M20580 L.A. and D.E. Tutorial
 Worksheet 4

Sections 2.1-2.3, 2.8

1. Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. Compute $(A+B)(A-B)^{T}$?

Solution: First, $A-B=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$, so $(A-B)^{T}=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$.
Then $(A+B)(A-B)^{T}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$.
2. Which of the following equations involving 3×3-matrices A, B, C and I_{3} (the identity matrix) could be false for some such matrices A, B, C ?
(a) $(A+B)^{2}=A^{2}+2 A B+B^{2}$
(b) $(A+B) C=A C+B C$
(c) $(A B) C=A(B C)$
(d) $A+B=B+A$
(e) $\left(\mathrm{I}_{3}+A\right)\left(\mathrm{I}_{3}-A\right)=\mathrm{I}_{3}-A^{2}$

Solution: (b), (c), (d) are correct from properties of matrix opreations (theorems 1 and 2, section 2.1).
Let's check $(\mathrm{e}):\left(\mathrm{I}_{3}+A\right)\left(\mathrm{I}_{3}-A\right)=\mathrm{I}_{3}\left(\mathrm{I}_{3}-A\right)+A\left(\mathrm{I}_{3}-A\right)=\mathrm{I}_{3} \mathrm{I}_{3}-\mathrm{I}_{3} A+A \mathrm{I}_{3}-A A=$ $\mathrm{I}_{3}-A+A-A^{2}=\mathrm{I}_{3}-A^{2}$ so (e) is true.
Now, for (a), $(A+B)^{2}=(A+B)(A+B)=A(A+B)+B(A+B)=A A+A B+$ $B A+B B=A^{2}+A B+B A+B^{2}$ could be different from $A^{2}+2 A B+B^{2}$ if $A B \neq B A$, which can happen for some A, B. So (a) could be false.
3. Let A be an $n \times n$ square matrix. Suppose that for some \mathbf{b} in \mathbb{R}^{n}, the linear system $A \mathbf{x}=\mathbf{b}$ is inconsistent. Which of the following statements must be true?
(a) A is invertible.
(b) The linear system $A \mathbf{x}=\mathbf{c}$ has more than one solution for some \mathbf{c} in \mathbb{R}^{n}.
(c) A has a pivot in every column.
(d) The linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $T(\mathbf{x})=A \mathbf{x}$ is one-to-one.
(e) There is an $n \times n$-matrix B with $A B=\mathrm{I}_{n}$.
(f) The linear system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Solution: Since $A \mathbf{x}=\mathbf{b}$ is inconsistent for some \mathbf{b}, the linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $T(\mathbf{x})=A \mathbf{x}$ is not onto. If T is not onto, by the Invertible Matrix Theorem [IMT] (theorem 8, section 2.3), A is not invertible (eliminate (a)), and T is not one-to-one either. So $A \mathbf{x}=\mathbf{c}$ has at least two solutions for some \mathbf{c} in \mathbb{R}^{n}. Thus, (b) is the correct answer. And since A is not invertible, again by the IMT, (c), (d), (e), (f) are not true in this case.
4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be linear transformations with

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \text { and } \quad S\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \quad S\left(\mathbf{e}_{2}\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad S\left(\mathbf{e}_{3}\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Find the standard matrix for the transformation $S T$.

Solution: The standard matrix for T is $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]$ and the standard matrix for S is $B=\left[\begin{array}{rrr}-1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$.
So, the standard matrix for $S T$ is $B A=\left[\begin{array}{rrr}-1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right]$.
5. (a) Compute the inverse of the matrix $A=\left[\begin{array}{rrr}1 & 1 & 3 \\ -3 & -2 & -6 \\ -1 & -1 & -2\end{array}\right]$.
(b) Find the solution to the equation $A \mathbf{x}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$.

Solution: (a) Row-reduce $\left[\begin{array}{rrrrrr}1 & 1 & 3 & 1 & 0 & 0 \\ -3 & -2 & -6 & 0 & 1 & 0 \\ -1 & -1 & -2 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{llllll}1 & 1 & 3 & 1 & 0 & 0 \\ 0 & 1 & 3 & 3 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1\end{array}\right] \sim$
$\left[\begin{array}{rrrrrr}1 & 0 & 0 & -2 & -1 & 0 \\ 0 & 1 & 3 & 3 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1\end{array}\right] \sim\left[\begin{array}{rrrrrr}1 & 0 & 0 & -2 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 & -3 \\ 0 & 0 & 1 & 1 & 0 & 1\end{array}\right]$. The inverse is $\left[\begin{array}{rrr}-2 & -1 & 0 \\ 0 & 1 & -3 \\ 1 & 0 & 1\end{array}\right]$.
(b) $A \mathbf{x}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right] \Longrightarrow \mathbf{x}=\left(A^{-1}\right)\left[\begin{array}{r}-1 \\ 2 \\ 0\end{array}\right]=\left[\begin{array}{rrr}-2 & -1 & 0 \\ 0 & 1 & -3 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{r}-1 \\ 2 \\ 0\end{array}\right]=\left[\begin{array}{r}0 \\ 2 \\ -1\end{array}\right]$.
6. Let $A=\left[\begin{array}{ccc}1 & -1 & 5 \\ 2 & 0 & 7 \\ -3 & -5 & -3\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{c}-7 \\ 3 \\ 2\end{array}\right]$. Is \mathbf{u} in $\operatorname{Nul} A$? Is \mathbf{u} in $\operatorname{Col} A$? Justify your answers.

Solution: $\operatorname{Nul} A$ is the set of all solutions to the homogeneous equation $A \mathbf{x}=\mathbf{0}$. Since $A \mathbf{u}=\left[\begin{array}{ccc}1 & -1 & 5 \\ 2 & 0 & 7 \\ -3 & -5 & -3\end{array}\right]\left[\begin{array}{r}7 \\ 3 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=\mathbf{0}, \mathbf{u}$ is a solution to the above homogeneous equation. Hence, \mathbf{u} is in $\mathrm{Nul} A$.
$\operatorname{Col} A$ is the span of all columns of A. To see if \mathbf{u} is in $\operatorname{Col} A$, we check if $A \mathbf{x}=\mathbf{u}$ is consistent (i.e. \mathbf{u} can be written as a linear combination of the columns of A):
Row reducing $\left[\begin{array}{cccc}1 & -1 & 5 & -7 \\ 2 & 0 & 7 & 3 \\ -3 & -5 & -3 & 2\end{array}\right]$ into echelon form $\left[\begin{array}{cccc}1 & -1 & 5 & -7 \\ 0 & 2 & -3 & 17 \\ 0 & 0 & 0 & 49\end{array}\right]$. We see
that the equation $A \mathbf{x}=\mathbf{u}$ has no solution (inconsistent). So, \mathbf{u} is not in $\operatorname{Col} A$.
7. If V and W are subspaces of \mathbb{R}^{n}, define $V \cap W$ to be the subset of all vectors \mathbf{v} in \mathbb{R}^{n} such that \mathbf{v} is in V and \mathbf{v} is in W. Show that $V \cap W$ is a subspace.

Solution: To show $V \cap W$ is a subspace of \mathbb{R}^{n}, we need to check three properties:
(i). The zero vector is in $V \cap W$: Since we know V is a subspace, $\mathbf{0}$ must be in V. Similarly, since W is a subspace, $\mathbf{0}$ is also in W. Thus, $\mathbf{0}$ is in $V \cap W$.
(ii). $V \cap W$ is closed under vector addition: Let \mathbf{x} and \mathbf{y} be two arbitrary vectors in $V \cap W$. We want to show $\mathbf{x}+\mathbf{y} \in V \cap W$. Since $\mathbf{x}, \mathbf{y} \in V \cap W$, we have \mathbf{x}, \mathbf{y} are in V. So, $\mathbf{x}+\mathbf{y} \in V$ since V is a subspace. Similarly, $\mathbf{x}, \mathbf{y} \in V \cap W$ implies \mathbf{x}, \mathbf{y} are in W. So, $\mathbf{x}+\mathbf{y} \in W$ since W is a subspace. So, we get $\mathbf{x}+\mathbf{y}$ are both in V and W. This implies $\mathbf{x}+\mathbf{y} \in V \cap W$.
(iii). $V \cap W$ is closed under scalar multiplication: Let \mathbf{x} be in $V \cap W$ and c is a scalar. We want to show $c \mathbf{x}$ is in $V \cap W$. Since $\mathbf{x} \in V \cap W$, we get $\mathbf{x} \in V$ and $\mathbf{x} \in W$. And since both V and W are subspaces, we must have $c \mathbf{x} \in V$ and $c \mathbf{x} \in W$. So, $c \mathbf{x} \in V \cap W$.
8. The row-reduced echelon form of the 3×6 matrix $A=\left[\begin{array}{rrrrrr}0 & 2 & 4 & 1 & 5 & 6 \\ 0 & 1 & 2 & -1 & 7 & -5 \\ 0 & -1 & -2 & -2 & 2 & 0\end{array}\right]$ is given by $B=\left[\begin{array}{rrrrrr}0 & 1 & 2 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$. (You may assume this; you do not have to check it.)
(a) Determine a basis for the null space $\operatorname{null}(A)$.
(b) Determine a basis for the column space $\operatorname{col}(A)$.

Solution: From the reduced echelon form of A, we see that the pivot columns are 2, 4,6 ; so x_{1}, x_{3} and x_{5} are free variables. So the general solution to the homogeneous equation $A \mathbf{x}=\mathbf{0}$ is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
-2 x_{3}-4 x_{5} \\
x_{3} \\
3 x_{5} \\
x_{5} \\
0
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
0 \\
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
0 \\
-4 \\
0 \\
3 \\
1 \\
0
\end{array}\right] .
$$

Thus, a basis for Nul A is the set $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -4 \\ 0 \\ 3 \\ 1 \\ 0\end{array}\right]\right\}$.
Since the reduced echelon form of A tells us that columns $2,4,6$ are pivot columns, these columns in matrix A form a basis of $\operatorname{Col} A$.
So, a basis for $\operatorname{Col} A$ is $\left\{\left[\begin{array}{r}2 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ -2\end{array}\right],\left[\begin{array}{r}6 \\ -5 \\ 0\end{array}\right]\right\}$.

