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Abstract. A full, extension-closed additive subcategory D of a triangulated

category C in which Hom−1
C (M, N) = 0 for all M , N in D has a natural

structure of exact category, with Ext1D(M, N) ∼= Hom1
C(M, N) naturally.

Introduction

The heart of a t-structure on a triangulated category C is a full abelian subcate-
gory D of C, closed under extensions in C, and satisfying Homn

C(M,N) = 0 for all
M , N in D and integers n < 0. Important examples of abelian categories arising
this way include categories of perverse sheaves [1]. The purpose of this note is to
prove the following fact.

Theorem. Let C be a triangulated category and D be an extension closed subcat-
egory of D such that Hom−1

D (M,N) for all M , N in D. Then C has a natural
structure of exact category (with short exact sequences obtained by suppressing the
arrows of degree 1 in the distinguished triangles of C with vertices in D). Moreover,
there are natural isomorphisms Exti

C(M,N) ∼= Homi
D(M,N) for 0 ≤ i ≤ 1.

Remarks. For any class S of objects of C such that Hom−1
C (M,N) = 0 for all M ,

N in S, the smallest extension closed full subcategory D of C containing S and a
zero object of C satisfies the conditions of the theorem.

We collect for the readers convenience the relevant definitions and background
in Section 1, and then provide a proof of the theorem in Section 2.

1. Exact and Triangulated Categories

1.1. Exact categories. Exact categories (in the sense of Quillen [9]) arise nat-
urally as full, extension closed subcategories of abelian categories, equipped with
the class of “short exact sequences” comprised of those short exact sequences of the
abelian category involving objects and maps of the exact category. For our purposes
here, an axiomatic description is more useful. We recall below the simplification of
Quillen’s exact category axioms due to Keller [5]; see also [3].

Let D be an additive category endowed with a class E of sequences

(1.1.1) 0 → M ′ i−→ M
j−→ M ′′ → 0

of objects and maps of D, to be called short exact sequences. One calls the maps
i (resp., j) occurring in some member of E an admissible monomorphism (resp.,
admissible epimorphism). (Some references e.g. [5] call the maps i inflations, the
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maps j deflations and pairs (i, j) conflations). We say that D is an exact category
(with short exact sequences E) if the following self-dual system of axioms holds:

(i) Any sequence (1.1.1) of objects and maps in D which is isomorphic to a
sequence in E is in E.

(ii) For M , M ′ in D, the split exact sequence 0 → M → M ⊕M ′ → M ′ → 0
is in E.

(iii) For (1.1.1) in D, i = ker j and j = coker i in D.
(iv) Admissible epimorphisms are closed under composition. Dually for admis-

sible monomorphisms.
(v) Admissible epimorphisms are closed under base change by arbitrary maps

in D. Dually for admissible monomorphisms.

By [5, Appendix A], these axioms are equivalent to those of Quillen [9]. For any
exact category (in which the classes of extensions form sets e.g. a small exact cate-
gory) one may define Yoneda Exti-groups with the usual properties (the arguments
are essentially the same as for abelian categories, for which see [6]). See also [7].

1.2. Triangulated categories. We recall the definition of triangulated categories
[10]; see also [4], [1], [2].

Let C be an additive category with an automorphism M 7→ M [1] : C → C,
called translation. We write M 7→ M [n] for the n-th iterate of the translation, for
any integer n and write Homn(M,N) := HomC(M,N [n]). A triangle T in C is a
sequence of morphisms

X
u−→ Y

v−→ Z
w−→ X[1].

We write this triangle as T = (X, Y, Z;u, v, w). If T ′ = (X ′, Y ′, Z ′;u′, v′, w′) is
another triangle, a morphism of triangles T → T ′ is a triple (f, g, h, ) where f ∈
Hom(X, X ′), g ∈ Hom(Y, Y ′) and h ∈ Hom(Z,Z ′) satisfy gu = u′f , hv = v′g and
f [1]w = w′h. With the evident composition of morphisms, this defines the additive
category of triangles of C.

1.3. A triangulated category is an additive category with translation and a family
of triangles of C called the distinguished triangles of C, satisfying the following
axioms:

(TR1) (a) Any triangle in C isomorphic to a distinguished triangle is distin-
guished.

(b) For any u ∈ HomC(X, Y ), there is a distinguished triangle (X, Y, Z;u, v, w).
(c) F or any X in C, (X, X, 0; IdX , 0, 0) is a distinguished triangle.

(TR2) (X, Y, Z;u, v, w) is a distinguished triangle iff (Y, Z, X[1]; v, w,−u[1]) is a
distinguished triangle.

(TR3) If T = (X, Y, Z;u, v, w) and T ′ = (X ′, Y ′, Z ′;u′, v′, w′) are distinguished
triangles and f ∈ Hom(X, X ′) and Y ∈ Hom(Y, Y ′) satisfy gu = u′f , there
exists h ∈ Hom(Z,Z ′) such that (f, g, h) is a morphism of triangles T → T ′.

(TR4) For any triangles T1 = (X, Y, Z ′;u, v, w), T2 = (Y, Z, X ′;u′, v′, w′) and T3 =
(X, Z, Y ′;u′′, v′′, w′′) such that u′′ = u′u, there exist morphisms f : Z ′ → Y ′

and g : Y ′ → X ′ in C such that (Z ′, Y ′, X ′; f, g, v[1]w′) is a distinguished
triangle and (IdX , u′, f) : T1 → T3 and (u, IdZ , g) : T3 → T2 are morphisms
of triangles.



EXACT SUBCATEGORIES OF TRIANGULATED CATEGORIES 3

The axiom (TR4) is called the octahedral axiom, and we call (TR2) the axiom for
turning triangles. We note that the triangle in (TR1)(b) is unique up to (possibly
non-unique) isomorphism

1.4. Let C be a triangulated category. An additive functor F : C → A where
A is an abelian category is called a cohomological functor on C if each triangle
(X, Y, Z;u, v, w) induces a long exact sequence

· · · → F (X[p])
F (u[p])−−−−→ F (Y [p])

F (v[p])−−−−→ F (Z[p])
F (w[p])−−−−−→ F (X[p + 1]) → · · ·

of abelian groups. The following lemma summarizes some well-known additional
facts about triangulated categories.

Lemma. (a) The opposite category Cop has a structure of triangulated cate-
gory with translation M 7→ M [−1] and a distinguished triangle (X, Y, Z;u, v, w)
in Cop for each distinguished triangle (Z, Y, X;w, v, u) in C (here, we iden-
tify the objects and morphisms in Cop with those of C in the usual way).

(b) In a distinguished triangle (X, Y, Z;u, v, w) we have vu = 0 (so by turning
triangles, wv = 0, and u[1]w = 0).

(c) For M in C, Hom(M, ?) : C → ZMod (resp., Hom(?, N) : Cop → ZMod)
is a cohomological functor.

(d) (X, Y, Z;u, v, 0) is a distinguished triangle iff 0 → X
u−→ Y

v−→ Z → 0 is a
split exact sequence in the additive category C.

(e) The direct sum (in the category of triangles of C) of two distinguished
triangles is a distinguished triangle.

(f) Let T = (X, Y, Z;u, v, w) be a distinguished triangle with Hom−1(X, Z) = 0.
If T ′ = (X, Y, Z ′;u, v′, w′) is any distinguished triangle, there is a unique
isomorphism (Idx, IdY , h) : T → T ′; moreover, if v′ = v then T ′ = T .

Proof. For (a)–(c), see e.g. [4]. For (d), see [8]. For (f), see [1, 1.1.9–1.1.10]. We
provide a proof of (e). If Ti = (Xi, Yi, Zi;ui, vi, wi) are triangles for i = 1, 2 then
their direct sum is

T1 ⊕ T2 := (⊕iXi,⊕iYi,⊕iZi;⊕iui,⊕ivi,⊕iwi).

To prove (e), we must show that T1 ⊕ T2 is distinguished if T1 and T2 are distin-
guished. The proof is similar to that of the standard fact that if (f, g, h) is a mor-
phism of distinguished triangles in which f and g are isomorphisms, then h is an iso-
morphism (see [4]). Choose a distinguished triangle T = (⊕Xi,⊕Yi, E;⊕ui, v, w).
Letting πi,X and πi,Y denote the projections for ⊕Xi and ⊕Yi respectively, we may
choose a morphism (πi,X , πi,Y , ti) : T → Ti for each i = 1, 2. These induce a mor-

phism f = (Id⊕Xi , Id⊕Yi , t) : T → T1 ⊕ T2 where t =
(

t1
t2

)
. Now any (covariant

or contravariant) cohomological functor F on C gives long exact sequences corre-
sponding to T1 ⊕ T2 and T , and F induces a morphism between these long exact
sequences. By the 5-lemma, F (t) is an isomorphism for any such F . Taking in turn
F = Hom(⊕Zi, ?) and F = Hom(?, E) shows t has right and left inverses, so t is an
isomorphism. Hence f is an isomorphism so T1 ⊕ T2

∼= T is distinguished. �
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1.5. A subcategory D of the triangulated category C is said to closed under ex-
tensions (see [1, 1.2.6]) if for every triangle (X, Y, Z;u, v, w) with X and Z in D,
one has Y in D also. A full extension closed subcategory of C containing a zero
object is additive (by 1.4(d)) and strict (i.e. contains all isomorphs in C of any of
its objects).

2. Proof of the Theorem

Throughout this section, we write “triangle” to mean “distinguished triangle.”

2.1. We restate in fuller detail the main result of this note.

Theorem. Let D be a full additive subcategory of the triangulated category C, with
D closed under extensions in C. Assume that Hom−1

C (M,N) = 0 for all M , N in
D. Then

(a) D has a natural structure of exact category in which 0 → X
u−→ Y

v−→ Z → 0
is a short exact sequence of C iff there is a triangle (X, Y, Z;u, v, w) for
some w : Z → X[1].

(b) Exti
D(M,N) ∼= Homi

C(M,N) naturally for 0 ≤ i ≤ 1 and M , N in D.
(c) For a distinguished triangle T = (X, Z, Y ′;u′′, v′′, w′′) in C with X, Y ′, Z

in D, and corresponding short exact sequence E : 0 → X
u′′

−−→ Z
v′′

−→ Y ′ → 0
in C, the natural squares

HomC(M,Y ′) //

∼=
��

Ext1C(M,X)

∼=
��

HomC(X, M) //

∼=
��

Ext1C(Y ′,M)

∼=
��

HomD(M,Y ′) // Hom1
D(M,X) HomD(Y ′,M) // Hom1

D(Y ′,M)

commute for any M in C i.e. the connecting homomorphisms (horizontal
maps in the squares) induced by T and E may be naturally identified under
the isomorphisms of (b).

2.2. Proof of 2.1(a). We verify the exact category axioms given in 1.1. The
condition Hom−1

Cop(M,N) = 0 holds for M , N in the subcategory Dop of Cop, so
we may argue using duality. First note that by 1.4(f), for any short exact sequence
0 → X

u−→ Y
v−→ Z → 0 in C, there is a unique morphism w : Z → X[1] so

T = (X, Y, Z;u, v, w) is a triangle; moreover, any triangle T ′ = (X, Y, Z ′;u, v′, w′)
is isomorphic to T , and so in particular, Z ′ is in D. Obviously, 1.1(i) follows from
(TR1)(a). The fact that D is additive, together with 1.1(ii), follows from 1.4(d).
Applying HomC(M, ?) and HomC(?,M) to a triangle T as above with X, Y , Z
in D, for M in D, shows that u = ker v and v = cokeru in D, by 1.4(c) and our
assumption Hom−1

C (N,N ′) = 0 for N , N ′ in D (cf [1, 1.2]). This establishes 1.1(iii).
If one supposes in (TR4) that u and u′ are admissible monomorphisms in D,

then X, Y , Z ′, Z and X ′ are in D, so Y ′ is in D since D is closed under extensions
in C and therefore u′u is an admissible monomorphism in D. Together with the
dual argument, this establishes 1.1(iv).

Now we show admissible monomorphisms are closed under cobase change by
arbitrary maps in D. Suppose that u′′ : X → Z is an admissible monomorphism in
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D and a : X → W is an arbitrary map in D. We must construct a pushout square

X
u′′

//

a

��

Z

c1

��
W

c2 // Z ′

in D in which c2 is an admissible monomorphism. The axioms (TR1)–(TR3) assure
that in the octahedral axiom we may take Y = Z ⊕ W , X ′ = W [1], u =

(
u′′

−a

)
,

u′ = (IdZ , 0), v′ = 0 and w′ =
(

0
−IdW [1]

)
; here, the triangle (Y,Z,X ′;u′, v′, w′)

arises by turning the triangle

(W,Z ⊕W,Z;
(

0
IdW

)
, (IdZ , 0), 0).

Let f , g be as in the statement of the octahedral axiom. Writing v = (c1, c2) where
c1 ∈ Hom(Z,Z ′) and c2 ∈ Hom(W,Z ′), we have v[1]w′ = −c2[1]. Turning the
triangle (Z ′, Y ′, X ′; f, g, v[1]w′) therefore gives a triangle (W,Z ′, Y ′; c2, f, g) which
shows that Z ′ is in D (since D is closed under extensions in C; note Y ′ is in D since
u′′ is an admissible monomorphism) and that c2 is an admissible monomorphism
in D. The triangle (X, Y, Z ′;u, v, w) gives a short exact sequence 0 → X

u−→ Y
v−→

Z ′ → 0 of D and hence we conclude that v = cokeru in D by the first paragraph
of the proof. Thus, we have a pushout square as desired. Together with the dual
argument, this establishes 1.1(v) and completes the proof of 2.1(a). Observe for
future reference that we have a morphism of triangles

(2.2.1) (a, c1, IdY ′) : (X, Z, Y ′;u′′, v′′, w′′) → (W,Z ′, Y ′; c2, f, g).

2.3. Proof of 2.1(b). We construct a natural isomorphism

η : Ext1D(−, ?) ∼= Hom1
C(−, ?)

with components ηY ′,X : Ext1D(Y ′, X) → Hom1
C(Y ′, X) for Y ′, X in D. Consider

an element e of Ext1D(Y ′, X) represented by the class of an extension

(2.3.1) 0 → X
u′′

−−→ Z
v′′

−→ Y ′ → 0

in D. There is a unique element w′′ ∈ Hom1
C(Y ′, X) such that (X, Z, Y ′;u′′, v′′, w′′)

is a triangle, and we set ηZ,X(e) = w′′. One readily verifies this gives a well-defined
map. Naturality in X of the maps ηY ′,X follows from (2.2.1), and naturality in Y ′

follows by duality. Once one has naturality, it follows that the ηY ′,X are abelian
group homomorphisms using 1.4(e) and the definition (see e.g. [6, ChVII]) of Baer
sum of extensions. Observe ηY ′,X is injective since w′′ = ηY ′,X(e) = 0 above
implies (2.3.1) is split, by Lemma 1.4(d). Finally, ηZ,X is surjective since given
w′′ ∈ Hom1

C(Y ′, X), the triangulated category axioms assure there is a triangle
(X, Z, Y ′;u′′, v′′, w′′) for some Z in C and u, v; since D is closed under extensions
in C, Z is in D and the triangle gives a short exact sequence (2.3.1) whose class
e ∈ Ext1(Y ′, X) satisfies ηY ′,X(e) = w. This completes the proof of 2.1(b).
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2.4. Proof of 2.1(c). Using the definitions as in [6], the commutativity of the
first square in (c) follows readily from 2.1(b) and (2.2.1). The commutativity of the
second square follows dually.

Remarks. Using the definition of Yoneda product, one can show the isomorphisms
of 2.1(b) can be spliced together to give a well-defined natural map

Extn
D(M,N) → Homn

C(M,N),

defined to be zero for n < 0, which is compatible with the connecting morphisms
of long exact sequences induced by a short exact sequence in D and corresponding
triangle in C.
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