
3
IMBALANCED DATASETS: FROM
SAMPLING TO CLASSIFIERS

T. Ryan Hoens and Nitesh V. Chawla
Department of Computer Science and Engineering, The University of Notre Dame, Notre
Dame, IN, USA

Abstract: Classification is one of the most fundamental tasks in the machine
learning and data-mining communities. One of the most common challenges faced
when trying to perform classification is the class imbalance problem. A dataset is
considered imbalanced if the class of interest (positive or minority class) is relatively
rare as compared to the other classes (negative or majority classes). As a result, the
classifier can be heavily biased toward the majority class. A number of sampling
approaches, ranging from under-sampling to over-sampling, have been developed
to solve the problem of class imbalance. One challenge with sampling strategies
is deciding how much to sample, which is obviously conditioned on the sampling
strategy that is deployed. While a wrapper approach may be used to discover the
sampling strategy and amounts, it can quickly become computationally prohibitive.
To that end, recent research has also focused on developing novel classification
algorithms that are class imbalance (skew) insensitive. In this chapter, we provide
an overview of the sampling strategies as well as classification algorithms developed
for countering class imbalance. In addition, we consider the issues of correctly
evaluating the performance of a classifier on imbalanced datasets and present a
discussion on various metrics.

3.1 INTRODUCTION

A common problem faced in data mining is dealing class imbalance. A dataset is
said to be imbalanced if one class (called the majority, or negative class) vastly

Imbalanced Learning: Foundations, Algorithms, and Applications, First Edition.
Edited by Haibo He and Yunqian Ma.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley & Sons, Inc.

43

44 IMBALANCED DATASETS: FROM SAMPLING TO CLASSIFIERS

outnumbers the other (called the minority, or positive class). The class imbalance
problem is when the positive class is the class of interest.

One obvious complication that arises in the class imbalance problem is the
effectiveness of accuracy (and error rate) in determining the performance of a
classifiers. Consider, for example, a dataset for which the majority class represents
99% of the data, and the minority class represents 1% of the data (this dataset is
said to have an imbalance ratio of 99 : 1). In such cases, the naı̈ve classifier, which
always predicts the majority class, will have an accuracy of 99%. Similarly, if
a dataset has an imbalance ratio of 9999 : 1, the majority classifier will have an
accuracy of 99.99%.

One consequence of this limitation can be seen when considering the perfor-
mance of most traditional classifiers when applied in the class imbalance problem.
This is due to the fact that the majority of traditional classifiers optimize the
accuracy, and therefore generate a model that is equivalent to the naı̈ve model
described previously. Obviously such a classifier, in spite of its high accuracies,
is useless in most practical applications as the minority class is often the class
of interest (otherwise a classifier would not be necessary, as the class of interest
almost always happens). As a result, numerous methods have been developed,
which overcome the class imbalance problem. Such methods fall into two general
categories, namely, sampling methods and skew-insensitive classifiers.

Sampling methods (e.g., random over-sampling and random under-sampling)
have become standard approaches for improving classification performance [1].
In sampling methods, the training set is altered in such a way as to create a more
balanced class distribution. The resulting sampled dataset is then more amenable
to traditional data-mining algorithms, which can then be used to classify the data.

Alternatively, methods have been developed to combat the class imbalance
problem directly. These methods are often specifically designed to overcome
the class imbalance problem by optimizing a metric other than accuracy. By
optimizing a metric other than accuracy that is more suitable for the class imbal-
ance problem, skew-insensitive classifiers are able to generate more informative
models.

In this chapter, we discuss the various approaches to overcome class imbal-
ance, as well as various metrics, which can be used to evaluate them.

3.2 SAMPLING METHODS

Sampling is a popular methodology to counter the problem of class imbalance.
The goal of sampling methods is to create a dataset that has a relatively balanced
class distribution, so that traditional classifiers are better able to capture the
decision boundary between the majority and the minority classes. Since the sam-
pling methods are used to make the classification of the minority class instances
easier, the resulting (sampled) dataset should represent a “reasonable” approxi-
mation of the original dataset. Specifically, the resulting dataset should contain
only instances that are, in some sense, similar to those in the original dataset,
that is, all instances in the modified dataset should be drawn from the same (or

SAMPLING METHODS 45

similar) distribution to those originally in the dataset. Note that sampling meth-
ods need not create an exactly balanced distribution, merely a distribution that
the traditional classifiers are better able to handle.

Two of the first sampling methods developed were random under-sampling
and random over-sampling. In the random under-sampling, the majority class
instances are discarded at random until a more balanced distribution is reached.
Consider, for example, a dataset consisting of 10 minority class instances and
100 majority class instances. In random under-sampling, one might attempt to
create a balanced class distribution by selecting 90 majority class instances at
random to be removed. The resulting dataset will then consist of 20 instances:
10 (randomly remaining) majority class instances and (the original) 10 minority
class instances.

Alternatively, in random over-sampling, minority class instances are copied
and repeated in the dataset until a more balanced distribution is reached. Thus, if
there are two minority class instances and 100 majority class instances, traditional
over-sampling would copy the two minority class instances 49 times each. The
resulting dataset would then consists of 200 instances: the 100 majority class
instances and 100 minority class instances (i.e., 50 copies each of the two minority
class instances).

While random under-sampling and random over-sampling create more bal-
anced distributions, they both suffer from serious drawbacks. For example, in
random under-sampling (potentially), vast quantities of data are discarded. In the
random under-sampling example mentioned above, for instance, roughly 82%
of the data (the 90 majority class instances) was discarded. This can be highly
problematic, as the loss of such data can make the decision boundary between
minority and majority instances harder to learn, resulting in a loss in classification
performance.

Alternatively, in random over-sampling, instances are repeated (sometimes
to very high degrees). Consider the random over-sampling example mentioned
above, where each instance had to be replicated 49 times in order to balance out
the class distribution. By copying instances in this way, one can cause drastic
overfitting to occur in the classifier, making the generalization performance of
the classifier exceptionally poor. The potential for overfitting is especially true as
the class imbalance ratio becomes worse, and each instance must be replicated
more and more often.

In order to overcome these limitations, more sophisticated sampling techniques
have been developed. We now describe some of these techniques.

3.2.1 Under-Sampling Techniques

The major drawback of random under-sampling is that potentially useful infor-
mation can be discarded when samples are chosen randomly. In order to combat
this, various techniques have been developed, which aim to retain all useful
information present in the majority class by removing redundant noisy, and/or
borderline instances from the dataset. Redundant instances are considered safe
to remove as they, by definition, do not add any information about the majority

46 IMBALANCED DATASETS: FROM SAMPLING TO CLASSIFIERS

class. Similarly, noisy instances are the majority class instances, which are the
product of randomness in the dataset, rather than being a true representation of
the underlying concept. Removing borderline instances is valuable as small per-
turbations to a borderline instance’s features may cause the decision boundary to
shift incorrectly.

One of the earliest approaches is due to Kubat and Matwin [2]. In their
approach, they combine Tomek Links [3] and a modified version of the con-
densed nearest neighbor (CNN) rule [4] to create a directed under-sampling
method. The choice to combine Tomek Links and CNN is natural, as Tomek
Links can be said to remove borderline and noisy instances, while CNN removes
redundant instances. To see how this works in practice, let us consider how
Tomek Links and CNN are defined.

Given two instances a and b, let δ(a, b) define the distance (e.g., Euclidean)
between a and b. A pair of instances a and b, which belong to different classes,
is said to be a Tomek Link if there is no instance c such that δ(a, c) < δ(a, b) or
δ(b, c) < δ(a, c). In words, instances a and b define a Tomek Link if: (i) instance
a’s nearest neighbor is b, (ii) instance b’s nearest neighbor is a, and (iii) instances
a and b belong to different classes. From this definition, we see that instances
that are in Tomek Links are either boundary instances or noisy instances. This is
due to the fact that only boundary instances and noisy instances will have nearest
neighbors, which are from the opposite class.

By considering the entire dataset, one can remove Tomek Links by searching
through each instance and removing those which fit the criteria. When using
CNN, on the other hand, one builds up the dataset from a small, seed group of
instances. To do this, let D be the original training set of instances, and C be
a set of instances containing all of the minority class examples and a randomly
selected majority instance. CNN then classifies all instances in D by finding its
nearest neighbor in C and adding it to C if it is misclassified. Thus, we see that
redundant instances are effectively eliminated in the resulting dataset C as any
instance correctly classified by its nearest neighbors is not added to the dataset.

As an alternative to Tomek Links and CNN, another method for under-
sampling is called the neighborhood cleaning rule (NCR) due to Laurikkala [5].
NCR uses Wilson’s edited nearest neighbor rule (ENN) to select majority class
instances to remove from the dataset. In NCR, for each instance a in the dataset,
its three nearest neighbors are computed. If a is a majority class instance and is
misclassified by its three nearest neighbors, then a is removed from the dataset.
Alternatively, if a is a minority class instance and is misclassified by its three
nearest neighbors, then the majority class instances among a’s neighbors are
removed.

3.2.2 Over-Sampling Techniques

While random under-sampling suffered from the loss of potentially useful
information, random over-sampling suffers from the problem of overfitting.
Specifically, by randomly replicating instances in the dataset, the learned model

SAMPLING METHODS 47

might fit the training data too closely and, as a result, not generalize well to
unseen instances.

In order to overcome this issue, Chawla et al. developed a method of cre-
ating synthetic instances instead of merely copying existing instances in the
dataset. This techniques is known as the synthetic minority over-sampling tech-
nique (SMOTE) [6]. As mentioned, in SMOTE, the training set is altered by
adding synthetically generated minority class instances, causing the class distri-
bution to become more balanced. We say that the instances created are synthetic,
as they are, in general, new minority instances that have been extrapolated and
created out of existing minority class instances.

To create the new synthetic minority class instances, SMOTE first selects
a minority class instance a at random and finds its k nearest minority class
neighbors. The synthetic instance is then created by choosing one of the k nearest
neighbors b at random and connecting a and b to form a line segment in the
feature space. The synthetic instances are generated as a convex combination of
the two chosen instances a and b.

Given SMOTE’s effectiveness as an over-sampling method, it has been
extended multiple times [7–9]. In Borderline-SMOTE, for instance, only
borderline instances are considered to be SMOTEd, where borderline instances
are defined as instances that are misclassified by a nearest neighbor classifier.
Safe-Level-SMOTE, on the other hand, defines a “safe-level” for each instance,
and the instances that are deemed “safe” are considered to be SMOTEd.

In addition to SMOTE, Jo and Japkowicz [10] defined an over-sampling
method based on clustering. That is, instead of randomly choosing the instances
to oversample, they instead first cluster all of the minority class instances using
k-means clustering. They then oversample each of the clusters to have the same
number of instances, and the overall dataset to be balanced. The purpose of this
method is to identify the disparate regions in the feature space where minority
class instances are found and to ensure that each region is equally represented
with minority class instances.

In addition to cluster-based over-sampling, Japkowicz et al. [11] also devel-
oped a method called focused resampling. In focused resampling, only minority
class instances that occur on the boundary between minority and majority class
instances are over-sampled. In this way, redundant instances are reduced, and
better performance can be achieved.

3.2.3 Hybrid Techniques

In addition to merely over-sampling or under-sampling the dataset, techniques
have been developed, which perform a combination of both. By combining over-
sampling and under-sampling, the dataset can be balanced by neither losing too
much information (i.e., under-sampling too many majority class instances), nor
suffering from overfitting (i.e., over-sampling too heavily).

Two examples of hybrid techniques that have been developed include
SMOTE+Tomek and SMOTE+ENN [12], wherein SMOTE is used to

48 IMBALANCED DATASETS: FROM SAMPLING TO CLASSIFIERS

oversample the minority class, while Tomek and ENN, respectively, are used to
under-sample the majority class.

3.2.4 Ensemble-Based Methods

One popular approach toward improving performance for classification problems
is to use ensembles. Ensemble methods aim to leverage the classification power
of multiple base learners (learned on different subsets of the training data) to
improve on the classification performance over traditional classification algo-
rithms. Dietterich [13] provides a broad overview as to why ensemble methods
often outperform a single classifier. In fact, Hansen and Salamon [14] prove
that under certain constraints (the average error rate is less than 50% and the
probability of misprediction of each classifier is independent of the others), the
expected error rate of an instance goes to zero as the number of classifiers goes
to infinity. Thus, when seeking to build multiple classifiers, it is better to ensure
that the classifiers are diverse rather than highly accurate.

There are many popular methods for building diverse ensembles, including
bagging [15], AdaBoost [16], Random Subspaces [17], and Random Forests
[18]. While each of these ensemble methods can be applied to datasets that
have undergone sampling, in general, this is not optimal as it ignores the power
of combining the ensemble generation method and sampling to create a more
structured approach. As a result, many ensemble methods have been combined
with sampling strategies to create ensemble methods that are more suitable for
dealing with class imbalance.

AdaBoost is one of the most popular ensemble methods in the machine learn-
ing community due, in part, to its attractive theoretical guarantees [16]. As a
result of its popularity, AdaBoost has undergone extensive empirical research
[13, 19]. Recall that in AdaBoost, base classifier L is learned on a subset SL of
the training data D, where each instance in SL is probabilistically selected on
the basis of its weight in D. After training each classifier, each instance’s weight
is adaptively updated on the basis of the performance of the ensemble on the
instance. By giving more weight to misclassified instances, the ensemble is able
to focus on instances that are difficult to learn.

SMOTEBoost is one example of combining sampling methods with AdaBoost
to create an ensemble that explicitly aims to overcome the class imbalance [20].
In SMOTEBoost, in addition to updating instance weights during each boosting
iteration, SMOTE is also applied to misclassified minority class examples. Thus,
in addition to emphasizing minority instances by giving higher weights, misclas-
sified minority instances are also emphasized by the addition of (similar) synthetic
examples. Similar to SMOTEBoost, Guo and Viktor [21] develop another exten-
sion for boosting called DataBoost-IM, which identifies hard instances (both
minority and majority) in order to generate similar synthetic examples and then
reweights the instances to prevent a bias toward the majority class.

An alternative to AdaBoost is Bagging, another ensemble method that has
been adapted to use sampling. Radivojac et al. [22] combine bagging with

SKEW-INSENSITIVE CLASSIFIERS FOR CLASS IMBALANCE 49

over-sampling techniques in the bioinformatics domain. Liu et al. propose two
methods, EasyEnsemble and BalanceCascade [23], that generate training sets
by choosing an equal number of majority and minority class instances from the
training set. Hido and Kashima [24] introduce a variant of bagging, “Roughly
Balanced Bagging” (RB bagging), that alters bagging to emphasize the minority
class.

Finally, Hoens and Chawla [25] propose a method called RSM+SMOTE
that involves combining random subspaces with SMOTE. Specifically, they
note that SMOTE depends on the nearest neighbors of an instance to generate
synthetic instances. Therefore, by choosing different sets of features to apply
SMOTE in (and thereby altering the nearest neighbor calculation used by
SMOTE to create the synthetic instance), the resulting training data for each
base learner will have different biases, promoting a more diverse—and therefore
effective—ensemble.

3.2.5 Drawbacks of Sampling Techniques

One major drawback of sampling techniques is that one needs to determine how
much sampling to apply. An over-sampling level must be chosen so as to promote
the minority class, while avoiding overfitting to the given data. Similarly, an
under-sampling level must be chosen so as to retain as much information about
the majority class as possible, while promoting a balanced class distribution.

In general, wrapper methods are used to solve this problem. In wrapper meth-
ods, the training data is split into a training set and a validation set. For a variety
of sampling levels, classifiers are learned on the training set. The performance
of each of the learned models is then tested against the validation set. The sam-
pling method that provides the best performance is then used to sample the entire
dataset.

For hybrid techniques, such wrappers become very complicated, as instead of
having to optimize a single over- (or under-) sampling level, one has to optimize
a combination of over- and under-sampling levels. As demonstrated by Cieslak
et al. [26], such wrapper techniques are often less effective at combating class
imbalance than ensembles built of skew- insensitive classifiers. As a result, we
now turn our focus to skew-insensitive classifiers.

3.3 SKEW-INSENSITIVE CLASSIFIERS FOR CLASS IMBALANCE

While sampling methods—and ensemble methods based on sampling meth-
ods—have become the de facto standard for learning in datasets that exhibit
class imbalance, methods have also been developed that aim to directly com-
bat class imbalance without the need for sampling. These methods come mainly
from the cost-sensitive learning community; however, classifiers that deal with
imbalance are not necessarily cost-sensitive learners.

50 IMBALANCED DATASETS: FROM SAMPLING TO CLASSIFIERS

3.3.1 Cost-Sensitive Learning

In cost-sensitive learning instead of each instance being either correctly or
incorrectly classified, each class (or instance) is given a misclassification cost.
Thus, instead of trying to optimize the accuracy, the problem is then to minimize
the total misclassification cost. Many traditional methods are easily extensible
with this goal in mind. Support vector machines (SVMs), for instance, can be
easily modified to follow the cost-sensitive framework.

To see how this is done, consider the problem of learning an SVM. SVMs
attempt to learn a weight vector wthat satisfies the following optimization prob-
lem:

min
w,ξ,b

{
1

2
||w||2 + C

n∑
i=1

ξi

}
(3.1)

subject to (for all i ∈ {1, . . . , n}):

yi(w · xi − b) ≥ 1 − ξi (3.2)

ξi ≥ 0 (3.3)

where xi denotes the instance i, yi denotes the class of instance i, ξi denotes the
“slack,” for instance, i (i.e., how badly misclassified, if at all, instance i is by
w), and C determines the trade-off between training error and model complexity.

In order to make SVMs cost sensitive, the objective function is modified
resulting in:

min
w,ξ,b

{
1

2
||w||2 + C

n∑
i=1

ciξi

}
, (3.4)

where ci is the misclassification cost, for instance i.
In addition to modifying traditional learning algorithms, cost-sensitive ensem-

ble methods have also been developed. AdaCost [27] and cost-sensitive boosting
(CSB) [28] are two extensions of AdaBoost, which incorporate the misclassifica-
tion cost of an instance in order to provide more accurate instance weights and
not just weights derived from misclassification error as done by AdaBoost.

3.3.2 Skew-Insensitive Learners

While cost-sensitive learning is a popular way of extending classifiers for the use
on the class imbalance problem, some classifiers allow for easier extensions that
directly combat the problem of class imbalance.

Naı̈ve Bayes, for instance, is trivially skew insensitive. This is due to the fact
that it makes predictions p(y|xi) by first computing p(xi |y) and p(y) from the
training data. Bayes rule is then applied to obtain a classification, for instance,
xi as: p(y|xi) = p(xi |y) · p(y). Since p(xi |y) is difficult to calculate in general,
a simplifying assumption is made (the “naı̈ve” in “naı̈ve Bayes”), namely, each

SKEW-INSENSITIVE CLASSIFIERS FOR CLASS IMBALANCE 51

of the features is assumed independent. With this assumption, we can compute
p(xi |y) = ∏

∀j,k p(xij = xijk|y), where xij denotes feature j , for instance, i, and
xijk denotes the kth possible feature value for feature j . Therefore, naı̈ve Bayes
is simply skew insensitive as predictions are calibrated by p(y) or the prior
probability of class y.

Another classifier that has recently been made skew insensitive are decision
trees. Hellinger distance decision trees (HDDTs) [29] are strongly skew insen-
sitive, using an adaptation of the Hellinger distance as a decision tree splitting
criterion. They mitigate the need for sampling.

For the sake of clarity, we present the basic decision tree-building algorithm.
The algorithm (Algorithm Build T ree) differs from the traditional C4.5 [30]
algorithm in two important facets, both motivated by the research of Provost
and Domingos [31]. First, when building the decision tree, Build T ree does not
consider pruning or collapsing. Second, when classifying an instance, Laplace
smoothing is applied. These choices are because of empirical results, demonstrat-
ing that a full tree with Laplace smoothing outperforms all other configurations
[31], which are particularly relevant for imbalanced datasets. When C4.5 deci-
sion trees are built in this way (i.e., without pruning, without collapsing, and
with Laplace smoothing), they are called C4.4 decision trees [31].

Algorithm Build T ree

Require: Training set T , Cut-off size C

1: if |T | < C then
2: return
3: end if
4: for each feature f of T do
5: Hf ← Calc Criterion V alue(T , f)

6: end for
7: b ← max(H)

8: for each value v of b do
9: Build T ree(Txb=v, C)

10: end for

An important thing to note is that Build T ree is only defined for nominal
features. For continuous features, a slight variation to Build T ree is used, where
Calc Criterion V alue sorts the instances by the feature value, finds all mean-
ingful splits, calculates the binary criterion value at each split, and returns the
highest distance; this is identical to the procedure used in C4.5.

The important function to consider when building a decision tree is
Calc Criterion V alue. In C4.5, this function is gain ratio, which is a measure
of purity based on entropy [30], while in HDDT, this function is Hellinger
distance. We now describe the Hellinger distance as a splitting criterion.

52 IMBALANCED DATASETS: FROM SAMPLING TO CLASSIFIERS

Hellinger distance is a distance metric between probability distributions used
by Cieslak and Chawla [29] to create HDDTs. It was chosen as a splitting cri-
terion for the binary class imbalance problem because of its property of skew
insensitivity. Hellinger distance is defined as a splitting criterion as [29]:

dH(X+, X−) =

√√√√√ p∑
j=1

(√
|X+j |
|X+| −

√
|X−j |
|X−|

)2

(3.5)

where X+ is the set of all positive examples, X− is the set of all negative
examples, and X+j (X−j) is the set of positive (negative) examples with the j th
value of the relevant feature.

3.4 EVALUATION METRICS

One common method for determining the performance of a classifier is through
the use of a confusion matrix (Fig. 3.1). In a confusion matrix, TN is the number
of negative instances correctly classified (True Negatives), FP is the number of
negative instances incorrectly classified as positive (False Positive), FN is the
number of positive instances incorrectly classified as negative (False Negatives),
and TP is the number of positive instances correctly classified as positive (True
Positives).

From the confusion matrix, many standard evaluation metrics can be defined.
Traditionally, the most often used metric is accuracy (or its complement, the error
rate):

accuracy = TP + TN

TP + FP + TN + FN
(3.6)

As mentioned previously, however, accuracy is inappropriate when data is
imbalanced. This is seen in our previous example, where the majority class may

Predicted Predicted

positive

FP

TP

TN

Actual

positive

Actual

negative

FN

negative

Figure 3.1 Confusion matrix.

EVALUATION METRICS 53

make 99% of the dataset, while only 1% is made up of minority class instances.
In such a case, it is trivial to obtain an accuracy of 99% if one merely predicts
the majority class. This accuracy is obtained by simply predicting all instances as
majority class. While the 99% accuracy seems high, it is obviously completely
discounting the performance of the classifier on the class that matters (positive
class). Thus, accuracy can be misleading in imbalanced datasets as there are two
different types of errors (false positives and false negatives), and each of them
carries different costs.

We now present a discussion on a number of alternate metrics used for eval-
uating the performance of classifiers on imbalanced datasets.

3.4.1 Balanced Accuracy

While accuracy (and error rate) is not an effective method of evaluating the
performance of classifiers, one common alternative is balanced accuracy. Bal-
anced accuracy differs from accuracy in that instead of computing accuracy,
one computes

BalancedAccuracy = TP

2(TP + FN))
+ TN

2(TN + FP))
(3.7)

That is, one computes the average of the percentage of positive class instances
correctly classified and the percentage of negative class instances correctly clas-
sified. By giving equal weight to these relative proportions, we see that the
previous problem of the naı̈ve classifier obtaining very good performance has
been eliminated.

To see this, consider the balanced accuracy of the naı̈ve classifier on a dataset
consisting of 99% majority class instances and 1% minority class instances. We
know that the accuracy of the naı̈ve classifier is 99%. The balanced accuracy,
on the other hand, is: 99/(2(99 + 0)) + 0/(2(1 + 0)) = 0.5 + 0 = 0.5. A perfor-
mance estimate of 0.5 is a much more valid assessment of the naı̈ve classifier.

3.4.2 ROC Curves

The receiver operating characteristic (ROC) curve is a standard technique for
evaluating classifiers on datasets that exhibit class imbalance. ROC curves
achieve this skew insensitivity by summarizing the performance of classifiers
over a range of true positive rates (TPRs) and false positive rates (FPRs)
[32]. By evaluating the models at various error rates, ROC curves are able to
determine what proportion of instances will be correctly classified for a given
FPR.

In Figure 3.2, we see an example of an ROC curve. In Figure 3.2, the X-axis
represents the FPR (FPR = FP/(TN + FP)), and the Y -axis represents the TPR
(TPR = TP/(TP + FN)). For any given problem, the ideal classifier would have

54 IMBALANCED DATASETS: FROM SAMPLING TO CLASSIFIERS

Random performance

False positive rate
0

1

1

T
ru

e
po

si
tiv

e
ra

te

Inverted performance

Weak performance

Strong performance

Figure 3.2 Examples of ROC curves. Each curve represents the performance of a dif-
ferent classifier on a dataset.

a point in the ROC space at (0, 1), that is, all positive instances are correctly
classified, and no negative instances are misclassified. Alternatively, the classifier
that misclassifies all instances would have a single point at (1, 0).

While (0, 1) represents the ideal classifier and (1, 0) represents its complement,
in ROC space, the line y = x represents a random classifier, that is, a classifier
that applies a random prediction to each instance. This gives a trivial lower bound
in ROC space for any classifier. An ROC curve is said to “dominate” another
ROC curve if, for each FPR, it offers a higher TPR. By analyzing ROC curves,
one can determine the best classifier for a specific FPR by selecting the classifier
with the best corresponding TPR.

In order to generate an ROC curve, each point is generated by moving the deci-
sion boundary for classification. That is, points nearer to the left in ROC space
are the result of requiring a higher threshold for classifying an instance as positive
instance. This property of ROC curves allows practitioners to choose the deci-
sion threshold that gives the best TPR for an acceptable FPR (Neyman–Pearson
method) [33].

The ROC convex hull can also provide a robust method for identifying poten-
tially optimal classifiers [34]. Given a set of ROC curves, the ROC convex hull
is generated by selecting only the best point for a given FPR. This is advanta-
geous, since, if a line passes through a point on the convex hull, then there is

EVALUATION METRICS 55

no other line with the same slope passing through another point with a larger
TPR intercept. Thus, the classifier at that point is optimal under any distribution
assumptions along with the slope [34].

While ROC curves provide a visual method for determining the effectiveness
of a classifier, the area under the ROC curve (AUROC) has become the de facto
standard metric for evaluating classifiers under imbalance [35]. This is due to the
fact that it is both independent of the selected threshold and prior probabilities, as
well as offering a single number to compare classifiers. One of the main benefits
of AUROC is that it can be considered as measuring how often a random positive
class instance is ranked above a random negative class instance when sorted by
their classification probabilities.

One way of computing AUROC is, given n0 points of class 0, n1 points of
class 1, and S0 as the sum of ranks of class 0 examples [36]:

AUROC = 2S0 − n0(n0 + 1)

2n0n1
(3.8)

3.4.3 Precision and Recall

Alternatives to AUROC are precision and recall. Precision and recall can be
computed from the confusion matrix (Fig. 3.1) as [37]:

precision = TP

TP + FP
(3.9)

recall = TP

TP + FN
(3.10)

From the equations, we see that precision measures how often an instance
that was predicted as positive that is actually positive, while recall measures how
often a positive class instance in the dataset was predicted as a positive class
instance by the classifier.

In imbalanced datasets, the goal is to improve recall without hurting precision.
These goals, however, are often conflicting, since in order to increase the TP for
the minority class, the number of FP is also often increased, resulting in reduced
precision.

In order to obtain a more accurate understanding of the trade-offs between
precision and recall, one can use precision–recall (PR) curves. PR curves are
similar to ROC curves in that they provide a graphical representation of the
performance of classifiers. While the X-axis of ROC curves is FPR and the
Y -axis is TPR, in PR curves, the X-axis is recall and the Y -axis is precision.
Precision–recall curves are therefore similar to ROC curves as recall is the same
as FPR; however, the Y -axes are different. While TPR measures the fraction of
positive examples that are correctly classified, precision measures the fraction of
examples that are classified as positive that are actually positive.

56 IMBALANCED DATASETS: FROM SAMPLING TO CLASSIFIERS

Similar to ROC curves are being compared on the basis of AUROC, PR
curves are also compared on the basis of AUPR. This practice has become more
common, as recent research suggests that PR curves (and AUPR) are a better
discriminator of performance than their ROC (and AUROC) counterparts [38].

3.4.4 Fβ -Measure

A final common metric is the Fβ-measure. Fβ-measure is a family of metrics
that attempts to measure the trade-offs between precision and recall by outputting
a single value that reflects the goodness of a classifier in the presence of rare
classes. While ROC curves represent the trade-off between different TPRs and
FPRs, Fβ-measure represents the trade-off among different values of TP, FP, and
FN [37].

The general equation for Fβ-measure is:

Fβ = (1 + β2) · precision · recall

(β2 · precision) + recall
, (3.11)

where β represents the relative importance of precision and recall. Traditionally,
when β is not specified, the F1-measure is assumed.

In spite of its (relatively) useful properties for imbalance, Fβ-measure is not
commonly used when comparing classifiers, as AUROC and AUPR provide more
robust and better performance estimates.

3.5 DISCUSSION

In this chapter, we covered various strategies for learning in imbalanced environ-
ments. Specifically, we discussed various sampling strategies and skew- insensi-
tive classifiers.

One key observation when attempting to choose between a sampling method
and a skew-insensitive classifier is that while sampling methods are a widely
applied standard, they require the tuning of parameters to select the proper sam-
pling level for a given dataset. In general, this is a difficult optimization problem
and may prove impractical in practice depending on the size of the dataset and
level of imbalance. In such cases, skew-insensitive classifiers (and ensembles
built of skew-insensitive classifiers) can provide a reasonable alternative that
provides similar (and often better) performance as that of the sampling methods.

When attempting to evaluate the performance of the aforementioned models,
we learned that accuracy is not a valuable evaluation metric when learning in
imbalanced environments. The lack of utility of accuracy (and error rate) is due
to the fact that they overemphasize the performance of the majority class at the
detriment to the considerations of the performance of the minority class. In order
to overcome this issue, we presented multiple alternative evaluation metrics. The
most commonly used alternatives discussed were AUROC and AUPR.

REFERENCES 57

REFERENCES

1. N. V. Chawla, D. A. Cieslak, L. O. Hall, and A. Joshi, “Automatically counter-
ing imbalance and its empirical relationship to cost,” Data Mining and Knowledge
Discovery , vol. 17, no. 2, pp. 225–252, 2008.

2. M. Kubat and S. Matwin, “Addressing the curse of imbalanced training sets:
One-sided selection,” in Machine Learning-International Workshop then Conference,
(Nashville, TN, USA), pp. 179–186. Morgan Kaufmann, 1997.

3. I. Tomek, “An experiment with the edited nearest-neighbor rule,” IEEE Transactions
on Systems, Man, and Cybernetics Part C , vol. 6, no. 6, pp. 448–452, 1976.

4. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determina-
tion of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics ,
vol. 4, no. 2, pp. 100–107, 1968.

5. J. Laurikkala, “Improving identification of difficult small classes by balancing class
distribution,” Artificial Intelligence in Medicine, (Cascais, Portugal), pp. 63–66,
Springer-Verlag, vol. 2101, 2001.

6. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic
minority over-sampling technique,” Journal of Artificial Intelligence Research , vol.
16, pp. 321–357, 2002.

7. H. Han, W. Y. Wang, and B. H. Mao, “Borderline-smote: A new over-sampling
method in imbalanced data sets learning,” in Advances in Intelligent Computing ,
(Hefei, China), vol. 3644, pp. 878–887, Springer-Verlag, 2005.

8. C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, “Safe-level-smote: Safe-
level-synthetic minority over-sampling technique for handling the class imbalanced
problem,” in Pacific-Asia Conference on Advances in Knowledge Discovery and Data
Mining , (Bangkok, Thailand), pp. 475–482, Springer-Verlag, 2009.

9. C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, “DBSMOTE: Density-
based synthetic minority over-sampling technique,” Applied Intelligence, vol. 36, pp.
1–21, 2011.

10. T. Jo and N. Japkowicz, “Class imbalances versus small disjuncts”, ACM SIGKDD
Explorations Newsletter , vol. 6, no. 1, pp. 40–49, 2004.

11. N. Japkowicz “Learning from imbalanced data sets: A comparison of various strate-
gies,” in AAAI Workshop on Learning from Imbalanced Data Sets , (Austin, Texas),
vol. 68, AAAI Press, 2000.

12. G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of several
methods for balancing machine learning training data,” ACM SIGKDD Explorations
Newsletter , vol. 6, no. 1, pp. 20–29, 2004.

13. T. G. Dietterich, “Ensemble methods in machine learning,” Lecture Notes in Computer
Science, vol. 1857, pp. 1–15, 2000.

14. L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993–1001, 1990.

15. L. Breiman, “Bagging predictors,” Machine Learning , vol. 24, no. 2, pp. 123–140,
1996.

16. Y. Freund and R. Schapire. “Experiments with a new boosting algorithm,” in Thir-
teenth International Conference on Machine Learning , (Bari, Italy), pp. 148–156,
Morgan Kaufmann, 1996.

58 IMBALANCED DATASETS: FROM SAMPLING TO CLASSIFIERS

17. T. K. Ho, “The random subspace method for constructing decision forests,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp.
832–844, 1998.

18. L. Breiman, “Random forests,” Machine Learning , vol. 45, no. 1, pp. 5–32, 2001.

19. E. Bauer and R. Kohavi, “An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants,” Machine Learning , vol. 36, no. 1, pp. 105–139,
1999.

20. N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. “Smoteboost: Improving
prediction of the minority class in boosting,” in Proceedings of the Principles of
Knowledge Discovery in Databases, PKDD-2003 , (Cavtat-Dubrovnik, Croatia), vol.
2838, pp.107–119, Springer-Verlag, 2003.

21. H. Guo and H. L. Viktor, “Learning from imbalanced data sets with boosting and data
generation: The Databoost-IM approach,” SIGKDD Explorations Newsletter , vol. 6,
no. 1, pp. 30–39, 2004.

22. P. Radivojac, N. V. Chawla, A. K. Dunker, and Z. Obradovic, “Classification and
knowledge discovery in protein databases,” Journal of Biomedical Informatics , vol.
37, no. 4, pp. 224–239, 2004.

23. X. Y. Liu, J. Wu, and Z. H. Zhou. “Exploratory under-sampling for class-imbalance
learning”, in ICDM ’06: Proceedings of the Sixth International Conference on Data
Mining , pp. 965–969 Washington, DC: IEEE Computer Society, 2006.

24. S Hido and H. Kashima, “Roughly balanced bagging for imbalanced data,” in SDM ,
pp. 143–152. SIAM, 2008.

25. T. Hoens and N. Chawla, “Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining,” in PAKDD , (Hyderabad, India), vol. 6119, pp. 488–499,
Springer-Verlag, 2010.

26. D. A. Cieslak, T. R. Hoens, N. V. Chawla, and W. P. Kegelmeyer, “Hellinger dis-
tance decision trees are robust and skew-insensitive,” Data Mining and Knowledge
Discovery , (Hingham, MA, USA), vol. 24, no. 1, pp. 136–158, Kluwer Academic
Publishers, 2012.

27. W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. “Adacost: Misclassification cost-
sensitive boosting,” in Machine Learning-International Workshop then Conference,
(Bled, Slovenia), pp. 97–105, Morgan Kaufmann, 1999.

28. K. M. Ting. “A comparative study of cost-sensitive boosting algorithms,” in Proceed-
ings of the 17th International Conference on Machine Learning , 2000.

29. D. A. Cieslak and N. V. Chawla. “Learning decision trees for unbalanced data,” in
European Conference on Machine Learning (ECML), (Antwerp, Belgium), vol. 5211,
pp. 241–256, Springer-Verlag, 2008.

30. J. R. Quinlan. C4. 5: Programs for Machine Learning . San Mateo, CA: Morgan
Kaufman Publishers, Inc., 1993.

31. F. Provost and P. Domingos, “Tree induction for probability-based ranking,” Machine
Learning , vol. 52, no. 3, pp. 199–215, 2003.

32. J. A. Swets, “Measuring the accuracy of diagnostic systems,” Science, vol. 240, no.
4857, pp. 1285–, 1988.

33. J. P. Egan. Signal Detection Theory and ROC Analysis . New York: Academic Press,
1975.

REFERENCES 59

34. F. Provost and T. Fawcett, “Robust classification for imprecise environments,”
Machine Learning , vol. 42, no. 3, pp. 203–231, 2001.

35. A. P. Bradley, “The use of the area under the roc curve in the evaluation of machine
learning algorithms,” Pattern Recognition , vol. 30, no. 7, pp. 1145–1159, 1997.

36. D. J. Hand and R. J. Till, “A simple generalisation of the area under the roc curve
for multiple class classification problems,” Machine Learning , vol. 45, no. 2, pp.
171–186, 2001.

37. M. Buckland and F. Gey, “The relationship between recall and precision,” Journal
of the American Society for Information Science, vol. 45, no. 1, pp. 12–19, 1994.

38. J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves,”
in Proceedings of the Twentythird International Conference on Machine Learning , pp.
233–240. ACM, 2006.

