Scalable Application Design:
Pitfalls and Possibilities

Prof. Douglas Thain, University of Notre Dame

g} http://www.nd.edu/~dthain
dthain@nd.edu
@ProfThain

The Cooperative Computing Lab

* We collaborate with people who have large scale
computing problems in science, engineering, and
other fields.

* We operate computer systems on the O(10,000)
cores: clusters, clouds, grids.

 We conduct computer science research in the
context of real people and problem:s.

 We develop open source software for large scale
distributed computing.

Parrot Virtual File System

Custom Namespace

Uni
% /home = /chirp/server/myhome

Appl
PP /[software = /cvmfs/cms.cern.ch/cmssoft

Capture System
Calls via ptrace

Parrot Virtual File System File Access
Tracing

Sandboxing
Local iRODS Chirp HTTP User ID Mapping

Douglas Thain, Christopher Moretti, and Igor Sfiligoi, Transparently Distributing CDF
Software with Parrot, Computing in High Energy Physics, pages 1-4, February, 2000.

Parrot + CVMES

CMS HTTP GET ~ HTTP GET WWW
Task SC|Uid server
PIOXYSSOZSEE
Parrot !
Content | data
Addressable | = dat
: : dala
CVMFS Library Storage ! data
:‘ data
data T
. rgetta ; CMS |
; ata data i Software
RO 967 GB
CAS Cache 31Miiles

\

Global Scale Filesystems for Scientific Software Distribution, IEEE/AIP Computing in Science and Engineering,
17(6), pages 61-71, December, 2015. DOI: 10.1109/MCSE.2015.111

Build CAS

From the scientist's perspective...

It took a~white-(most of a year) but now |
have my code written, installed, debugged,
calibrated, and verified on my laptop.

Now | want to run at a scale
1000x larger by using a
cluster, cloud, grid, or
whatever you computer
people are calling it today.

\m There is no way you are going to convince me
to re-write this valuable program in order to run
on your crazy cluster / OS / framework!

On my laptop...

"sim.exe —p 50 in.dat -o output.dat”

What could go wrong?

— The Software Dependency Problem
— The Resource Sizing Problem
— The Job Sizing Problem

Outline

* The Laptop Perspective
* Expressing Scalable Applications
* End User Challenges:

— The Software Dependency Problem

— The Resource Sizing Problem

— The Job Sizing Problem

. Lessons Learned

Makeflow = Make + Workflow

* Provides portability across batch systems.

® o
- o
L X
L L
L X
L L]
é\ (&
- .

* Enables parallelism (but not too much!)
* Fault tolerance at multiple scales.

®
@ BN NN N N

Frireriiet * Data and resource management.

-

* Transactional semantics for job execution.

Makeflow

Work

Amazon
Queue

Local HTCondor Torque

http://ccl.cse.nd.edu/software/makeflow

Workflow Language Evolution

Classic "Make" Representation

output.5.txt : input.txt mysim.exe t ‘——_
mysim.exe —p 10 input.txt > output.5.txt "})u
Tim Shaffer
JSON Representation of One Job (tshaffe1@nd.edu)

{

"command" : "mysim.exe —p 10 input.txt > output.5.txt",
"outputs” : ["output.5.txt"],
"inputs” : ["input.dat”, "mysim.exe"]

}

JX (JSON + Expressions) for Multiple Jobs

{

"command" : "mysim.exe —p " + x*2 + " input.txt > output." + x + " .txt",

"outputs" : ["output" + x + "txt"],
"inputs” : ["input.dat", "mysim.exe"]
}forxin[1,2,3,4,5]

Makeflow Shapes a Workflow

Concurrency
and Policy Control

Millions of

_Clusteror Cloud

\WELE
< nn nn N
e e e e e e e e e
Precise Performance

Transaction Log »
Cleanup Monitoring

Run a Model

Full Workflow:
12,500 species
x 15 climate scenarios
X 6 experiments
x 500 MB per projection
= 1.1M jobs, 72TB of output

Small Example: 10 species x 10 expts

More Examples

.....................

= - -
"% ra B &
Y
g g = - - - = - W OWE - -
e s A MmO B SR P EESLLL3B NS eE e
TS e

E T T T L N L e L e T

X0 = o aa -

B

http://qithub.com/cooperative-computing-lab/makeflow-examples

http://github.com/cooerative-computing-lab/makeflow-examples

Work Queue API

id = queue.submit(task) task = queue.wait()
Work Queue

Library

queue = WorkQueue(port)

for xin 1..100:
task = Task(command)
add some more details...
taskid = queue.submit(task)

while not queue.empty():

task = queue.wait(5)
if task:
deal with output, submit more

Work Queue

Architecture

Submit Complete 4-core machine
Send files
Work Queue Worker Process
Master
Send tasks
— —
A — A N
A B C c i=§=L'T
Local Files and | J) ==
ProglaiilS Cache Task 1 Task.2

Dir Sandbox Sandbox

Harness Multiple Resources

torque_subm\ii_worke rs

Work Queue
Application Nat@ @wate

Computir=

Thousands of
Work Queue Workers in a
Master Personal
T)Public@

HTCondor

@ Pool @ @rowd@

condor_subriit_workers

Local Files and
Programs

Some Work Queue Applications

Lobster
CMS Data Analysis

Lobster dwvides
the Dom(into

Nanoreactors
~ab-initio-Chemistry

ForceBalance

8% 100 -
-} 3z = = =
32 10 ol
TH FF Optimization
g Ll
b IIIIIIIIIIIIIIIII‘IIIIIIIIIIIII-.II IIIIIIIIIIIIIIIII‘
g Bi::;i':‘l;::r":;s Reference Data:
’ L 4 g BIES: | | gb initio calculations
Forces, Density, 2
ﬂ and experiment
AH,,,. etc.

5
5’?
%ﬁy

2H, + 2CH, + CH, + CH, + CgHy +
CBHS & CVHY X Cw”m 2 C46H36

Perform
simulations

26C,H, + CHy + CHy +

ek > CoHy * CgHg+ CoHio

4

\I"
N

ForceBalance

Force Field

Adaptlve Welghted Ensemble

Update
parameters

Optimization
Initial method

parameters

Evaluate differences with reference data A

Add Bayesian
regularization

Objective
function

Optimized
parameters

The user subeits
one project
to Lobste:

. - Each worker
M (B caches data and
v n runs multiple tasks.

iCMS ! Output
: Software ¢ Data
i at CERN i In HDFS :

SHADHO

Hypr parameter Optimization

N

Highest
Performing
Hardware

=

Mid-

Performing [~
Hardware

i

And now the bad news...

Simple questions that are hard to answer at scale:

 What software must be installed to run my
application at multiple sites?

e How much memory do | need to run this task?

 How finely should | divide up my work?

Outline

* The Laptop Perspective
* Expressing Scalable Applications
* End User Challenges:

— The Software Dependency Problem

— The Job Sizing Problem

— The Data Splitting Problem
. Lessons Learned

Problem: Software Deployment

* Getting software installed on a new site is a
big pain! The user (probably) knows the top
level package, but doesn't know:

— How they set up the package (sometime last year)
— Dependencies of the top-level package.
— Which packages are system default vs optional

— How to import the package into their
environment via PATH, LD _LIBRARY_ PATH, etc.

Typical User Dialog Installing BLAST

"I just need BLAST."

"Oh wait, | need Python!"
"Sorry, Python 2.7.12"
"Python requires SSL?"
"What on earth is pcre?"
"I give up!"

™D

MAKER Bioinformatics P

openmpi
00

VC3-Builder Architecture

T
— .
Software - Sealed Package
i Upstream i
Recipes Sources | A B A_rchlval or
Recipe Disconnected
D Operation
Builder
PATH —_—
N Al e PYTHONPATH
ache Cached Install | D LIBRARY PATH
Recipes Sources Tree = P
A B Task Sandbox

C D

"vc3-builder —require ncbi-blast"

..Plan: ncbi-blast => [,]

..Try: ncbi atala _ . :
....Plan: pe (New Shell with Desired Environment)

e 1Y el

....CO}l/J|d n%t bash$ which blastx

.Try: pel [tmp/test/vc3-root/x86_64/redhat6/ncbi-blast/v2.2.28/bin/blastx
....could not

LTry: pel bash$ blastx —help

...... Plan: ¢ USAGE

...... | Plastx [-h] [-help] [-import_search_strategy filename]

...... Success

....Success: '

=Py bashs exit

. Iry: pyl

....could not aaa any source 10r: pytnon vz.uub => [VZ.0.U, |
...Iry: python =>v2.7.12
...... Plan: openssl| =>[v1.000,]

Downloading 'Python-2.7.12.t1gz' from http://download.virtualclusters.org/builder-files
detaile: /tmn/tact/\vveR-root/YRQRA RA/redhatG/pvthon/yvy2 7 12 /ovihon<biriiild=loa

Problem: Long Build on Head Node

* Many computing sites limit the amount of
work that can be done on the head node, so
as to maintain quality of service for everyone.

* Solution: Move the build jobs out to the
cluster nodes. (Which may not have network
connections.)

* |dea: Reduce the problem to something we
already know how to do: Workflow!

vc3-builder
--require makeflow
--require ncbi-blast

makeflow —T condor blast.mf

Bootstrapping a Workflow

P

<.
Software <>
ReCIpeS Upstream
Sources BLAST BLAST
Task Task
== V. e — =
Builder
BLAST BLAST
Task Task
Makeflow Makeflow
BLAST

) BLAST BLAST

M a keﬂ oW Task Task

What About CVMES?

Use VC3-Builder to bootstrap from
perl to Parrot + CVMFS in order to

- ‘ access your global filesystem!

python
v2.7.12
swig libcvmfs
v3.0.2 v2.3.0
/)

v0.1.0

[@)]
r

0
0
o
= |
=
=
m

10 15 20 25 30 35 40

Time (min)

Benjamin Tovar, Nicholas Hazekamp, Nathaniel Kremer-Herman, and Douglas Thain,

Automatic Dependency Management for Scientific Applications on Clusters,

|IEEE International Conference on Cloud Engineering (IC2E) , April, 2018. Ben Tovar 3
DOI: 10.1109/IC2E.2018.00026 btovar@nd.edu

http://ccl.cse.nd.edu/research/papers/tovar-vc3builder-ic2e2018.pdf
http://dx.doi.org/10.1109/IC2E.2018.00026

Outline

* The Laptop Perspective
* Expressing Scalable Applications
* End User Challenges:

— The Software Dependency Problem

— The Resource Sizing Problem

— The Job Sizing Problem

. Lessons Learned

The Resource Sizing Problem

A (External Frag)

<—— Machine

= (Internal

Job Fra
< g)
g <— Allocation
Al Job
™

Job
—>

16 CPUs

Client vs. Resource Provider

Client selects allocation: Provider places the allocation:
Too big? Wasted resources. Too big? Get paid.
Too small? Job fails, retry. Too small? Still get paid!
Scheduling is not the client's problem.
Job n wb

Client
Provider

Job Job Job Job

Job Job Job Job

Job Job Job Job

"Slicing the Infinite Cake”

Allocations Too Big

Job Job Job Job Job Job Job Job

Allocations Just Right: 2x Throughput

Job Job Job Job Job Job Job Job

Job Job Job Job Job Job Job Job

How do we know how big?

"command": "python task.py parameters.json",
"taskid": w195,
"user": "mfrohike",
Soft Al |OC "category": "ttZ_mAODvV2",
" "executable_type": "dynamic",
"monitor version": "6.0.0.0bdd9ca9",
"exit_status": 143,
ch)t) "exit_type": "lamiEs™,
"limits_exceeded": { "memory": [2000,"MB"]
Tsbart™: [1454163721,"s"],
"endms [1454165828,"s"],
"wall_time": [2207;'"8%].»
"cpu_time™: [2066; "s™] ;
Resource 2,
"cores_avg": 0.98,
0 "concurrent_procs": 8,
Monltor "total_procs": 2913

"virtual_memory": [2255;, "MB"] ;
"memory": [2142,"MB"],
"swap_memory": (O "MB™ =
"bytes_read": [2274265095, "MB"],
"bytes_written": [104022016,"MB"],
"bytes_sent": [0, "MB"™].,
"bytes_received": [0,"MB"];
"bandwidth": [0, "Mbps"],
"total_ files": 1075

Tl sk [104,"MB"]

Suppose that you run 1M
analysis jobs that are all the same.

What would be the distribution of memory
consumption across all jobs?

Impulse? Gaussian? Poisson?

Surprise: Complex Distributions!

45000 f lloca tion
p d ted by model
m I |
[

250 2350
MB memory (RAM) per task

How to pick the first allocation? st = [| [-nrvtsria
Ben Tovar says: + / jm((am+a1r)'rp(r,'r)dr) dr
’ Minimize probability of first = [
ek attempt succeeding + il / D
< h fallback succeeding, Whrre: e
N weighted by resources. o

used resources

Production Application: Lobster

* Lobster: High energy physics analysis workload
harnesses heterogeneous non-dedicated
resources at Notre Dame.

e 535,078 tasks run on 25,000 core cluster over
several months with the resource monitor.

* Five categories of tasks identified by user:
DIGI (22911), LHEGS(500K),
mAOD (2544), RECO (11582)

Lobster Architecture

Submit Workers

Tasks

category
(#tasks)

ALL
(538078)

DIGI
(22911)

LHEGS
(500000)

mAQOD
(2544)

500000
450000

350000

250000

Cores

Cores average

5000

2500

10000

1000

10000

1000

10000

1000

1x10°

\
100000
10000
1000
100
10
1

0 500 1000 ,1500 2000 2500 3000 3500 4000 0 500 1000 , 1500 2000 2500
i '
- . 1000 x
.
'
'
L '
' 100
'
'
'
'
. 10
1 L L 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1509 2000 2500
'
= 1 100000
B
.
; 10000
L A
1000 |
100 |-
i 10 H
i . . .
0 500 1000 ,1500 2000 2500 3000 3500 4000 0 1500 2000 2500
'
r s 1000
'
'
'
L '
' 100 |
'
10k
M | L i
0 500 1000 1500 2000, 2500 3000 3500 4000 0 500 1000 , 1500 2000 2500

Resource Selection Approaches

brute-force max. through
resource P95> 1) Equation2 | Equation 3

first allocation

cores (cores)
cores_avg (cores)
memory (MB)
disk (MB)

cores
cores_avg
memory
disk

cores
cores_avg
memory
disk

cores
cores_avg
memory
disk

overhead (s) [=]
538078 tasks read in 27.60 seconds

Benjamin Tovar, Rafael Ferreira da Silva, Gideon Juve, Ewa Deelman, William Allcock, Douglas Thain, and
Miron Livny, A Job Sizing Strategy for High-Throughput Scientific Workflows,
IEEE Trans Parallel Dist Sys, 29(2), pages 240-253, February, 2018. DOI: 10.1109/TPDS.2017.2762310

http://ccl.cse.nd.edu/research/papers/Tovar-job-sizing-TPDS2017.pdf
http://dx.doi.org/10.1109/TPDS.2017.2762310

What's the upshot?

* By selecting first allocations appropriately, we
double the throughput of the system while
accepting a 9 percent task failure rate.

* This approach is applied entirely from the
client side, without provider assistance.

* Same approach can be applied to any
cluster/cloud/grid with simple techniques.

Outline

* The Laptop Perspective
* Expressing Scalable Applications
* End User Challenges:

— The Software Dependency Problem

— The Resource Sizing Problem

— The Job Sizing Problem

. Lessons Learned

What’'s Going on Here?

h 4

The user is starting off by
splitting an input file into

pieces in order to prepare
for parallel tasks:

Input File

Static Job Splitting

User often makes a choice based on some rule of
thumb without really understanding the tradeoffs:

* Jobs too small: Overhead of splitting dominates
cost of actually doing work!

e Jobs too large: Insufficient parallelism to get the
job done in a timely way.

Difference between an acceptable choice and a bad

one can be a factor of 100X in performance!

Continuously Divisible Jobs

* Defer work splitting until computational demand
requires a hew job.
. Instead of materializing physical files, keep track

of data indices as “virtual files” to be
materialized on demand. (Job still sees files.)

. Compute ideal job sizes based on observed
performance properties of the system.

Continuously Divisible Jobs

Job instance(s)

Job ' -

Coordinator EXEC Resource

CDJ Interface _: I

Abstract Job

Hierarchical Job Division

| To/From Desc |

SubData
1-3

SubData ’

4-6

SubData To/From Desc

7-9 I | From/To Desc | I

SubData

Initial Results on BWA Workflow

Dynamic Partition

100000
Static Partition

Continuously Divisible
CDJ w/Virtual File

e W NMMNEE S REEEEEE EE EE EE s R WE mE wE wm

SRR s s e

o

100 1000 10000 100000

Partition Size

Frivate

NICk Hazekamp
nhazekam@nd.edu

Outline

* The Laptop Perspective
* Expressing Scalable Applications
* End User Challenges:

— The Software Dependency Problem

— The Resource Sizing Problem

— The Job Sizing Problem

. Lessons Learned

Thoughts and Lessons Learned

* Make software dependencies more explicit!

— Proposed: Nothing should be available by default, all
software should require an "import" step.

* Make resource consumption more visible!

— The laconic nature of the shell hides too much about
resource consumption.

e Users are poorly equipped to do performance
tuning: don’t commit to decisions too early.

Acknowledgements

People in the Cooperative Computing Lab

/ .'

Douglas Thain Benjamin Tovar Nicholas Hazekamp Charles Zheng Nate Kremer-Herman Tim Shaffer
Director Research

Soft. Engineer

Eamon Marmion T.J. Dasso Apply Today!
Lopez

DE-SC0015711
VC3: Virtual Clusters for
Community Computation

ACI-1642409

SI2-SSE: Scaling up Science
on Cyberinfrastructure with the
Cooperative Computing Tools

ccl.cse.nd.edu

The Cooperative Computing Lab Software | Download | Manuals | Papers

‘ake the ACIC 2015 Tutorial on Makeflow and Work Queue

About the CCL Community Highlight

‘We design software that enables our collaborators to easily harness ~ Scientists searching
large scale distributed systems such as clusters, clouds, and grids. for the Higgs boson
‘We perform fundamental computer science research in that enables have profited from
new discoveries through computing in fields such as physics, Parrot's new support
chemistry, bioinformatics, biometrics, and data mining. for the CernVM
Filesystem
CCL News and Blog (CVMFS),a
network filesystem
Global Filesystems Paper in IEEE CiSE (09 Nov 2015) tailored to providing
Preservation Talk at iPres 2015 (03 Nov 2015) ‘world-wide access to
CMS Case Study Paper at CHEP (20 Oct 2015) software
OpenMalaria Preservation with Umbrella (79 Oct 2015) installations. By
)AGVz Paper at Visual Performance Analysis using Parrot, CVMFS, and additional components integrated by the
Workshop Oct 2015) Any Data, yti ere project, physicists working in the
Virtual Wi nn IEEE CiSE (09 Sep 2015) Compact Muon Solenoid experiment have been able to create a
Three Papers at IEEE Cluster in Chicago (07 Sep 2015) uniform computing environment across the Open Science Grid.
CCTools 5.2.0 released (19 Aug 2015) Instead of maintaining large software installations at each
nt CCL Grads Take Faculty Positions (78 Aug 2015) participating institution, Parrot is used to provide access to a single
more news) highly-available CVMFS installation of the software from which
files are downloaded as needed and aggressively cached for

= efficiency. A pilot project at the University of Wisconsin has
demonstrated the feasibility of this approach by exporting excess
compute jobs to run in the Open Science Grid, opportunistically
harnessing 370,000 CPU-hours across 15 sites with seamless
cctools access to 400 gigabytes of software in the Wisconsin CVMFS
5.2.0 repository.
- Dan Bradley, University of Wisconsin and the Open Science Grid
!H.i . Tweets Tweets & replies Photos & videos

Douglas Thain

Douglas Thain al
e soTpug fur g et ! My grad students now summarize researc
pmblems in science and engineering.
O e e oy papers by preparing a whlteboa_rd in
 nd.edu/~dthain advance. Much better than a slide deck!

33 13 Photos and videos

®oe
=
is

