M20580 L.A. and D.E. Tutorial Vector spaces, subspaces and linear transformations

1. The next 3 problems concern the spanning set theorem(4.3) in abstract vector spaces. Consider the space spanned by the given polynomials $p_{1}, \ldots . p_{5}$, inside the vector space of polynomials with highest power ≤ 3.

$$
p_{1}=1-3 t^{2}+2 t^{3}, p_{2}=t+2 t^{2}-3 t^{3}, p_{3}=-3-4 t+t^{2}+6 t^{3}, p_{4}=1-3 t-8 t^{2}+7 t^{3}, p_{5}=2+t-6 t^{2}+9 t^{3}
$$

1. Find a basis for the space $\operatorname{span}\left\{p_{1}, \ldots, p_{5}\right\}^{1}$.
2. Are the polynomials p_{2}, p_{3}, p_{4} linearly dependent?
3. Explain why the polynomials p_{1}, p_{3}, p_{5} form a basis of this space.

Solution: \mathbb{P}_{3} is isomorphic to \mathbb{R}^{4} : A polynomial is determined by its coefficients, and the collection of coefficients associated to a polynomial is a vector in \mathbb{R}^{4}. Another way of saying the same thing - the set $\left\{1, t, t^{2}, t^{3}\right\}$ is a basis of \mathbb{P}_{3}. The coordinates associated to this basis are elements of \mathbb{R}^{4} and lets us regard our ambient space of polynomials as \mathbb{R}^{4}.

[^0]Solution: We want a maximal linearly independent subset of these vectors. We may choose the pivot columns of $\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}\right]$.

$$
\begin{array}{llll}
=\left[\begin{array}{ccccc}
\begin{array}{|ccc}
1 & 0 & -3
\end{array} c & 1 & 2 \\
0 & 1 & -4 & -3 & 1 \\
-3 & 2 & 1 & -8 & -6 \\
2 & -3 & 6 & 7 & 9
\end{array}\right] & \sim & {\left[\begin{array}{ccccc}
\hline 1 & 0 & -3 & 1 & 2 \\
0 & \boxed{1} & -4 & -3 & 1 \\
0 & 2 & -8 & -5 & 0 \\
0 & -3 & 12 & 5 & 5
\end{array}\right]} \\
\sim\left[\begin{array}{ccccc}
1 & 0 & -3 & 1 & 2 \\
0 & 1 & -4 & -3 & 1 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & -4 & 8
\end{array}\right] & \sim & {\left[\begin{array}{cccccc}
1 & 0 & -3 & 0 & 4 \\
0 & 1 & -4 & 0 & -5 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{array}
$$

This row echelon form shows that we have 3 pivot columns and hence a linearly independent (pivot columns are independent) set which spans $\operatorname{Col} A$ (a free column is always in the span of the ones to the left of it) is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$. Alternative choices include any two of the first 3 and either of the last two.

1. The columns u_{1}, u_{2}, u_{4} form a basis for the column space $\operatorname{span}\left\{u_{1}, u_{2}, u_{4}\right\}$ because they are the pivot columns in this matrix.
2. u_{2}, u_{3}, u_{4} are linearly independent - if you make a matrix just from the columns u_{2}, u_{3}, u_{4} and row reduce that matrix you will get

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

. Since there is a pivot in every column(in the matrix we just created), the vectors are linearly independent.
3. The columns u_{1}, u_{3}, u_{5} are linearly independent because if we make a matrix from just those columns and row reduce that matrix, you will get $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. There are 3 linearly independent vectors here and the basis we found in the first part has 3 elements. This means that these 3 linearly independent vectors u_{1}, u_{3}, u_{5} actually form a basis.
2. Let V be a a vector space. Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be a linearly independent subset of V. Consider the subspace of V spanned by the vectors

$$
\begin{gathered}
w_{1}=v_{1}-3 v_{3}+2 v_{4}, w_{2}=v_{2}+2 v_{3}-3 v_{4}, w_{3}=-3 v_{1}-4 v_{2}+v_{3}+6 v_{4} \\
w_{4}=v_{1}-3 v_{2}-8 v_{3}+7 v_{4}, w_{5}=2 v_{1}+v_{2}-6 v_{3}+9 v_{4}
\end{gathered}
$$

1. Find a basis of $\operatorname{Span}\left\{w_{1}, \ldots w_{5}\right\}$
2. Is $\left\{w_{2}, w_{3}, w_{4}\right\}$ a linearly dependent subset of V ?
3. Explain why the vectors w_{1}, w_{3}, w_{5} form a basis of $\operatorname{Span}\left\{w_{1}, \ldots, w_{5}\right\}$
4. Do w_{1}, w_{3}, w_{5} form a basis for V ?

Solution: This problem is word for word the same as the last one. $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis for span v_{1}, \ldots, v_{4}. The coordinates associated to this basis are elements of \mathbb{R}^{4} and lets us regard $\operatorname{span} v_{1}, \ldots, v_{4}$ as \mathbb{R}^{4}. Under this correspondence $w_{1}, \ldots w_{5}$ will correspond to $u_{1}, \ldots u_{5}$. The problem is finished just as above.

Let V be a vector space. Recall that a subset W, of V is called a subspace of V if it satisfies some other nice properties:

- W has the zero vector of V.
- The sum of any two vectors in W is still in W.
- If I scale a vector's length by a positive or negative scalar, the vector is still in W.

3. (Homework question 4.1.4) Let $V=\mathbb{R}^{2}$ and W^{\prime} be a line not going through the origin. Why is the subset W^{\prime}, not a subspace of \mathbb{R}^{2} ? How many of the above requirements are violated? $\left({ }^{2}\right)$

Solution: The origin plays the role of the zero vector in $\mathbb{R}^{2} . W^{\prime}$ doesn't go through the origin. So W^{\prime} doesn't contain the zero vector. The sum of two vectors in W^{\prime} will lie in a line parallel(and hence not intersecting) W^{\prime}. Same thing happens if we scale a vector by a scalar(that isn't $=1$). In particular there is some scalar which makes things go bad.
4. Let W be a subspace of V and let v be a fixed vector not in W. Let W^{\prime} be the subset of vectors of the form $v+w$ where w is in W. (W^{\prime} is like the line not going through the origin above). Why is the subset W^{\prime} not a subspace of \mathbb{R}^{2} ? How many of the above requirements are violated?

Solution: We imitate the reasoning above. All the requirements miserably fail again:

- W^{\prime} doesn't go through the origin: Here's a proof by contradiction. Suppose a vector of the form $v+w$ is $=0$. Then $v=-w .-w$ is in W because w is in W. So v is in W. Contradiction.

This confirms our intuition that W^{\prime} looks like a plane that doesn't go through the zero vector in V.

- Suppose I have a vector of the form $v+w_{1}$ and another vector $v+w_{2}$. The sum will be $2 v+w_{1}+w_{2}$. Suppose that $2 v+w_{1}+w_{2}$ is $=$ to something of the form $v+w_{3}$. Then $v=w_{3}-w_{2}-w_{1}$. Hence v is in W. Contradiction.
- We'll show that when we scale a vector $v+w_{1}$ in W^{\prime} Suppose that $c\left(v+w_{1}\right)=$ $v+w_{2}$. Then $(c-1) v=w_{2}-c w_{1}$. Let c be any scalar not equal to 1 (so we can divide out $(c-1)$. Then $v=\left(w_{2}-c w_{1}\right) /(c-1)$ so v is in W. Contradiction.

5. (Homework question 4.1.15) Let $V=\mathbb{R}^{3}$. Let W be the subset of all vectors of the form $a\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)+b\left(\begin{array}{c}1 \\ 0 \\ -5\end{array}\right)$. Let W^{\prime} be the subset of all vectors of the form $\left(\begin{array}{l}0 \\ 4 \\ 0\end{array}\right)+a\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)+$
[^1]$b\left(\begin{array}{c}1 \\ 0 \\ -5\end{array}\right)$. Why isn't W^{\prime} a subspace of $\mathbb{R}^{3} ?$

Solution: This is true because of the general fact above. Here W is the subspace of \mathbb{R}^{3} spanned by $\left(\begin{array}{l}0 \\ 4 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right) . v$ is the vector $\left(\begin{array}{l}0 \\ 4 \\ 0\end{array}\right)$.
6. Fun fact: The last two requirements of being a subspace imply the first requirement -

If w is a random vector ${ }^{3}$ in $W,-w=(-1) w$ is in W.(WHY?). $w+(-w)$ is also in W (WHY?). $w+-w=0$. Hence 0 is automatically contained in W.

[^2]Now let W and V be two random vector spaces. Recall that a linear transformation T from W to V is a map of sets from W to V^{4}, satisfying some other nice properties:

- $T(0)=0$
- $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)$
- $T(c v)=c T(v)$

7. Let $W=\mathbb{R}^{2}$ and $V=\mathbb{R}^{3}$. Consider the map sending $\binom{x}{y} \mapsto\left(\begin{array}{cc}3 & 1 \\ 0 & 0 \\ 1 & -5\end{array}\right)\binom{x}{y}$. It is a map from \mathbb{R}^{2} to \mathbb{R}^{3}. Why is this map a linear transformation?

Solution: The map is a linear transformation because matrix multiplication is a linear transformation. Matrix multiplication is linear transformation because of the distributive properties of the real numbers.
8. Now consider the map sending $\binom{x}{y} \mapsto\left(\begin{array}{cc}3 & 1 \\ 0 & 0 \\ 1 & -5\end{array}\right)\binom{x}{y}+\left(\begin{array}{l}0 \\ 4 \\ 0\end{array}\right)$. Why isn't this map a linear transformation. How many of the above requirements are violated?

Solution: All of them!
1.

$$
\left(\begin{array}{l}
0 \\
4 \\
0
\end{array}\right)+\left(\begin{array}{cc}
3 & 1 \\
0 & 0 \\
1 & -5
\end{array}\right)\binom{0}{0} \neq\binom{ 0}{0}
$$

2.

$$
\left(\begin{array}{l}
0 \\
4 \\
0
\end{array}\right)+\left(\begin{array}{cc}
3 & 1 \\
0 & 0 \\
1 & -5
\end{array}\right)\left(\binom{x_{1}}{y_{1}}+\binom{x_{2}}{y_{2}}\right) \neq\left(\begin{array}{l}
0 \\
4 \\
0
\end{array}\right)+\left(\begin{array}{cc}
3 & 1 \\
0 & 0 \\
1 & -5
\end{array}\right)\binom{x_{1}}{y_{1}}+\left(\begin{array}{l}
0 \\
4 \\
0
\end{array}\right)+\left(\begin{array}{cc}
3 & 1 \\
0 & 0 \\
1 & -5
\end{array}\right)\binom{x_{2}}{y_{2}}
$$

3.

$$
c\left(\left(\begin{array}{l}
0 \\
4 \\
0
\end{array}\right)+\left(\begin{array}{cc}
3 & 1 \\
0 & 0 \\
1 & -5
\end{array}\right)\binom{x}{y}\right) \neq\left(\begin{array}{l}
0 \\
4 \\
0
\end{array}\right)+\left(\begin{array}{cc}
3 & 1 \\
0 & 0 \\
1 & -5
\end{array}\right) c\binom{x}{y}
$$

9. Show that the first requirement for linear transformations is implied by the other two requirements. Hint: This is similar to question 6
[^3]Solution: We have that $T(0)=T(0+0)=T(0)+T(0)$. Subtracting $T(0)$ from both sides gives $T(0)=0$.
10. Let W and V be random vector spaces again and let T be a linear transformation from W to V. Let v be a nonzero vector. Let $T^{\prime}=T+v$. Is T^{\prime} a linear transformation?

Solution: No it isn't. All the properties of being a linear transformation fail.

1. $T^{\prime}(0)=v+T(0)=v+0=v$. So $T^{\prime}(0) \neq 0$
2. $T^{\prime}\left(w_{1}+w_{2}\right)=v+T\left(w_{1}+w_{2}\right)=v+T\left(w_{1}\right)+T\left(w_{2}\right)$. On the other hand $T^{\prime}\left(w_{1}\right)+T^{\prime}\left(w_{2}\right)=2 v+T\left(w_{1}\right)+T\left(w_{2}\right)$. These expressions differ by a v so they are not the same.
3. $T^{\prime}(c w)=v+T(c w)=v+c T(w)$. On the other hand, $c T^{\prime}(w)=c v+c T(w)$. The difference of these two expressions is $(c-1) v$. If I pick $c \neq 1$ then this is not zero, so these two things are not the same.
(Fun remark) You might have noticed that there is a lot in common between the notion of a linear transformation and the notion of a subspace. Here's the reason.
4. Let T be a linear transformation from W to V.
5. Let w_{1}, w_{2} be two vectors in W. Show that if I add two vectors of the form $T\left(w_{1}\right)$, $T\left(w_{2}\right)$ that the result is T (something).

Solution: This is a definition
2. Show that $T(c w)=c T(w)$

Solution: This is a definition
3. Conclude that the image/columnspace ${ }^{5}$ of T is a subspace of V.

Solution: These two requirements are the requirements of being a subspace.

[^4]
[^0]: ${ }^{1}$ It might be helpful to look at last week's problem:
 Find a basis for the space spanned by the given vectors $\mathbf{u}_{1}, \cdots, \mathbf{u}_{5}$.

 $$
 \mathbf{u}_{1}=\left[\begin{array}{c}
 1 \\
 0 \\
 -3 \\
 2
 \end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
 0 \\
 1 \\
 2 \\
 -3
 \end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}
 -3 \\
 -4 \\
 1 \\
 6
 \end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{c}
 1 \\
 -3 \\
 -8 \\
 7
 \end{array}\right], \mathbf{u}_{5}=\left[\begin{array}{c}
 2 \\
 1 \\
 -6 \\
 9
 \end{array}\right]
 $$

[^1]: ${ }^{2}$ Hint: All of them

[^2]: ${ }^{3}$ A technicality is that the subset W can't be the empty subset. Don't worry about it.

[^3]: ${ }^{4}$ notation $-T: W \rightarrow V$

[^4]: ${ }^{5}$ these are the vectors that are T (something)

