M20580 L.A. and D.E. Tutorial Worksheet 5

Warm Up (with solutions)

- 1. Recall from lectures the ways to rewrite determinants of these $n \times n$ matrices in terms of other determinant(s) and scalars.
 - (a) det(AB) = det(A) det(B)
 - (b) B is A but with one row multiplied by k. det(B) = k det(A)
 - (c) det $(A^T) = \det(A)$
- 2. Write down a basis for the vector space \mathbb{P}_3 , the set of real degree (at most) 3 polynomials. What is the dimension of \mathbb{P}_3 ?

Solution: $\{1, t, t^2, t^3\}$ The basis has 4 elements so dim $(\mathbb{P}_3) = 4$.

Main Questions

3. Let A be an invertible matrix. Using properties of determinants, show that

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

Solution: Using "det(AB) = det(A) det(B)" we can write $det(I_n) = det(A) det(A^{-1})$ since $AA^{-1} = I_n$. Now we can recognise that $det(I_n) = 1$ and rearrange the equation to what we wanted.

4. Find the determinant of the matrix:

$$A = \begin{bmatrix} -7 & 2 & 6 & 15\\ -3 & 0 & 4 & 0\\ -12 & 0 & -7 & -5\\ 2 & 0 & -3 & 0 \end{bmatrix}$$

Solution: We use the row/col expansion formula repeatedly, first targeting the second column. $\begin{vmatrix} -3 & 4 & 0 \end{vmatrix}$

$$\det(A) = (-1)^{1+2} \begin{vmatrix} -3 & 4 & 0 \\ -12 & -7 & -5 \\ 2 & -3 & 0 \end{vmatrix} = (-2)(-1)^{3+2}(-5) \begin{vmatrix} -3 & 4 \\ 2 & -3 \end{vmatrix} = -10$$

- 5. Let A and B be 4×4 matrices, with det(A) = 2 and det(B) = -3. Compute:
 - (a) det(5A)
 - (b) $\det(A^T B A)$
 - (c) $det(B^5)$
 - (d) $det(B^{-1}A)$ (B is invertible)

Solution:

- (a) We can view 5A as A with each of the 4 rows multiplied by the scalar 5. Using Question 1 part b, this means the determinant is multiplied by 5 for *every* row we change this way. Hence $det(5A) = 5^4 det(A) = 1250$.
- (b) Using the rules from Q1 in turn we get $\det(A^T B A) = \det(A^T) \det(B) \det(A) = \det(A) \det(B) \det(A) = (\det(A))^2 \det(B) = -12.$

(c)
$$\det(B^5) = \det(BBBBB) = (\det(B))^5 = -243.$$

(d)
$$\det(B^{-1}A) = \det(B^{-1})\det(A) = \frac{\det(A)}{\det(B)} = -\frac{2}{3}$$
 using Question 2.

6. Use Cramer's rule to compute the solutions of the following system.

$$2x_1 - 4x_2 = 8 -x_1 - 2x_3 = 0 7x_2 + 5x_3 = 3$$

Solution: The matrix for this system is

$$A = \begin{bmatrix} 2 & -4 & 0 \\ -1 & 0 & -2 \\ 0 & 7 & 5 \end{bmatrix} \quad \det(A) = 2 \begin{vmatrix} 0 & -2 \\ 7 & 5 \end{vmatrix} + (-1)(-4) \begin{vmatrix} -1 & -2 \\ 0 & 5 \end{vmatrix} = 28 - 20 = 8$$

Cramer's Rule says the solution is given by $x_i = \frac{\det(A_i(\mathbf{b}))}{\det(A)}$.

$$\det(A_1(\mathbf{b})) = \begin{vmatrix} 8 & -4 & 0 \\ 0 & 0 & -2 \\ 3 & 7 & 5 \end{vmatrix} = (-1)(-2) \begin{vmatrix} 8 & -4 \\ 3 & 7 \end{vmatrix} = 2(56+12) = 136$$
$$\det(A_2(\mathbf{b})) = \begin{vmatrix} 2 & 8 & 0 \\ -1 & 0 & -2 \\ 0 & 3 & 5 \end{vmatrix} = 2 \begin{vmatrix} 0 & -2 \\ 3 & 5 \end{vmatrix} = 2 \begin{vmatrix} -1 & -2 \\ 0 & 5 \end{vmatrix} = 2(0+6) - 8(-5+0) = 52$$
$$\det(A_3(\mathbf{b})) = \begin{vmatrix} 2 & -4 & 8 \\ -1 & 0 & 0 \\ 0 & 7 & 3 \end{vmatrix} = -(-1) \begin{vmatrix} -4 & 8 \\ 7 & 3 \end{vmatrix} = -12 - 56 = -68$$

Therefore the solution is $x_1 = \frac{136}{8} = 17$, $x_2 = \frac{52}{8} = \frac{13}{2}$, $x_3 = \frac{-68}{8} = -\frac{17}{2}$.

7. Find a basis for the space spanned by the given vectors $\mathbf{v}_1, \cdots, \mathbf{v}_5$.

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\0\\-3\\2 \end{bmatrix}, \mathbf{v}_{2} = \begin{bmatrix} 0\\1\\2\\-3 \end{bmatrix}, \mathbf{v}_{3} = \begin{bmatrix} -3\\-4\\1\\6 \end{bmatrix}, \mathbf{v}_{4} = \begin{bmatrix} 1\\-3\\-8\\7 \end{bmatrix}, \mathbf{v}_{5} = \begin{bmatrix} 2\\1\\-6\\9 \end{bmatrix}$$

Solution: We want a maximal linearly independent subset of these vectors, equivalently, we may choose the pivot columns of $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5]$

$= \begin{bmatrix} 1 & 0 & -3 & 1 & 2 \\ 0 & 1 & -4 & -3 & 1 \\ -3 & 2 & 1 & -8 & -6 \\ 2 & -3 & 6 & 7 & 9 \end{bmatrix}$	$\sim \begin{bmatrix} 1 & 0 & -3 & 1 & 2 \\ 0 & 1 & -4 & -3 & 1 \\ 0 & 2 & -8 & -5 & 0 \\ 0 & -3 & 12 & 5 & 5 \end{bmatrix}$
$\sim \begin{bmatrix} 1 & 0 & -3 & 1 & 2 \\ 0 & 1 & -4 & -3 & 1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & -4 & 8 \end{bmatrix}$	$\sim \begin{bmatrix} 1 & 0 & -3 & 1 & 2 \\ 0 & 1 & -4 & -3 & 1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

This row echelon form shows that we have 3 pivot columns and hence a linearly independent (pivot columns are independent) set which spans $\operatorname{Col} A$ (a free column is always in the span of the ones to the left of it) is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$. Alternative choices include any two of the first 3 and either of the last two.

8. Consider the vector space \mathbb{P}_3 of real polynomials of degree (at most) 3. We can define a transformation D by

$$D: \mathbb{P}_3 \longrightarrow \mathbb{P}_3$$
$$f(t) \longmapsto f'(t)$$

For example $D(t^3 - 1) = 3t^2$.

(a) Prove or explain why this is a *linear* transformation.

Solution: It satisfies the two axioms:

- 1. D(f+g) = D(f) + D(g) since $\frac{\mathrm{d}}{\mathrm{d}t}(f+g) = \frac{\mathrm{d}f}{\mathrm{d}t} + \frac{\mathrm{d}g}{\mathrm{d}t}$.
- 2. $D(\lambda f) = \lambda D(f)$, again by the usual rule for derivatives.
- (b) Without writing down a matrix in terms of a basis, describe the kernel of this transformation, ker(D) a.k.a. the null space of D. Hint: What defines this subspace? Solve it.

Solution: The kernel is defined by the vectors (a.k.a. polynomials) f where D(f) = f' = 0. We know this is precisely the *constant polynomials* i.e. f(t) = C. As a subspace this could be written span{1}.

(c) Again, without a matrix, write down the *range* of D, perhaps using notation from lectures. Give a basis for this.

Solution: $D(at^3 + bt^2 + ct + d) = 3at^2 + 2bt + c$ therefore, thinking about the fact that a, b, c are arbitrary, the range is \mathbb{P}_2 , the degree (at most) 2 polynomials. A good basis is $\{1, t, t^2\}$.

(d) Compute the matrix which represents D in a basis of your choice. Does this matrix explain the previous two parts? *Hint: The 'nice'/'usual' basis is recommended.*

Solution: Let's use the basis $\{1, t, t^2, t^3\}$. Then $D(t^3) = 3t^2$, $D(t^2) = 2t$, D(t) = 1, D(1) = 0. This gives a nice matrix $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, and in fact it is in row echelon form. The pivots show that the first variable (for basis vector 1) is free, in fact 1 is the basis for ker D = Nul A. Also it is clear that the column span (the range of D a.k.a. Col A) is $\text{span}\{1, t, t^2\}$ with the row of zeros at the bottom.

Reminder: the kernel, ker D is the generalized idea of "Nul A" if D had the matrix A. Similarly, range of D replaces "Col A". The benefit here is that we focus on a 'matrix-free' definition, which is sometimes easier as above.