M20580 L.A. and D.E. Tutorial Worksheet 4 Sections 2.1–2.3, 2.8

1. Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. Compute $(A + B)(A - B)^T$?

Solution: First, $A - B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, so $(A - B)^T = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$	
Then $(A+B)(A-B)^T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$	

- 2. Which of the following equations involving 3×3 -matrices A, B, C and I_3 (the identity matrix) could be false for some such matrices A, B, C?
 - (a) $(A+B)^2 = A^2 + 2AB + B^2$
 - (b) (A+B)C = AC + BC
 - (c) (AB)C = A(BC)
 - (d) A + B = B + A
 - (e) $(I_3 + A)(I_3 A) = I_3 A^2$

Solution: (b), (c), (d) are correct from properties of matrix opreations (theorems 1 and 2, section 2.1).

Let's check (e): $(I_3 + A)(I_3 - A) = I_3(I_3 - A) + A(I_3 - A) = I_3I_3 - I_3A + AI_3 - AA = I_3 - A + A - A^2 = I_3 - A^2$ so (e) is true.

Now, for (a), $(A + B)^2 = (A + B)(A + B) = A(A + B) + B(A + B) = AA + AB + BA + BB = A^2 + AB + BA + B^2$ could be different from $A^2 + 2AB + B^2$ if $AB \neq BA$, which can happen for some A, B. So (a) could be false.

- 3. Let A be an $n \times n$ square matrix. Suppose that for some **b** in \mathbb{R}^n , the linear system $A\mathbf{x} = \mathbf{b}$ is inconsistent. Which of the following statements must be true?
 - (a) A is invertible.
 - (b) The linear system $A\mathbf{x} = \mathbf{c}$ has more than one solution for some \mathbf{c} in \mathbb{R}^n .
 - (c) A has a pivot in every column.
 - (d) The linear map $T: \mathbb{R}^n \to \mathbb{R}^n$ given by $T(\mathbf{x}) = A\mathbf{x}$ is one-to-one.

- (e) There is an $n \times n$ -matrix B with $AB = I_n$.
- (f) The linear system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Solution: Since $A\mathbf{x} = \mathbf{b}$ is inconsistent for some \mathbf{b} , the linear map $T \colon \mathbb{R}^n \to \mathbb{R}^n$ given by $T(\mathbf{x}) = A\mathbf{x}$ is not onto. If T is not onto, by the Invertible Matrix Theorem [IMT] (theorem 8, section 2.3), A is not invertible (eliminate (a)), and T is not one-to-one either. So $A\mathbf{x} = \mathbf{c}$ has at least two solutions for some \mathbf{c} in \mathbb{R}^n . Thus, (b) is the correct answer. And since A is not invertible, again by the IMT, (c), (d), (e), (f) are not true in this case.

4. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ and $S: \mathbb{R}^3 \to \mathbb{R}^2$ be linear transformations with

$$T(\mathbf{e}_1) = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \quad T(\mathbf{e}_2) = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \quad \text{and} \quad S(\mathbf{e}_1) = \begin{bmatrix} -1\\1 \end{bmatrix}, \quad S(\mathbf{e}_2) = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad S(\mathbf{e}_3) = \begin{bmatrix} 1\\0 \end{bmatrix}.$$

Find the standard matrix for the transformation ST.

Solution: The standard matrix for
$$T$$
 is $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$ and the standard matrix for S is $B = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.
So, the standard matrix for ST is $BA = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$.

5. (a) Compute the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ -3 & -2 & -6 \\ -1 & -1 & -2 \end{bmatrix}$. (b) Find the solution to the equation $A\mathbf{x} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$.

Solution: (a) Row-reduce $\begin{bmatrix} 1 & 1 & 3 & 1 & 0 & 0 \\ -3 & -2 & -6 & 0 & 1 & 0 \\ -1 & -1 & -2 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 3 & 1 & 0 & 0 \\ 0 & 1 & 3 & 3 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \sim$	
$\begin{bmatrix} 1 & 0 & 0 & -2 & -1 & 0 \\ 0 & 1 & 3 & 3 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -2 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 & -3 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}.$ The inverse is $\begin{bmatrix} -2 & -1 & 0 \\ 0 & 1 & -3 \\ 1 & 0 & 1 \end{bmatrix}$	

(b)
$$A\mathbf{x} = \begin{bmatrix} -1\\ 2\\ 0 \end{bmatrix} \implies \mathbf{x} = (A^{-1}) \begin{bmatrix} -1\\ 2\\ 0 \end{bmatrix} = \begin{bmatrix} -2 & -1 & 0\\ 0 & 1 & -3\\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1\\ 2\\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ 2\\ -1 \end{bmatrix}.$$

6. Let $A = \begin{bmatrix} 1 & -1 & 5 \\ 2 & 0 & 7 \\ -3 & -5 & -3 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} -7 \\ 3 \\ 2 \end{bmatrix}$. Is \mathbf{u} in Nul A? Is \mathbf{u} in Col A? Justify your answers.

Solution: Nul A is the set of all solutions to the homogeneous equation $A\mathbf{x} = \mathbf{0}$. Since $A\mathbf{u} = \begin{bmatrix} 1 & -1 & 5 \\ 2 & 0 & 7 \\ -3 & -5 & -3 \end{bmatrix} \begin{bmatrix} -7 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \mathbf{0}$, \mathbf{u} is a solution to the above homogeneous equation. Hence, \mathbf{u} is in Nul A. Col A is the span of all columns of A. To see if \mathbf{u} is in Col A, we check if $A\mathbf{x} = \mathbf{u}$ is consistent (i.e. \mathbf{u} can be written as a linear combination of the columns of A): Row reducing $\begin{bmatrix} 1 & -1 & 5 & -7 \\ 2 & 0 & 7 & 3 \\ -3 & -5 & -3 & 2 \end{bmatrix}$ into echelon form $\begin{bmatrix} 1 & -1 & 5 & -7 \\ 0 & 2 & -3 & 17 \\ 0 & 0 & 0 & 49 \end{bmatrix}$. We see that the equation $A\mathbf{x} = \mathbf{u}$ has no solution (inconsistent). So, \mathbf{u} is not in Col A.

7. If V and W are subspaces of \mathbb{R}^n , define $V \cap W$ to be the subset of all vectors \mathbf{v} in \mathbb{R}^n such that \mathbf{v} is in V and \mathbf{v} is in W. Show that $V \cap W$ is a subspace.

Solution: To show $V \cap W$ is a subspace of \mathbb{R}^n , we need to check three properties: (i). **The zero vector is in** $V \cap W$: Since we know V is a subspace, **0** must be in V. Similarly, since W is a subspace, **0** is also in W. Thus, **0** is in $V \cap W$. (ii). $V \cap W$ **is closed under vector addition**: Let **x** and **y** be two arbitrary vectors in $V \cap W$. We want to show $\mathbf{x} + \mathbf{y} \in V \cap W$. Since $\mathbf{x}, \mathbf{y} \in V \cap W$, we have \mathbf{x}, \mathbf{y} are in V. So, $\mathbf{x} + \mathbf{y} \in V$ since V is a subspace. Similarly, $\mathbf{x}, \mathbf{y} \in V \cap W$ implies \mathbf{x}, \mathbf{y} are in W. So, $\mathbf{x} + \mathbf{y} \in W$ since W is a subspace. So, we get $\mathbf{x} + \mathbf{y}$ are both in V and W. This implies $\mathbf{x} + \mathbf{y} \in V \cap W$. (iii). $V \cap W$ **is closed under scalar multiplication**: Let **x** be in $V \cap W$ and c is a scalar. We want to show $c\mathbf{x}$ is in $V \cap W$. Since $\mathbf{x} \in V \cap W$, we get $\mathbf{x} \in V$ and $\mathbf{x} \in W$. And since both V and W are subspaces, we must have $c\mathbf{x} \in V$ and $c\mathbf{x} \in W$.

So, $c\mathbf{x} \in V \cap W$.

8. The row-reduced echelon form of the 3×6 matrix $A = \begin{bmatrix} 0 & 2 & 4 & 1 & 5 & 6 \\ 0 & 1 & 2 & -1 & 7 & -5 \\ 0 & -1 & -2 & -2 & 2 & 0 \end{bmatrix}$ is

given by $B = \begin{bmatrix} 0 & 1 & 2 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$. (You may assume this; you do not have to check

it.)

(a) Determine a basis for the null space null(A).

(b) Determine a basis for the column space col(A).

Solution: From the reduced echelon form of A, we see that the pivot columns are 2, 4, 6; so x_1 , x_3 and x_5 are free variables. So the general solution to the homogeneous equation $A\mathbf{x} = \mathbf{0}$ is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} x_1 \\ -2x_3 - 4x_5 \\ x_3 \\ 3x_5 \\ x_5 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 0 \\ -4 \\ 0 \\ 3 \\ 1 \\ 0 \end{bmatrix}$$
Thus, a basis for Nul A is the set
$$\begin{cases} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -4 \\ 0 \\ 3 \\ 1 \\ 0 \end{bmatrix} \end{cases}$$
.

Since the reduced echelon form of A tells us that columns 2, 4, 6 are pivot columns, these columns in matrix A form a basis of Col A.

So, a basis for Col A is $\left\{ \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-2 \end{bmatrix}, \begin{bmatrix} 6\\-5\\0 \end{bmatrix} \right\}$.