M20580 L.A. and D.E. Tutorial Worksheet 5

Warm Up (with solutions)

1. Recall from lectures the ways to rewrite determinants of these $n \times n$ matrices in terms of other determinant(s) and scalars.
(a) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(b) B is A but with one row multiplied by k. $\operatorname{det}(B)=k \operatorname{det}(A)$
(c) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
2. Write down a basis for the vector space \mathbb{P}_{3}, the set of real degree (at most) 3 polynomials. What is the dimension of \mathbb{P}_{3} ?

Solution: $\left\{1, t, t^{2}, t^{3}\right\}$ The basis has 4 elements so $\operatorname{dim}\left(\mathbb{P}_{3}\right)=4$.

Main Questions

3. Let A be an invertible matrix. Using properties of determinants, show that

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

Solution: Using "det $(A B)=\operatorname{det}(A) \operatorname{det}(B)$ " we can write $\operatorname{det}\left(I_{n}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)$ since $A A^{-1}=I_{n}$. Now we can recognise that $\operatorname{det}\left(I_{n}\right)=1$ and rearrange the equation to what we wanted.
4. Find the determinant of the matrix:

$$
A=\left[\begin{array}{cccc}
-7 & 2 & 6 & 15 \\
-3 & 0 & 4 & 0 \\
-12 & 0 & -7 & -5 \\
2 & 0 & -3 & 0
\end{array}\right]
$$

Solution: We use the row/col expansion formula repeatedly, first targeting the second column.

$$
\operatorname{det}(A)=(-1)^{1+2} 2\left|\begin{array}{ccc}
-3 & 4 & 0 \\
-12 & -7 & -5 \\
2 & -3 & 0
\end{array}\right|=(-2)(-1)^{3+2}(-5)\left|\begin{array}{cc}
-3 & 4 \\
2 & -3
\end{array}\right|=-10
$$

5. Let A and B be 4×4 matrices, with $\operatorname{det}(A)=2$ and $\operatorname{det}(B)=-3$. Compute:
(a) $\operatorname{det}(5 A)$
(b) $\operatorname{det}\left(A^{T} B A\right)$
(c) $\operatorname{det}\left(B^{5}\right)$
(d) $\operatorname{det}\left(B^{-1} A\right) \quad(B$ is invertible)

Solution:

(a) We can view $5 A$ as A with each of the 4 rows multiplied by the scalar 5 . Using Question 1 part b, this means the determinant is multiplied by 5 for every row we change this way. Hence $\operatorname{det}(5 A)=5^{4} \operatorname{det}(A)=1250$.
(b) Using the rules from Q1 in turn we get $\operatorname{det}\left(A^{T} B A\right)=\operatorname{det}\left(A^{T}\right) \operatorname{det}(B) \operatorname{det}(A)=$ $\operatorname{det}(A) \operatorname{det}(B) \operatorname{det}(A)=(\operatorname{det}(A))^{2} \operatorname{det}(B)=-12$.
(c) $\operatorname{det}\left(B^{5}\right)=\operatorname{det}(B B B B B)=(\operatorname{det}(B))^{5}=-243$.
(d) $\operatorname{det}\left(B^{-1} A\right)=\operatorname{det}\left(B^{-1}\right) \operatorname{det}(A)=\frac{\operatorname{det}(A)}{\operatorname{det}(B)}=-\frac{2}{3}$ using Question 2.
6. Use Cramer's rule to compute the solutions of the following system.

$$
\begin{aligned}
2 x_{1}-4 x_{2} & =8 \\
-x_{1}-2 x_{3} & =0 \\
7 x_{2}+5 x_{3} & =3
\end{aligned}
$$

Solution: The matrix for this system is

$$
A=\left[\begin{array}{ccc}
2 & -4 & 0 \\
-1 & 0 & -2 \\
0 & 7 & 5
\end{array}\right] \quad \operatorname{det}(A)=2\left|\begin{array}{cc}
0 & -2 \\
7 & 5
\end{array}\right|+(-1)(-4)\left|\begin{array}{cc}
-1 & -2 \\
0 & 5
\end{array}\right|=28-20=8
$$

Cramer's Rule says the solution is given by $x_{i}=\frac{\operatorname{det}\left(A_{i}(\mathbf{b})\right)}{\operatorname{det}(A)}$.

$$
\begin{gathered}
\operatorname{det}\left(A_{1}(\mathbf{b})\right)=\left|\begin{array}{ccc}
8 & -4 & 0 \\
0 & 0 & -2 \\
3 & 7 & 5
\end{array}\right|=(-1)(-2)\left|\begin{array}{cc}
8 & -4 \\
3 & 7
\end{array}\right|=2(56+12)=136 \\
\operatorname{det}\left(A_{2}(\mathbf{b})\right)=\left|\begin{array}{ccc}
2 & 8 & 0 \\
-1 & 0 & -2 \\
0 & 3 & 5
\end{array}\right|=2\left|\begin{array}{cc}
0 & -2 \\
3 & 5
\end{array}\right|-8\left|\begin{array}{cc}
-1 & -2 \\
0 & 5
\end{array}\right|=2(0+6)-8(-5+0)=52 \\
\operatorname{det}\left(A_{3}(\mathbf{b})\right)=\left|\begin{array}{ccc}
2 & -4 & 8 \\
-1 & 0 & 0 \\
0 & 7 & 3
\end{array}\right|=-(-1)\left|\begin{array}{cc}
-4 & 8 \\
7 & 3
\end{array}\right|=-12-56=-68
\end{gathered}
$$

Therefore the solution is $x_{1}=\frac{136}{8}=17, x_{2}=\frac{52}{8}=\frac{13}{2}, x_{3}=\frac{-68}{8}=-\frac{17}{2}$.
7. Find a basis for the space spanned by the given vectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{5}$.

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
0 \\
-3 \\
2
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
0 \\
1 \\
2 \\
-3
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-3 \\
-4 \\
1 \\
6
\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{c}
1 \\
-3 \\
-8 \\
7
\end{array}\right], \mathbf{v}_{5}=\left[\begin{array}{c}
2 \\
1 \\
-6 \\
9
\end{array}\right]
$$

Solution: We want a maximal linearly independent subset of these vectors, equivalently, we may choose the pivot columns of $\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right]$

$$
\begin{array}{ll}
=\left[\begin{array}{ccccc}
\begin{array}{|cccc}
1 & 0 & -3 & 1
\end{array} & 2 \\
0 & 1 & -4 & -3 & 1 \\
-3 & 2 & 1 & -8 & -6 \\
2 & -3 & 6 & 7 & 9
\end{array}\right] & \sim
\end{array} \begin{array}{cccc}
{\left[\begin{array}{ccccc}
1 & 0 & -3 & 1 & 2 \\
0 & \boxed{1} & -4 & -3 & 1 \\
0 & 2 & -8 & -5 & 0 \\
0 & -3 & 12 & 5 & 5
\end{array}\right]} \\
\sim\left[\begin{array}{ccccc}
1 & 0 & -3 & 1 & 2 \\
0 & 1 & -4 & -3 & 1 \\
0 & 0 & 0 & \boxed{1} & -2 \\
0 & 0 & 0 & -4 & 8
\end{array}\right]
\end{array}
$$

This row echelon form shows that we have 3 pivot columns and hence a linearly independent (pivot columns are independent) set which spans $\operatorname{Col} A$ (a free column is always in the span of the ones to the left of it) is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$. Alternative choices include any two of the first 3 and either of the last two.
8. Consider the vector space \mathbb{P}_{3} of real polynomials of degree (at most) 3. We can define a transformation D by

$$
\begin{aligned}
D: \mathbb{P}_{3} & \longrightarrow \mathbb{P}_{3} \\
f(t) & \longmapsto f^{\prime}(t)
\end{aligned}
$$

For example $D\left(t^{3}-1\right)=3 t^{2}$.
(a) Prove or explain why this is a linear transformation.

Solution: It satisfies the two axioms:

1. $D(f+g)=D(f)+D(g)$ since $\frac{\mathrm{d}}{\mathrm{d} t}(f+g)=\frac{\mathrm{d} f}{\mathrm{~d} t}+\frac{\mathrm{d} g}{\mathrm{~d} t}$.
2. $D(\lambda f)=\lambda D(f)$, again by the usual rule for derivatives.
(b) Without writing down a matrix in terms of a basis, describe the kernel of this transformation, $\operatorname{ker}(D)$ a.k.a. the null space of D.
Hint: What defines this subspace? Solve it.
Solution: The kernel is defined by the vectors (a.k.a. polynomials) f where $D(f)=f^{\prime}=0$. We know this is precisely the constant polynomials i.e. $f(t)=$ C. As a subspace this could be written span $\{1\}$.
(c) Again, without a matrix, write down the range of D, perhaps using notation from lectures. Give a basis for this.

Solution: $D\left(a t^{3}+b t^{2}+c t+d\right)=3 a t^{2}+2 b t+c$ therefore, thinking about the fact that a, b, c are arbitrary, the range is \mathbb{P}_{2}, the degree (at most) 2 polynomials. A good basis is $\left\{1, t, t^{2}\right\}$.
(d) Compute the matrix which represents D in a basis of your choice. Does this matrix explain the previous two parts? Hint: The 'nice'/'usual' basis is recommended.

Solution: Let's use the basis $\left\{1, t, t^{2}, t^{3}\right\}$. Then $D\left(t^{3}\right)=3 t^{2}, D\left(t^{2}\right)=2 t$, $D(t)=1, D(1)=0$. This gives a nice matrix $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$, and in fact it is in row echelon form. The pivots show that the first variable (for basis vector $1)$ is free, in fact 1 is the basis for $\operatorname{ker} D=\operatorname{Nul} A$. Also it is clear that the column span (the range of D a.k.a. $\operatorname{Col} A$) is $\operatorname{span}\left\{1, t, t^{2}\right\}$ with the row of zeros at the bottom.

[^0]
[^0]: Reminder: the kernel, ker D is the generalized idea of " $N u l$ " if D had the matrix A. Similarly, range of D replaces " $\mathrm{Col} A$ ". The benefit here is that we focus on a 'matrix-free' definition, which is sometimes easier as above.

