Math 20580

Practice Midterm 2
March 5, 2015
Name: \qquad
Instructor: \qquad
Section:
Calculators are NOT allowed. Do not remove this answer page - you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.
There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

1. a, b, d, d
2. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
3. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$
4. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$
5. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
6. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
7. a b c d d
8. a b c d e

Multiple Choice.
9.
10.
11.
12.

Total.

Part I: Multiple choice questions (7 points each)

1. Let V be the vector space of all functions $f(x)$ where $f: \mathbb{R} \rightarrow \mathbb{R}$.

Which of the following are subspaces of V ?
A. the constant functions;
B. functions with $\lim _{x \rightarrow \infty} f(x)=3$;
C. functions with $f(1)=1$;
D. functions with $f(0)=0$.
(a) A, B, C and D
(b) A, B and C only
(c) B, C and D only
(d) B and D only
(e) A and D only.
2. Let \mathbb{P}_{2} be the vector space of polynomials of degree at most 2 , and let \mathcal{B} be the basis

$$
\mathcal{B}=\left\{1,1+x, 1+x^{2}\right\} .
$$

Find the \mathcal{B}-coordinates $[p]_{\mathcal{B}}$ of the polynomial $p(x)=(1-x)^{2}$.
(a) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right]$
(d) $\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]$
(e) $\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$
3. Let H be a subspace of a vector space V, and suppose that V has dimension d. Which of the following statements are true?
A. $\operatorname{dim}(H) \leq \operatorname{dim}(V)$;
B. a linearly independent set of vectors in H is also linearly independent in V;
C. d vectors which span V will be linearly independent;
D. d vectors which span H will also span V.
(a) A, B, C and D
(b) A, B and C only
(c) B, C and D only
(d) B and D only
(e) A and D only.
4. A linear transformation

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

has outputs $T\left[\begin{array}{l}3 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $T\left[\begin{array}{c}-1 \\ 3\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
Find $T\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(a) $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{c}4 / 5 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{l}3 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{l}4 \\ 1\end{array}\right]$
(e) $\left[\begin{array}{l}4 \\ 5\end{array}\right]$
5. The vector $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is an eigenvector for the matrix

$$
\left[\begin{array}{ccc}
2 & 5 & 1 \\
1 & 7 & -1 \\
1 & 0 & 2
\end{array}\right]
$$

What is the corresponding eigenvalue?
(a) 3
(b) 1
(c) 0
(d) -1
(e) 2
6. What are the eigenvalues of the matrix $\left[\begin{array}{cc}5 & 4 \\ -2 & -1\end{array}\right]$?
(a) 0,1
(b) $5,-1$
(c) 1,3
(d) 0,2
(e) $-1,-3$
7. Suppose A is a 3×3 matrix, that has $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ as an eigenvector with eigenvalue 2 , and $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ as an eigenvector with eigenvalue -1 . Compute $A^{3}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.
(a) $\left[\begin{array}{c}8 \\ 16 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{c}8 \\ 16 \\ -1\end{array}\right]$
(c) $\left[\begin{array}{c}2 \\ 4 \\ -1\end{array}\right]$
(d) $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$
(e) cannot be computed from the given information
8. Let P_{3} be the vector space of polynomials of degree at most 3 . Find the dimension of the subspace of P_{3} spanned by $1+x^{2}, x+2 x^{2}+x^{3}$ and $1+x+x^{3}$.
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4

Part II: Partial credit questions (11 points each). Show your work.
9. Find a basis for the Row space, $\operatorname{Row}(A)$, of the matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 3 & 2 \\
1 & 0 & 2 & 3 \\
1 & 1 & -5 & 6 \\
1 & -1 & -1 & 2
\end{array}\right]
$$

10. Let $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\left[\begin{array}{c}2 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right\}$ be two bases of \mathbb{R}^{2}.

Find the change of coordinate matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathcal{P}}$ sending a \mathcal{B} coordinate vector $[\vec{x}]_{\mathcal{B}}$ to the \mathcal{C} coordinate vector $[\vec{x}]_{\mathcal{C}}$.
11. Is the matrix $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & 1 & 0 \\ -1 & -1 & 2\end{array}\right]$ diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. If A is not diagonalizable, explain why not.
(Hint: The eigenvalues of A are 1 and 3.)
12. Let P_{3} be the vector space of polynomials of degree at most 3 and P_{2} be the space of polynomials of degree at most 2 .
Consider the linear transformation

$$
T: P_{3} \rightarrow P_{2}
$$

given by $T\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=a_{1}+2 a_{2} x+3 a_{3} x^{2}$.
(a) Write down bases \mathcal{B}_{3} and \mathcal{B}_{2} of P_{3} and P_{2} respectively.
(b) Find the matrix of T relative to the bases \mathcal{B}_{3} and \mathcal{B}_{2}.

