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Chapter 1 — Introduction

1.1 What is a compiler?

A compiler translates a program in a source language to a program in
a target language. The most well known form of a compiler is one that
translates a high-level language like C into the native assembly language
of a machine so that it can be executed. And of course there are compilers
for other languages like C++, Java, C#, and Rust, and many others.

The same techniques used in a traditional compiler are also used in
any kind of program that processes a language. For example, a typeset-
ting program like TEX translates a manuscript into a Postscript document.
A graph-layout program like Dot consumes a list of nodes and edges and
arranges them on a screen. A web browser translates an HTML document
into an interactive graphical display. To write programs like these, you
need to understand and use the same techniques as in traditional compil-
ers.

Compilers exist not only to translate programs, but also to improve them.
A compiler assists a programmer by finding errors in a program at compile
time, so that the user does not have to encounter them at runtime. Usually,
a more strict language results in more compile-time errors. This makes the
programmer’s job harder, but makes it more likely that the program is
correct. For example, the Ada language is infamous among programmers
as challenging to write without compile-time errors, but once working, is
trusted to run safety-critical systems such as the Boeing 777 aircraft.

A compiler is distinct from an interpreter, which reads in a program
and then executes it directly, without emitting a translation. This is also
sometimes known as a virtual machine. Languages like Python and Ruby
are typically executed by an interpreter that reads the source code directly.

Compilers and interpreters are closely related, and it is sometimes pos-
sible to exchange one for the other. For example, Java compilers translate
Java source code into Java bytecode, which is an abstract form of assem-
bly language. Some implementations of the Java Virtual Machine work as
interpreters that execute one instruction at a time. Others work by trans-
lating the bytecode into local machine code, and then running the machine
code directly. This is known as just in time compiling or JIT.
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2 CHAPTER 1. INTRODUCTION

1.2 Why should you study compilers?

You will be a better programmer. A great craftsman must understand his
or her tools, and a programmer is no different. By understanding more
deeply how a compiler translates your program into machine language,
you will become more skilled at writing effective code and debugging it
when things go wrong.

You can create tools for debugging and translating. If you can write a parser
for a given language, then you can write all manner of supporting tools
that help you (and others) debug your own programs. An integrated de-
velopment environment like Eclipse incorporates parsers for languages
like Java, so that it can highlight syntax, find errors without compiling,
and connect code to documentation as you write.

You can create new languages. A surprising number of problems are
made easier by expressing them compactly in a custom language. (These
are sometimes known as domain specific languages or simply little lan-
guages.) By learning the techniques of compilers, you will be able to im-
plement little languages and avoid some pitfalls of language design.

You can contribute to existing compilers. While it’s unlikely that you will
write the next great C compiler (since we already have several), language
and compiler development does not stand still. Standards development
results in new language features; optimization research creates new ways
of improving programs; new microprocessors are created; new operating
systems are developed; and so on. All of these developments require the
continuous improvement of existing compilers.

You will have fun while solving challenging problems. Isn’t that enough?

1.3 What'’s the best way to learn about compilers?

The best way to learn about compilers is to write your own compiler from
beginning to end. While that may sound daunting at first, you will find
that this complex task can be broken down into several stages of moder-
ate complexity. The typical undergraduate computer science student can
write a complete compiler for a simple language in a semester, broken
down into four or five independent stages.

1.4 What language should I use?

Without question, you should use the C programming language and the
X86 assembly language, of course!

Ok, maybe the answer isn’t quite that simple. There is an ever-increasing
number of programming languages that all have different strengths and
weaknesses. Java is simple, consistent, and portable, albeit not high per-
formance. Python is easy to learn and has great library support, but is
weakly typed. Rust offers exceptional static type-safety, but is not (yet)
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widely used. It is quite possible to write a compiler in nearly any lan-
guage, and you could use this book as a guide to do so.

However, we really think that you should learn C, write a compiler in
C, and use it to compile a C-like language which produces assembly for a
widely used processor, like X86 or ARM. Why? Because it is important for
you to learn the ins and outs of technologies that are in wide use, and not
just those that are abstractly beautiful.

Cis the most widely-used portable language for low-level coding (com-
pilers, libraries, and kernels) and it is also small enough that one can learn
how to compile every aspect of C in a single semester. True, C presents
some challenges related to type safety and pointer use, but these are man-
ageable for a project the size of a compiler. There are other languages with
different virtues, but none as simple and as widely used as C. Once you
write a C compiler, then you are free to design your own (better) language.

Likewise, the X86 has been the most widely deployed computer archi-
tecture in desktops, servers, and laptops for several decades. While it is
considerably more complex than other architectures like MIPS or SPARC
or ARM, one can quickly learn the essential subset of instructions nec-
essary to build a compiler. Of course, ARM is quickly catching up as a
popular architecture in the mobile, embedded, and low power space, so
we have included a section on that as well.

That said, the principles presented in this book are widely applicable.
If you are using this as part of a class, your instructor may very well choose
a different compilation language and different target assembly, and that’s
fine too.

1.5 How is this book different from others?

Most books on compilers are very heavy on the abstract theory of scan-
ners, parsers, type systems, and register allocation, and rather light on
how the design of a language affects the compiler and the runtime. Most
are designed for use by a graduate survey of optimization techniques.

This book takes a broader approach by giving a lighter dose of opti-
mization, and introducing more material on the process of engineering a
compiler, the tradeoffs in language design, and considerations for inter-
pretation and translation.

You will also notice that this book doesn’t contain a whole bunch of
fiddly paper-and-pencil assignments to test your knowledge of compiler
algorithms. (Ok, there are a few of those in Chapters 3 and 4.) If you want
to test your knowledge, then write some working code. To that end, the
exercises at the end of each chapter ask you to take the ideas in the chapter,
and either explore some existing compilers, or write parts of your own. If
you do all of them in order, you will end up with a working compiler,
summarized in the final appendix.
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1.6 What other books should I read?
For general reference on compilers, I suggest the following books:

* Charles N. Fischer, Ron K. Cytron, and Richard J. LeBlanc Jr, “Craft-
ing a Compiler”, Pearson, 2009.
This is an excellent undergraduate textbook which focuses on object-oriented soft-
ware engineering techniques for constructing a compiler, with a focus on generating
output for the Java Virtual Machine.

* Christopher Fraser and David Hanson, “A Retargetable C Com-
piler: Design and Implementation”, Benjamin/Cummings, 1995.
Also known as the “LCC book”, this book focuses entirely on explaining the C imple-
mentation of a C compiler by taking the unusual approach of embedding the literal
code into the textbook, so that code and explanation are intertwined.

e Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman,
“Compilers: Principles, Techniques, and Tools”, Addison Wesley,
2006. Affectionately known as the “dragon book”, this is a comprehensive treat-
ment of the theory of compilers from scanning through type theory and optimization
at an advanced graduate level.

Ok, what are you waiting for? Let’s get to work.



