Math 20580	Name:						
Midterm 2	Instructor:						
October 26, 2017							
	Γ allowed. Do not remove this answer page – you will return the whole sllowed 75 minutes to do the test. You may leave earlier if you are						
	There are 8 multiple choice questions worth 7 points each and 4 partial credit questions						
_	each worth 11 points. Record your answers by placing an × through one letter for each						
problem on this ans	wer sheet.						
Sign the pledge. 'this Exam":	"On my honor, I have neither given nor received unauthorized aid on						
1.	. a b c d e						
1.							
2.	a b c d e						
3.	. a b c d e						
4.	a b c d e						
5.	a b c d e						
6.	. a b c d e						
7.	a b c d e						
8.	a b c d e						
Multiple Choice.							
9.	•						
10.							
11							
11.							

12.

Part I: Multiple choice questions (7 points each)

1. Find the determinant of the matrix

$$\begin{bmatrix} 1 & 11 & 0 & 2 \\ 0 & -3 & 0 & 0 \\ 4 & -9 & 6 & 12 \\ 2 & -20 & 0 & 3 \end{bmatrix}$$

- (a) 25
- (b) 0
- (c) 18
- (d) -25
- (e) -18

2. Find the matrix of change of coordinates $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ between the following bases of \mathbb{R}^2 :

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right\} \qquad \mathcal{C} = \left\{ \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$$

- (a) $\begin{bmatrix} 3 & -2 \\ -2 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (e) $\begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$

- 3. Consider the space $C(\mathbb{R})$ of continuous functions on \mathbb{R} and let H be the subspace of $C(\mathbb{R})$ spanned by the functions $\{1, \sin^2 t, \cos^2 t, \sin t \cos t, \sin 2t, \cos 2t\}$. What is the dimension of H?
 - (b) 2 (c) 3 (d) 4 (e) H is infinite-dimensional (a) 1

 $\sin 2t = 2\sin t \cos t \quad \cos 2t = 2\cos^2 t - 1.$ **Hint.** You may use the trig identities:

4. Find the eigenvalues of the matrix

$$A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$

(a) 0,0,2

(b) 0,1,2

(c) 2,2,2 (d) 2,4,6

(e) 0,2,4

5. Find the area of the parallelogram whose vertices are

$$(0,-2), (6,-1), (-3,1), (3,2).$$

- (a) 21
- (b) 15
- (c) 12
- (d) 3
- (e) 6

- 6. Which of the following statements are always true?
 - I. Row-equivalent matrices have the same characteristic equations.
 - II. Similar matrices have the same eigenvalues.
 - III. The determinant of a square matrix is equal to the product of the diagonal entries.
 - (a) I. is true but II. and III. are false
- (b) II. is true but I. and III. are false
- (c) III. is true but I. and II. are false
- (d) All of them are true

(e) None of them are true

- 7. The vector $\vec{v} = \begin{bmatrix} -1+3i \\ 2 \end{bmatrix}$ is a complex eigenvector of the matrix $A = \begin{bmatrix} 3 & -5 \\ 2 & 5 \end{bmatrix}$. What is the corresponding complex eigenvalue?
 - (a) 3 + 2i
- (b) 3-4i (c) 2 (d) 4+3i

- (e) 5 + 5i

8. Consider the following basis of \mathbb{R}^3 consisting of orthogonal vectors:

$$\mathcal{B} = \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2 \end{bmatrix} \right\}$$

- Find the \mathcal{B} -coordinate vector $[\vec{v}]_{\mathcal{B}}$ where $\vec{v} = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$.

- (a) $\begin{bmatrix} 9 \\ 0 \\ 0 \end{bmatrix}$ (b) $\begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$ (c) $\begin{bmatrix} 1/5 \\ -2/5 \\ 1/5 \end{bmatrix}$ (d) $\begin{bmatrix} -2 \\ 2 \\ -1 \end{bmatrix}$ (e) $\begin{bmatrix} 4/9 \\ -7/9 \\ -4/9 \end{bmatrix}$

Part II: Partial credit questions (11 points each). Show your work.

9. Consider the matrix

$$A = \begin{bmatrix} 2 & 2 & 3 & 3 \\ 1 & 1 & 0 & 0 \\ -3 & -3 & 4 & 4 \end{bmatrix}$$

(a) Find a basis for Row(A) (the row space of A).

(b) Determine the rank of A and the dimension of the null space of A.

(c) Give an example of a non-zero unit vector which is orthogonal to Row(A).

10. Consider the vector space \mathbb{P}_2 of polynomials of degree at most two, and the transformation $T: \mathbb{P}_2 \longrightarrow \mathbb{R}^3$ given by

$$T(p(t)) = \begin{bmatrix} p(1) \\ p'(1) \\ p''(1) \end{bmatrix}.$$

(a) Show that $\mathcal{B} = \{1 + t^2, 2 - t, (1+t)^2\}$ is a basis of \mathbb{P}_2 .

(b) Find the matrix of T relative to the basis \mathcal{B} of \mathbb{P}_2 from part (a) and the standard basis of \mathbb{R}^3 (you may use that T is a linear transformation without explaining why).

(c) Suppose that p(t) is a polynomial whose \mathcal{B} -coordinate vector is $[p(t)]_{\mathcal{B}} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. Find p(t) and T(p(t)).

11. Consider the matrix $A = \begin{bmatrix} 4 & -1 \\ 1 & 2 \end{bmatrix}$. Determine whether A is diagonalizable or not.

- 12. Consider the vectors $\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}$.
 - (a) Find the orthogonal projection of \vec{v} onto $L = \text{Span}\{\vec{u}\}.$

(b) Find the distance from \vec{v} to L.