\qquad

Midterm 3
April 16, 2020

Instructor:
Section:

Calculators are NOT allowed. You will be allowed 120 minutes to do the test.
There are 15 multiple choice questions worth 6 points each and you will receive 10 points for following the instructions. Record your answers by placing an \times through one letter for each problem on this answer sheet.
Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

1. a b $B, \mathrm{~d}, \mathrm{e}$
2. a, b, b
3. N, b, c
4. $\mathrm{a} \sqrt[b]{\mathrm{c}} \sqrt{\square}, \mathrm{e}$
5. a \because, c d e
6. a b c d $\sqrt{\mathrm{d}}$
7. a, b c a
8. $8, b$ c $\quad d, e$
9. a b, b d
10. a b d, e
11. a a, b, d e
12. a b c d a
13. a, b d
14. a b c d
15. a b c e
16. The differential equation

$$
\frac{d y}{d t}+t y^{2}=0
$$ is

(a) linear
(b) a partial differential equation
c) separable
(d) an equation of order 2
(e) none of the above

2. Let A be an m by n matrix. Which of the following must be true:
(a) $A \vec{x}=\vec{b}$ has a solution for any \vec{b}.
(b) $A \vec{x}=\vec{b}$ always has a unique least-squares solution.
(c) $A^{T} A \vec{x}=A^{T} \vec{b}$ has a solution for any \vec{b}.
(d) \vec{b} is orthogonal to $A \vec{x}$ for any \vec{x}.
(e) None of the above.

equation
abways has
a solation!
3. The matrix $\left[\begin{array}{cc}-2 & 2 \\ -15 & 9\end{array}\right]$ has eigenvalues 3 and 4 . Then we know that $A=P D P^{-1}$ for $D=\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right]$ and P given by:
(a) $\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right]$
(b) $\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right]$
(c) $\left[\begin{array}{ll}7 & 5 \\ 3 & 2\end{array}\right]$
(d) $\left[\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right]$
(e) $\left[\begin{array}{cc}9 & -2 \\ 15 & -2\end{array}\right]$

4. Suppose you wish to solve the differential equation $y^{\prime}+\frac{2}{t} y=t^{4}, t>0$, using integrating factors. After multiplying the equation by the integrating factor $\mu(t)$, the equation becomes:
(a) $t y^{\prime}+2 y=t^{5}$
(b) $e^{t} t y^{\prime}+2 e^{t} y=e^{5} t^{5}$
(c) $e^{2 t} t y^{\prime}+2 e^{2 t} y=e^{2 t} t^{5}$
(a) $t^{2} y^{\prime}+2 t y=t^{6}$
(e) none of the above
$\mu(t)=e$

2 bt $=2$
$=e^{2}=n^{2}=t^{2}$

5. Applying the Gram-Schmidt process to the vectors $\vec{x}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\vec{x}_{2}=\left[\begin{array}{l}5 \\ 5\end{array}\right]$ gives
(a) $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}6 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$
(c) $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$
(e) None of the above

6. Find the general solution to $y^{\prime}=\frac{y^{2}}{t^{3}}, t>0$.
(a) $y=2 t^{2}+C$
(b) $y=C e^{2 t}+3$
(c) $y=-t^{2}+C$
(d) $y=e^{3 t}+C$
(b) None of the above

$$
\frac{2 t^{2}}{1-c \cdot 2 t^{2}}
$$

7. The vector $\vec{v}=\left[\begin{array}{c}-1-i \\ 1\end{array}\right]$ is a complex eigenvector of the matrix $A=\left[\begin{array}{cc}1 & -2 \\ 1 & 3\end{array}\right]$. What is the corresponding eigenvalue?
(a) $\lambda=2 i$
(b) $\lambda=2+i$
(c) $\lambda=-2+3 i$
(d) $\lambda=2-i$
(e) $\lambda=-1-i$
$\left[\begin{array}{cc}1 & -2 \\ 1 & 3\end{array}\right]\left[\begin{array}{c}-1-i \\ 1\end{array}\right]=\left[\begin{array}{c}-3-i \\ \Leftrightarrow\end{array}\right]$

$$
\lambda=2-i
$$

8. Recall that \mathbb{P}_{n} denotes the vector space of polynomials of degree at most n, and consider the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{3}$ defined by

$$
T(y)=y^{\prime \prime}-y^{\prime}+t y .
$$

The matrix of T relative to the basis $\left\{1, t, t^{2}\right\}$ of \mathbb{P}_{2} and the basis $\left\{1, t, t^{2}, t^{3}\right\}$ of \mathbb{P}_{3} is
(a) $\left[\begin{array}{ccc}0 & -1 & 2 \\ 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{c}t^{2} \\ -2 t \\ 1\end{array}\right]$
(c) $\left[\begin{array}{c}t^{3} \\ -3 t^{2} \\ 6 t \\ 1\end{array}\right]$
(d) $\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
(e) it cannot be determined from the given information.
$T(1)=t$

$$
\left.\begin{array}{c}
2 \\
-2 \\
0
\end{array}\right]
$$

9. Consider the line L spanned by the vector $\vec{v}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. The distance from the vector $\vec{x}=\left[\begin{array}{c}-7 \\ 1\end{array}\right]$ to the line L is
(a) $\sqrt{45}$
(b) $/ 5$
(c) $2 \sqrt{3}$
(d) 5
(e) $\sqrt{50}$

10. Which of the following functions is a solution of the initial value problem

jue
11. Consider the matrices

$$
A=\left[\begin{array}{ccccc}
2 & 4 & -2 & 1 & 11 \\
3 & 6 & -3 & 1 & 15 \\
-1 & -2 & 1 & 2 & 2 \\
4 & 8 & -4 & 4 & 28
\end{array}\right]
$$

$$
\text { and } B=\left[\begin{array}{ccccc}
0 & 2 & -1 & 0 & 4 \\
0 & 0 & 0 & \mathbb{1} & 3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

where B is the reduced echelon form of A. A basis for the orthogonal complement of the row space of A is given by
(a) $\left\{\left[\begin{array}{c}2 \\ 3 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 4\end{array}\right]\right\} \quad$ (b) $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-4 \\ 0 \\ 0 \\ -3 \\ 1\end{array}\right]\right\} \quad$ (c) $\left\{\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 0 \\ -4\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 0 \\ -1 \\ -3\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{c}4 \\ 8 \\ -4 \\ 4 \\ 28\end{array}\right]\right\} \quad(e)\left\{\left[\begin{array}{c}4 \\ 6 \\ -2 \\ 8\end{array}\right],\left[\begin{array}{c}-2 \\ -3 \\ 1 \\ -4\end{array}\right],\left[\begin{array}{c}11 \\ 15 \\ 2 \\ 28\end{array}\right]\right\}$

12. Determine $f(t, y)$ if the differential equation $y^{\prime}=f(t, y)$ has direction field (the value of t is measured on the horizontal axis, and the value of y on the vertical axis)

(a) $t+y$
(b)

13. Consider the line L spanned by the vector $\vec{u}=\left[\begin{array}{c}3 / 5 \\ -4 / 5\end{array}\right]$, and let $\operatorname{proj}_{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the linear transformation that sends a vector to its orthogonal projection onto the line L. The standard matrix of the transformation proj_{L} is
(a) $\left[\begin{array}{cc}3 & 0 \\ 0 & -4\end{array}\right]$
(b) $\frac{1}{5}\left[\begin{array}{cc}3 & 5 \\ 5 & -4\end{array}\right]$
(c) $\frac{1}{25}\left[\begin{array}{cc}9 & -12 \\ -12 & 16\end{array}\right]$
(d) $\frac{1}{5}\left[\begin{array}{cc}3 & 0 \\ 0 & -4\end{array}\right]$
(e) none of the above

14. Find the solution to the initial value problem

$$
\frac{d y}{d t}-t y=t, \quad y(0)=1
$$

$$
\begin{aligned}
& \text { (a) } y=e^{2 t^{2}} \\
& \text { (d) } y=2-
\end{aligned}
$$

$$
\mu(t)=e^{\int-t d t}=e^{-t^{2} / 2}
$$

$$
\begin{aligned}
& \mu(t)=e^{3-t / 2}=e^{-12} \\
& y(t)=\frac{\int e^{-t^{2} / 2} \cdot t d t}{e^{-t / 2}}=\frac{-e^{-t^{2} / 2}+c}{e^{-t / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& e^{-t / 2} \\
&=-1+c \cdot e^{t^{2} / 2} \quad t z 0, y=1=-1+c \\
&=2 c=2 \\
& x^{2} / 2
\end{aligned}
$$

$$
y(t)=-1+2 t k
$$

$$
\begin{aligned}
& 2 \mathrm{C}=2 \\
& 2
\end{aligned}
$$

$$
\begin{aligned}
& R=Q^{\top} A=\frac{1}{3}\left[\begin{array}{lll}
1 & 2 & -2 \\
2 & 1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 5 \\
2 & 4 \\
-2 & 2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
9 & 9 \\
0 & 18
\end{array}\right]=\left[\begin{array}{ll}
3 & 3 \\
0 & 6
\end{array}\right]
\end{aligned}
$$

