Math 20580	Name:
Practice Midterm 2	Instructor:
March 5, 2015	Section:
Calculators are NOT allowed.	Do not remove this answer page – you will return the whole
exam. You will be allowed 75 :	ninutes to do the test. You may leave earlier if you are
finished.	

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

Multiple Choice.

Total.

Part I: Multiple choice questions (7 points each)

- 1. Let V be the vector space of all functions f(x) where $f : \mathbb{R} \to \mathbb{R}$. Which of the following are subspaces of V?
 - A. the constant functions;
 - B. functions with $\lim_{x \to \infty} f(x) = 3;$
 - C. functions with f(1) = 1;
 - D. functions with f(0) = 0.
 - (a) A, B, C and D (b) A, B and C only (c) B, C and D only
 - (d) B and D only (e) A and D only.

2. Let \mathbb{P}_2 be the vector space of polynomials of degree at most 2, and let \mathcal{B} be the basis

$$\mathcal{B} = \{1, 1+x, 1+x^2\}.$$

Find the \mathcal{B} -coordinates $[p]_{\mathcal{B}}$ of the polynomial $p(x) = (1-x)^2$.

(a)
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 3\\2\\1 \end{bmatrix}$ (c) $\begin{bmatrix} 2\\3\\-1 \end{bmatrix}$ (d) $\begin{bmatrix} 2\\-2\\1 \end{bmatrix}$ (e) $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$

- Let H be a subspace of a vector space V, and suppose that V has dimension d. Which of the following statements are true?
 - A. $\dim(H) \leq \dim(V);$
 - B. a linearly independent set of vectors in H is also linearly independent in V;
 - C. d vectors which span V will be linearly independent;
 - D. d vectors which span H will also span V.
 - (a) A, B, C and D (b) A, B and C only (c) B, C and D only
 - (d) B and D only (e) A and D only.

4. A linear transformation

$$T : \mathbb{R}^2 \to \mathbb{R}^2$$

has outputs $T \begin{bmatrix} 3\\1 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}$ and $T \begin{bmatrix} -1\\3 \end{bmatrix} = \begin{bmatrix} 2\\1 \end{bmatrix}$.
Find $T \begin{bmatrix} 1\\1 \end{bmatrix}$.
(a) $\begin{bmatrix} 1\\1 \end{bmatrix}$ (b) $\begin{bmatrix} 4/5\\1 \end{bmatrix}$ (c) $\begin{bmatrix} 3\\1 \end{bmatrix}$ (d) $\begin{bmatrix} 4\\1 \end{bmatrix}$ (e) $\begin{bmatrix} 4\\5 \end{bmatrix}$

5. The vector $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ is an eigenvector for the matrix

$$\begin{bmatrix} 2 & 5 & 1 \\ 1 & 7 & -1 \\ 1 & 0 & 2 \end{bmatrix}$$

What is the corresponding eigenvalue?

(a) 3 (b) 1 (c) 0 (d) -1 (e) 2

6. What are the eigenvalues of the matrix $\begin{bmatrix} 5 & 4 \\ -2 & -1 \end{bmatrix}$? (a) 0, 1 (b) 5, -1 (c) 1, 3 (d) 0, 2 (e) -1, -3

- 7. Suppose A is a 3×3 matrix, that has $\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ as an eigenvector with eigenvalue 2, and
 - $\begin{bmatrix} 0\\0\\1 \end{bmatrix} \text{ as an eigenvector with eigenvalue } -1. \text{ Compute } A^3 \begin{bmatrix} 1\\2\\1 \end{bmatrix}.$ (a) $\begin{bmatrix} 8\\16\\1 \end{bmatrix} \text{ (b) } \begin{bmatrix} 8\\16\\-1 \end{bmatrix} \text{ (c) } \begin{bmatrix} 2\\4\\-1 \end{bmatrix} \text{ (d) } \begin{bmatrix} 1\\2\\0 \end{bmatrix}$ (e) cannot be computed from the given information

- 8. Let P_3 be the vector space of polynomials of degree at most 3. Find the dimension of the subspace of P_3 spanned by $1 + x^2$, $x + 2x^2 + x^3$ and $1 + x + x^3$.
 - (a) 0 (b) 1 (c) 2 (d) 3 (e) 4

Part II: Partial credit questions (11 points each). Show your work.

9. Find a basis for the Row space, $\operatorname{Row}(A)$, of the matrix

$$A = \begin{bmatrix} 0 & 1 & 3 & 2 \\ 1 & 0 & 2 & 3 \\ 1 & 1 & -5 & 6 \\ 1 & -1 & -1 & 2 \end{bmatrix}.$$

10. Let $\mathcal{B} = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \}$ and $\mathcal{C} = \{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix} \}$ be two bases of \mathbb{R}^2 . Find the change of coordinate matrix $\mathcal{P}_{\mathcal{C} \leftarrow \mathcal{B}}$ sending a \mathcal{B} coordinate vector $[\vec{x}]_{\mathcal{B}}$ to the \mathcal{C} coordinate vector $[\vec{x}]_{\mathcal{C}}$.

11. Is the matrix $A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ -1 & -1 & 2 \end{bmatrix}$ diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$. If A is not diagonalizable, explain why not.

(Hint: The eigenvalues of A are 1 and 3.)

12. Let P_3 be the vector space of polynomials of degree at most 3 and P_2 be the space of polynomials of degree at most 2.

Consider the linear transformation

$$T: P_3 \to P_2$$

given by $T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_1 + 2a_2x + 3a_3x^2$.

(a) Write down bases \mathcal{B}_3 and \mathcal{B}_2 of P_3 and P_2 respectively.

(b) Find the matrix of T relative to the bases \mathcal{B}_3 and \mathcal{B}_2 .