Math 526 – Algebraic Geometry Homework #8 Due: Thursday, December 5, 2013 8:30 am

Problem 1. Let $X = \{(x, a, b) \mid ax^2 + bx + 1 = 2ax + b = 0\} \subset \mathbb{C}^3 \text{ and } \pi(x, a, b) = (a, b).$

- a. Compute the constructible set $\pi(X)$ and the algebraic set $\overline{\pi(X)}$.
- b. Describe $X^c \subset \mathbb{P}^1 \times \mathbb{C}^2$, the closure of X in $\mathbb{P}^1 \times \mathbb{C}^2$.
- c. Compute the algebraic set $\gamma(X^c)$ where $\gamma: \mathbb{P}^1 \times \mathbb{C}^2 \to \mathbb{C}^2$ is the extension of π .

Problem 2. Consider the homogeneous ideal $I = \langle xw - yz, x^2z - y^3, xz^2 - y^2w, z^3 - yw^2 \rangle$ contained in $\mathbb{C}[x, y, z, w]$.

- a. Compute HF_I and HP_I .
- b. Given $I = \sqrt{I}$, compute dim $\mathcal{V}(I)$ and deg $\mathcal{V}(I)$.

Problem 3. Verify Bézout's Theorem holds in $\mathbb{P}^2(\mathbb{C})$ for the following:

a.
$$F_1 = x^2 + y^2 - z^2$$
 and $F_2 = x^2 - y^2 - z^2$
b. $F_1 = xz^2 - y^3$ and $F_2 = xz^2 - xy^2 - y^3$

b.
$$F_1 = xz^2 - y^3$$
 and $F_2 = xz^2 - xy^2 - y^3$