Math	20580
Final	Exam
May 7	7, 2020

Name:_	
Instructor:_	
Section:_	

Calculators are NOT allowed. You will be allowed 180 minutes to do the test.

There are 20 multiple choice questions worth 7 points each. You will receive 10 points for following the instructions. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

(b)
$$\begin{bmatrix} 4 & 5 \\ -2 & -2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$

2. Let
$$M$$
 be the matrix $\begin{bmatrix} -2 & 1 & -2 & 2 \\ 17 & 32 & 20 & -18 \\ -16 & -24 & -15 & 16 \\ -7 & 2 & -3 & 6 \end{bmatrix}$. You are told that M has

eigenvector $\begin{bmatrix} 2\\2\\0 \end{bmatrix}$. What is the corresponding eigenvalue?

- 3. Let $M_{6\times8}$ be the vector space of all 6 by 8 matrices, under addition of matrices and scalar multiplication of matrices. What is the dimension of $M_{6\times8}$?

- (a) 6 (b) 8 (c) 14 (d) 48
- (e) none of these

- 4. Let $T: \mathbb{R}^{18} \to \mathbb{R}^{14}$ be onto. What is the dimension of the kernel of T?
- (b) 14
- (c) 0 (d) 32
- (e) not enough information to tell

18-14=4

(nank mullity therem)

5. What is the general solution of the equation y'' - 4y' + 5y = 0?

(a)
$$c_1 e^{-4t} + c_2 e^{5t}$$
 (b) $c_1 e^{4t} + c_2 \cos(5t)$ (c) $c_1 e^{4t} + c_2 e^{t}$ (d) $c_1 e^{2t} \cos(t) + c_2 e^{2t} \sin(t)$ (e) $c_1 e^{2t} + c_2 e^{-3t}$

(b)
$$c_1 e^{4t} + c_2 \cos(5t)$$

(c)
$$c_1 e^{4t} + c_2 e^t$$

$$n^{2}-4n+5=0$$
 $(m-2)^{2}+1=0$
 $n-2=\pm i$
 $n-2=\pm i$
 $n-2-\pm i$

6. Let \mathbb{P}_2 be the vector space of polynomials of degree at most 2, and let $\mathbb{B} = \{1, t+1, (t+1)^2\}$. With respect to \mathbb{B} , the coordinates of $3t^2 + 2t + 1$ are:

(a)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$(b) \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

$$(d) \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

- 7. Which of the following is a subspace of the vector space of functions on the real numbers?
 - (a) the set of f with f(0) = 2
 - the set of solutions to the differential equation $y'' \sin(t)y = 0$ c) the set of polynomials of the form $at^3 + bt$ with $a \neq 0$
 - (d) the set of solutions to the differential equation y'' = 5
 - (e) none of these

8. Which of the following sets of vectors are linearly independent?

(a)
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\11\\15 \end{bmatrix} \right\}$$
 (b) $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\4\\6 \end{bmatrix} \right\}$ (c) $\left\{ \begin{bmatrix} 0\\0\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$

- (c) 2 (d) 3 (e) none of these **2** (a) 0
 - 10. Suppose a 7x7 matrix A has determinant 17. Which of the following must be TRUE?

(a) the rank of
$$A$$
 is 7 (b) $\det A^T = \frac{1}{17}$ (c) $\det A^{-1} = -17$ (d) $\det(A^T A) = 49$ (e) none of these

11. Consider the initial value problem y'' - 4y' - 5y = 0, y(0) = 1, y'(0) = 0. Which of the following describes the behavior of the solution at $t \to +\infty$:

$$\lim_{t \to \infty} y(t) = +\infty$$

- (a) $\lim_{t \to \infty} y(t) = +\infty$ (b) $\lim_{t \to \infty} y(t) = -\infty$ (c) $\lim_{t \to \infty} y(t) = 0$ (d) y(t) is a decaying oscillation (e) y(t) is a growing oscillation

-4n-5 = (h-2)-9 = (h-5)(h+1)

12. Consider the equation $y'' + t^2y' + t^3y = 0$. Let y_1 be the solution satisfying $y_1(0) = 1$, $y_1'(0) = 2$ and let y_2 be the solution satisfying $y_2(0) = 3$, $y_2'(0) = 4$. Using Abel's formula, find the Wronskian $W[y_1, y_2]$. (*Hint:* fix the constant in Abel's formula by computing $W[y_1, y_2]$ at t = 0 directly from the initial conditions on y_1, y_2 .)

(a) 0

(b)
$$-2e^{-t^4/4}$$
 (c) e^t

(d)
$$e^{t^3/3}$$

2.5 E C.5

w(0) = c -dt[23]=-2 13. Consider the autonomous equation y' = y(y-1)(y-2)(y-3) with initial condition y(0) = 2.99. Without solving the equation explicitly, find the limit $\lim_{t \to +\infty} y(t)$.

(d) 3

(a) 0

- (b) 1
- (e) ∞

- 14. Equation $x^2y + \sin x + (\frac{x^3}{3} + e^y)y' = 0$ is:
 - (a) linear
- (b) autonomous
- (c) separable
- (d) xact

(e) none of the above

- 15. On which interval is the solution of the initial value problem $(\sin t) y'' + y = 1$, y(1) = 1, y'(1) = 2 certain to exist?

 - (a) $0 < t < 2\pi$ (b) $0 < t < \pi$
- (c) $\pi < t < 2\pi$ (d) $-\infty < t < +\infty$
- (e) cannot guarantee existence on any interval

- 16. Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 0 & 4 \end{bmatrix}$. Find the matrix Q in the QR decomposition of A.

 - (a) $\begin{bmatrix} 1 & 0 \\ 0 & 3 \\ 0 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & \frac{2}{\sqrt{29}} \\ 0 & \frac{3}{\sqrt{29}} \\ 0 & \frac{4}{\sqrt{9}} \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 0 & 3/5 \\ 0 & 4/5 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 2 \\ 0 & 5 \end{bmatrix}$

(e) does not exist

$$\vec{v}_{1} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} - 2 \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$$

17. Find the least-squares solution of the equation $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

$$\begin{bmatrix} 2/3 \\ 2/3 \end{bmatrix} \qquad \text{(b) } \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \text{(c) } \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \text{(d) } \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \text{(e) does not exist}$$

(b)
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 $A^{T}G = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$
 $C = \begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}$

18. Find the distance between the vector $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix}$ and the subspace in \mathbb{R}^4 spanned by

the orthogonal set $\{\mathbf{v}_1, \mathbf{v}_2\}$ with $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$.

(c)
$$\sqrt{2}$$

(d)
$$\sqrt{5}$$

||Z||2/4=Z

- 19. The solution of the initial value problem $y' = \frac{1}{t e^y}$, y(1) = 0 is given implicitly by:
 - (a) $e^y = \ln t$ (b) $e^y = \ln t + 1$ (c) $\frac{t^2}{2} = -e^{-y} \frac{1}{2}$ (d) $-e^{-y} = \ln t 1$ (e) does not exist

$$\int_{C}^{C} dy = \int_{C}^{d+} \frac{dt}{t}$$

$$C^{3} = \int_{C}^{d+} \frac{dt}{t}$$

- 20. Find the general solution of the equation $t^2y' + 4ty = 3$.

- (a) $-\frac{3}{5}t^{-1} + Ct^4$ (b) $t^{-1} + Ce^{2t^2}$ (c) $t + Ct^4$ (d) $t^{-1} + Ct^{-4}$ (e) cannot be found explicitly using methods we learned

(d)
$$t^{-1} + Ct^{-4}$$