17 t^{2}$.
(a) Write below the coordinate vector $\vec{v}_{i}=\left[p_{i}(t)\right]_{\mathcal{E}}$ in \mathbb{R}^{3} for each $i=0,1,2,3$.

$$
\vec{v}_{0}=[], \quad \vec{v}_{1}=[], \quad \vec{v}_{2}=[], \quad \vec{v}_{3}=[] .
$$

(b) Find scalars a_{0}, a_{1}, a_{2} such that $\vec{v}_{3}=a_{0} \vec{v}_{0}+a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}$.
(c) Find scalars b_{0}, b_{1}, b_{2} such that $p_{3}=b_{0} p_{0}+b_{1} p_{1}+b_{2} p_{2}$. Explain your reasoning.

