$\qquad$

Final Exam
May 7, 2020

Instructor:
Section:
Calculators are NOT allowed. You will be allowed 180 minutes to do the test.
There are 20 multiple choice questions worth 7 points each. You will receive 10 points for following the instructions. Record your answers by placing an $\times$ through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":


1. Let $\mathcal{B}$ be the basis $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ and $\mathcal{C}$ be the basis $\left\{\left[\begin{array}{l}2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 1\end{array}\right]\right\}$. Find the
change of basis matrix $\mathcal{\mathcal { P }}$. change of basis matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathcal{P}}$.
$\left[\begin{array}{cc}-1 & -1 / 2 \\ 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}4 & 5 \\ -2 & -2\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$
(d) $\left[\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right]$
(e) none of these

2. Let $M$ be the matrix $\left[\begin{array}{cccc}-2 & 1 & -2 & 2 \\ 17 & 32 & 20 & -18 \\ -16 & -24 & -15 & 16 \\ -7 & 2 & -3 & 6\end{array}\right]$. You are told that $M$ has eigenvector $\left[\begin{array}{l}2 \\ 2 \\ 0 \\ 5\end{array}\right]$. What is the corresponding eigenvalue?
(a) 2
(b) 4
(c) 5
(d) 8
(e) none of these $M \cdot\left[\begin{array}{l}2 \\ 2 \\ 0 \\ 5\end{array}\right]=$

$$
\left[\begin{array}{c}
-2 \cdot 2+1 \cdot 2+2 \cdot 5 \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
(8) \\
\vdots
\end{array}\right]
$$

3. Let $M_{6 \times 8}$ be the vector space of all 6 by 8 matrices, under addition of matrices and scalar multiplication of matrices. What is the dimension of $M_{6 \times 8}$ ?
(a) 6
(b) 8
(c) 14
(d) 48
(e) none of these
4. Let $T: \mathbb{R}^{18} \rightarrow \mathbb{R}^{14}$ be onto. What is the dimension of the kernel of $T$ ?
(a)
(b) 14
(c) 0
(d) 32
(e) not enough information to tell

## $18-14=4$ <br> (rank aullity, thesum)

5. What is the general solution of the equation $y^{\prime \prime}-4 y^{\prime}+5 y=0$ ?
(a) $c_{1} e^{-4 t}+c_{2} e^{5 t}$
(b) $c_{1} e^{4 t}+c_{2} \cos (5 t)$
(c) $c_{1} e^{4 t}+c_{2} e^{t}$
(व) $c_{1} e^{2 t} \cos (t)+c_{2} e^{2 t} \sin (t)$
(e) $c_{1} e^{2 t}+c_{2} e^{-3 t}$
$n^{2}-4 n+5=0$

6. Let $\mathbb{P}_{2}$ be the vector space of polynomials of degree at most 2 , and let $\mathbb{B}=\left\{1, t+1,(t+1)^{2}\right\}$. With respect to $\mathbb{B}$, the coordinates of $3 t^{2}+2 t+1$ are:
(a) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{c}2 \\ -4 \\ 3\end{array}\right]$
(d) $\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$
(e) none of the above

$c_{1}=2$
$c_{1}=-4$ $c_{3}=3$
7. Which of the following is a subspace of the vector space of functions on the real numbers?
(a) the set of $f$ with $f(0)=2$
(1) the set of solutions to the differential equation $y^{\prime \prime}-\sin (t) y=0$
the set of polynomials of the form $a t^{3}+b t$ with $a \neq 0$
(d) the set of solutions to the differential equation $y^{\prime \prime}=5$
(e) none of these
8. Which of the following sets of vectors are linearly independent?
(a) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{c}7 \\ 11 \\ 15\end{array}\right]\right\} \quad\left(\boldsymbol{o}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]\right\} \quad\left\{\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}\right.$
(d) $\left.\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]\right\} \quad$ (e) none of these

$\qquad$


$$
\left[\begin{array}{cccc}
1 & 2 & 0 & 5 \\
0 & 1 & -1 & 3 \\
0 & -1 & -2 \\
0 & 2 & -2 & -2
\end{array}\right]
$$

$$
\sim\left[\begin{array}{cccc}
0 & 2 & 0 & 5 \\
0 & 0 & -1 & 3 \\
0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
0 & 2 & 0 & 5 \\
0 & 0 & -1 \\
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

0

$$
\operatorname{det} A=17 \neq 0
$$

So invuntible

$$
\Rightarrow \operatorname{Mank} A=7
$$

11. Consider the initial value problem $y^{\prime \prime}-4 y^{\prime}-5 y=0, y(0)=1, y^{\prime}(0)=0$. Which of the following describes the behavior of the solution at $t \rightarrow+\infty$ :

(a) $\lim _{t \rightarrow \infty} y(t)=+\infty$
(b) $\lim _{t \rightarrow \infty} y(t)=-\infty$
(c) $\lim _{t \rightarrow \infty} y(t)=0$
(d) $y(t)$ is a decaying oscillation
(e) $y(t)$ is a growing oscillation

12. Consider the equation $y^{\prime \prime}+t^{2} y^{\prime}+t^{3} y=0$. Let $y_{1}$ be the solution satisfying $y_{1}(0)=1$, $y_{1}^{\prime}(0)=2$ and let $y_{2}$ be the solution satisfying $y_{2}(0)=3, y_{2}^{\prime}(0)=4$. Using Abel's formula, find the Wronskian $W\left[y_{1}, y_{2}\right]$.
(Hint: fix the constant in Abel's formula by computing $W\left[y_{1}, y_{2}\right]$ at $t=0$ directly from the initial conditions on $y_{1}, y_{2}$.)
(a) 0
(b) $-2 e^{-t^{4} / 4}$
(c) $e^{t}$
(d) $e^{t^{3} / 3}$
(e) $-2 e^{-t^{3} / 3}$ $W=c \cdot e^{-\int t^{2} d t}=c \cdot e^{-t^{3} / 3}$
$w(0)=c$

$$
=\operatorname{dt}\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]=-2
$$

13. Consider the autonomous equation $y^{\prime}=y(y-1)(y-2)(y-3)$ with initial condition $y(0)=2.99$. Without solving the equation explicitly, find the limit $\lim _{t \rightarrow+\infty} y(t)$.
(a) 0
(b) 1
(d) 3
(e) $\infty$


M
N
14. Equation $x^{2} y+\sin x+\left(\frac{x^{3}}{3}+e^{y}\right) y^{\prime}=0$ is:
(a) linear
(b) autonomous
(c) separable
(d) xact
(e) none of the above

15. On which interval is the solution of the initial value problem $(\sin t) y^{\prime \prime}+y=1$, $y(1)=1, y^{\prime}(1)=2$ certain to exist?
(a) $0<t<2 \pi$
(b) $0<t<\pi$
(c) $\pi<t<2 \pi$
(d) $-\infty<t<+\infty$
(e) cannot guarantee existence on any interval

16. Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3 \\ 0 & 4\end{array}\right]$. Find the matrix $Q$ in the $Q R$ decomposition of $A$.
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 3 \\ 0 & 4\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & \frac{2}{\sqrt{29}} \\ 0 & \frac{3}{\sqrt{29}} \\ 0 & \frac{4}{\sqrt{29}}\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & 0 \\ 0 & 3 / 5 \\ 0 & 4 / 5\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 2 \\ 0 & 5\end{array}\right]$
(e) does not exist

$\vec{v}_{2}=\left[\begin{array}{l}2 \\ \frac{2}{4}\end{array}\right]-2\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 3 \\ 4\end{array}\right]$

17. Find the least-squares solution of the equation $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

(3) $\left[\begin{array}{l}2 / 3 \\ 2 / 3\end{array}\right]$
(b) $\left[\begin{array}{l}0 \\ 0\end{array}\right]$
(c) $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{l}1 \\ 2\end{array}\right]$
(e) does not exist $A^{\top} A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
 $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]^{-1}\left[\begin{array}{l}2 \\ 2\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}2-1 \\ -1 & 2\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right]$

$$
=\frac{1}{3}\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

18. Find the distance between the vector $\mathbf{x}=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 2\end{array}\right]$ and the subspace in $\mathbb{R}^{4}$ spanned by the orthogonal set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ with $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]$.

$$
\begin{align*}
& \int r^{y} d y=\int \frac{d t}{t} \\
& e^{y}=1 r t+c \\
& t=1 \quad 1=0+c  \tag{y}\\
& 1=0 \quad 1=1
\end{align*}
$$

20. Find the general solution of the equation $t^{2} y^{\prime}+4 t y=3$
$\begin{array}{lll}\text { (a) }-\frac{3}{5} t^{-1}+C t^{4} & \text { (b) } t^{-1}+C e^{2 t^{2}} & \text { (c) } t+C t^{4} \\ \text { (e) cannot be found explicitly using methods we learned }\end{array}$

$$
\begin{aligned}
& y^{\prime}+\frac{4}{t} y=\frac{3}{t^{2}} \quad \mu(t)=e^{\int h / t d t} \\
&=e^{44 t}=t^{4} \\
& y(t)=\frac{\int t^{4} \cdot 3 / t^{2} d t}{t^{4}}=\frac{\int 3 t^{2} d t}{t^{4}} \\
&=\frac{t^{3}+c}{t^{4}}=t^{-1}+c t^{-4}
\end{aligned}
$$

