
HomOpt: A Flexible Homotopy-Based
Hyperparameter Optimization Method

Sophia J. Abraham SABRAHA2@ND.EDU
Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN 46556

Kehelwala D. G. Maduranga GMADURANGA@TNTECH.EDU
Department of Mathematics
Tennessee Tech University
Cookeville, TN 38505

Jeffery Kinnison JKINNISO@ND.EDU
Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN 46556

Zachariah Carmichael ZCARMICH@ND.EDU
Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN 46556

Jonathan D. Hauenstein HAUENSTEIN@ND.EDU
Department of Applied and Computational Mathematics and Statistics
University of Notre Dame
Notre Dame, IN 46556

Walter J. Scheirer WALTER.SCHEIRER@ND.EDU

Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN 46556

Editor: TBD

Abstract
Over the past few decades, machine learning has made remarkable strides, owed largely to algo-
rithmic advancements and the abundance of high-quality, large-scale datasets. However, an equally
crucial aspect in achieving optimal model performance is the fine-tuning of hyperparameters. De-
spite its significance, hyperparameter optimization (HPO) remains challenging due to several fac-
tors. Many existing HPO techniques rely on simplistic search methods or assume smooth and con-
tinuous loss functions, which may not always hold true. Traditional methods like grid search and
Bayesian optimization often struggle to adapt swiftly and efficiently navigate the loss landscape.
Moreover, the search space for HPO is frequently high-dimensional and non-convex, posing chal-
lenges in efficiently finding a global minimum. Additionally, optimal hyperparameters can vary sig-
nificantly based on the dataset or task at hand, further complicating the optimization process. To ad-
dress these challenges, this paper presents HomOpt, an advanced HPO methodology that integrates
a surrogate model framework with homotopy optimization techniques. Unlike rigid methodologies,
HomOpt offers flexibility by incorporating diverse surrogate models tailored to specific optimiza-

1

tion tasks. Our initial investigation focuses on leveraging Generalized Additive Model (GAM)
surrogates within the HomOpt framework to enhance the effectiveness of existing optimization
methodologies. HomOpt’s ability to expedite convergence towards optimal solutions across varied
domain spaces, encompassing continuous, discrete, and categorical domains is highlighted. We
conduct a comparative analysis of HomOpt applied to multiple optimization techniques (e.g., Ran-
dom Search, TPE, Bayes, and SMAC), demonstrating improved objective performance on numer-
ous standardized machine learning benchmarks and challenging open-set recognition tasks. We also
integrate CatBoost within the HomOpt framework as a surrogate, showcasing its adaptability and
effectiveness in handling more complex datasets. This integration facilitates an evaluation against
state-of-the-art methods such as BOHB, particularly on challenging computer vision datasets like
CIFAR-10 and ImageNet. Comparative analyses reveal HomOpt’s competitive performance with
reduced iterations and underscore potential optimizations in execution time. All the experimenta-
tion and method code can be found here: https://github.com/sabraha2/HOMOPT

1. Introduction

Selecting appropriate hyperparameters for a particular machine learning task is a challenging prob-
lem because of the vast search space, non-linear or non-monotonic effects on performance, and the
complexity of the optimization landscape. Machine learning models consist of two distinct types of
parameters: elementary parameters, which are learned during model training, and hyperparameters,
which are higher-level free parameters that structure and control the training process. Most com-
monly, hyperparameters are set heuristically by practitioners before training, making the process
prone to inconsistencies and biases across different individuals or experiments.

Automated machine learning (AutoML) aims to automate the entire machine learning pipeline,
with automatic hyperparameter optimization (HPO) as a key subfield. HPO seeks to find the op-
timal hyperparameters for a given model to achieve the best possible performance on a specific
task while improving reproducibility and fairness. By automating the HPO process, the search for
optimal hyperparameters becomes more systematic and standardized, ensuring more consistent re-
sults when the same optimization algorithm is applied to the same problem. The performance of a
model depends on the algorithm’s architecture, the training data, and the chosen hyperparameters.
Consequently, model selection is not solely an algorithmic determination, as hyperparameters sig-
nificantly impact an algorithm’s capability to learn. Hyperparameters, which can be real-valued,
integer-valued, binary, or categorical, need to be set before training and differ from elementary
parameters learned from the data. Hyperparameter search spaces serve as proxy domains for loss
functions, which can be defined over nonlinear, non-convex spaces with many oscillations. This
complexity makes the optimization process non-trivial. Identifying the best model for a particular
learning task involves selecting hyperparameters to achieve the best performance on a specified task.
This process is known as the hyperparameter optimization problem.

Various kinds of automated hyperparameter search approaches have been proposed to solve this
optimization problem, ranging from simple methods like grid search (Duan and Keerthi, 2005) and
random search (Bergstra and Bengio, 2012a), to more rigorous methods like Bayesian optimization
(Bergstra et al., 2011a, 2015), gradient-based learning (Bengio, 2000; Maclaurin et al., 2015), and
surrogate model approaches (Zhang et al., 2015). These methods have been used in many fields
and have their own strengths and drawbacks. For example, grid search and random search are
relatively simple to implement but can be computationally expensive and inefficient in exploring
the hyperparameter space. Bayesian optimization is more efficient in searching the space but can

2

https://github.com/sabraha2/HOMOPT

be sensitive to the choice of acquisition function and prior distributions. Gradient-based learning
requires differentiable hyperparameters, which may not always be available, and surrogate model
approaches depend on the quality of the surrogate model to guide the search effectively.

Our main contribution in this paper is the development of HomOpt, a flexible Hyperparameter
Optimization (HPO) framework that employs homotopy optimization techniques alongside a vari-
ety of surrogate models (Figure 1), including Generalized Additive Models (GAMs) (Hastie and
Tibshirani, 1990) and CatBoost (Prokhorenkova et al., 2018). HomOpt dynamically adapts to the
complexities of the optimization task, effectively navigating the hyperparameter space to pinpoint
optimal configurations. Utilizing a data-driven strategy, it sequences through a range of surrogate
models that progressively refine our understanding of the hyperparameter landscape. This iterative
process is designed to mitigate the “curse of dimensionality” often encountered in high-dimensional
spaces (Nisbet, 2018, Chap. 7). Importantly, HomOpt implements a method where surrogates are
continuously deformed to each other through homotopy, a concept foundational to our approach
and previously exploited in other optimization contexts such as Iwakiri et al. (2022); Suzumura
et al. (2017); Bates et al. (2013); Griffin and Hauenstein (2015); Chen and Hao (2019).

The change in minima can be
tracked with homotopy methods

F(x)

x

F(x) : Objective function
f(N1) : Surrogate model fit to N1 points
g(N2) : Surrogate model updated fit to N2 points

global minimum
f(N1) minimum
g(N2) minimum

Figure 1: Illustration of homotopy parametrization between the initial samples and updated data samples.
The black line represents the objective function that is being evaluated. The first surrogate model f(N1) is fit
on the initial set of samples indicated by the blue circles. With more samples (indicated in pink), the updated
surrogate g(N2) yields a new minimum. As the number of data samples increases, the approximation of the
minimum improves. These changing minima can be tracked with homotopy methods.

HomOpt takes a new approach in hyperparameter optimization by integrating homotopy tech-
niques with a versatile selection of surrogate models, enhancing adaptability and computational ef-
ficiency. Unlike traditional HPO methods that rely on static models, HomOpt utilizes the strengths
of models like GAMs and CatBoost, adapting its strategy based on the evolving requirements of
the task. This method improves search thoroughness in complex, high-dimensional spaces and re-
duces computational overhead by minimizing the number of model evaluations needed. Prior work
by Iwakiri et al. (2022) and Suzumura et al. (2017) underscores the foundational use of homotopy
in optimization, which HomOpt leverages to optimize performance trajectories.

One key aspect is that HomOpt can be used augment base optimization strategies. This flex-
ibility is crucial in our experiments, where HomOpt is paired with traditional methods, such as

3

Random Search or Bayesian Optimization, to expedite the convergence process. By overlaying
HomOpt on these base methods, we harness the strengths of both approaches, achieving faster con-
vergence without sacrificing the thoroughness of the search. This is demonstrated in this paper in
two distinct learning scenarios: closed-set and open-set learning. While closed-set learning only
works on identifying predefined classes, open-set learning (Scheirer et al., 2012) trains models that
have incomplete knowledge of the world they must operate in and allow the incremental learning
setting, where newly identified classes are added to the recognition model over time. We conducted
extensive experiments to showcase the efficacy of HomOpt in both closed-set and open-set learning
scenarios with the Extreme Value Machine (EVM) (Rudd et al., 2017), which is a scalable nonlinear
open-set classifier. The empirical analysis includes comparisons with state-of-the-art methods and
sensitivity analyses on the meta-parameters of HomOpt, providing insights into its performance
across diverse datasets and learning tasks.

Additionally we introduce CatBoost into the HomOpt framework as a surrogate, targeting com-
plex, high-dimensional datasets such as CIFAR-10 and ImageNet. CatBoost, a gradient boosting
algorithm that excels in handling categorical features and complex data structures, is employed to
navigate the hyperparameter spaces of deep learning models effectively. This integration showcases
HomOpt’s adaptability, achieving notable reductions in the number of optimization iterations and
demonstrating the potential to enhance execution times, thereby showing a competitive edge over
existing state-of-the-art methods.

To summarize, our contributions are the following:

1. Adaptability and Efficiency: HomOpt achieves improvement in optimization efficiency
and adaptability across various problem domains by intelligently approximating local regions
of interest within the hyperparameter space, rather than attempting to model the entire sur-
face. This approach, grounded in the principles of homotopy and the Morse lemma, enables
HomOpt to adaptively navigate complex landscapes and converge to optimal solutions more
rapidly than traditional methods.

2. Applicability to Diverse Domains: HomOpt can be applied across a spectrum of search
domains, including continuous, discrete, and categorical spaces. This wide applicability is
facilitated by HomOpt’s model-agnostic framework, which can incorporate various types of
surrogate models to align with the specific characteristics of the optimization problem. This
adaptability attests to HomOpt’s flexibility, enabling effective optimization in diverse settings
and showcasing its utility beyond the confines of traditional hyperparameter optimization.

3. Theoretical and Empirical Advantages over Existing Homotopy Methods: Our work
not only introduces a novel integration of homotopy optimization with surrogate modeling
but also establishes theoretical and empirical advantages over prior homotopy optimization
efforts. By leveraging the dynamic sequencing of surrogate models and employing a new
continuous deformation approach, HomOpt achieves more stable and efficient optimization
trajectories. This methodology is validated through extensive experimentation, demonstrat-
ing HomOpt’s ability to outperform traditional optimization methods in a variety of machine
learning contexts.

4. Universal Compatibility with Loss Functions: HomOpt is designed to be universally com-
patible with any type of loss function, making it a highly versatile tool for a broad array of

4

optimization problems. This universality is crucial for its application across different machine
learning tasks and models, ensuring that HomOpt remains effective regardless of the specific
nature or complexity of the objective function.

5. Open-Source Contribution: In addition to the theoretical and practical advancements intro-
duced by HomOpt, we contribute to the community by releasing a flexible, and open-source
software package. This package facilitates the application of HomOpt to a wide range of
search problems, enabling researchers and practitioners to rapidly deploy HomOpt in their op-
timization tasks. All code and data is available at https://github.com/sabraha2/
HOMOPT.

2. Related Work

Basic Hyperparameter Optimization. Hyperparameter optimization methods involve searching
for optimal hyperparameter values to effectively identify high-performing models within the hy-
perparameter space. Non-Bayesian approaches, such as hand-tuning and grid search (Duan and
Keerthi, 2005), are simple to use. However, they rely upon adequate domain knowledge, which
may not readily be available. Furthermore, these methods may overlook optimal values in contin-
uous domains and inevitably prove brittle when applied to unseen cases (Li et al., 2017). Random
search (Bergstra and Bengio, 2012a) mitigates this issue by removing the requirement of discretiz-
ing the search space and provides a larger coverage of the hyperparameter space. Although random
search is simple to use, it is often inefficient sampling-wise. In order to narrow the scope of the
search, multiple software frameworks for hyperparameter search based on random search have been
proposed, including those by Bergstra et al. (2015, 2011a); Betrò (1992); Wu et al. (2019); Bengio
(2000); Maclaurin et al. (2015); Ilievski et al. (2017).
Population-Based Approaches. Population-based algorithms take inspiration from biology and
improve upon computational efficiency over purely random search-based methods (Loshchilov and
Hutter, 2016). These methods include Evolutionary Algorithms and swarm algorithms like particle
swarm optimization (PSO) (Boeringer and Werner, 2005), which iteratively update the generation
of hyperparameters with a stochastic velocity term. While effective for lower dimensional spaces,
methods like PSO can get stuck in a local optimum for high dimensional, complex scenarios with
low convergence rates over the iterative process (Kennedy and Eberhart, 1995).
Bayesian Optimization. In order to perform the search using statistical analysis, Bayesian opti-
mization methods have been proposed (Bergstra et al., 2015, 2011a; Betrò, 1992; Wu et al., 2019)
based on Bayes’ theorem. It sets a prior over the optimization function and gathers the information
from the previous sample to update the posterior of the optimization function. A utility function
selects the next sample point to maximize or minimize the optimization function. One example of
a popular Bayesian method is the Sequential Model-Based Algorithm Configuration (SMAC) (Lin-
dauer et al., 2017) consisting of Bayesian optimization combined with a simple racing mechanism
on the instances to efficiently decide which of two configurations performs better.

Tree-Structured Parzen Estimators (TPE) (Bergstra et al., 2011a, 2015), which is another Bayes-
ian method, is a sequential model-based optimization (SMBO) approach. SMBO methods sequen-
tially construct models to approximate the performance of hyperparameters based on historical mea-
surements, and then subsequently choose new hyperparameters to test with based on a constructed
model.

5

https://github.com/sabraha2/HOMOPT
https://github.com/sabraha2/HOMOPT

Gradient-based Approaches. Gradient-based optimization methods (Bengio, 2000; Maclaurin
et al., 2015) compute gradients of cross-validation performance with respect to all hyperparame-
ters by chaining derivatives backwards through the entire training procedure. This is advantageous
over other methods since information regarding the shape of the objective surface and behaviors
including extrema in the parameter space can be acquired. Hyperparameter gradients are computed
by reversing the dynamics of stochastic gradient descent. Gradients enable the optimization of
the hyperparameters, including step-size, momentum schedules, weight initialization distributions,
richly parameterized regularization schemes, and neural network architectures. However, informa-
tion about the gradients is often unavailable, computing gradients is computationally expensive, and
gradient-based approaches suffer from inefficiency when learning long-term dependencies (Bengio
et al., 1994).
Surrogate-based Approaches. Surrogate-based optimization methods (Eggensperger et al., 2014;
Xie et al., 2021; McLeod et al., 2018) are used when an objective function is expensive to evaluate.
The Surrogate Benchmarks for Hyperparameter Optimization (Eggensperger et al., 2014) uses the
following strategy: cheap-to-evaluate surrogates of real hyperparameter optimization benchmarks
that yield the same hyperparameter spaces and feature-similar response surfaces. Specifically, this
approach trains regression models on data representing a machine learning algorithm’s performance
under a broad range of hyperparameter configurations and then cheaply evaluates hyperparameter
optimization methods using the model’s performance predictions instead of the actual algorithm.
In McLeod et al. (2018), a Gaussian Process-based (GP) model was used to identify a convex
region and a probability-based approach was used to estimate a convex region centered around the
posterior minimum. Our approach uses the exploitation from multiple optimization techniques to
identify the region of interest for surrogate approximation.
Homotopy-based Approaches. Homotopy methods, also known as continuation methods, have
established their value across numerous fields of numerical analysis, providing solutions to diverse
mathematical and engineering challenges. These methods work by iteratively transitioning from
straightforward to complex problem settings, a process that facilitates globally convergent and com-
prehensive solutions for nonlinear problems (Rheinboldt, 1981; Allgower and Georg, 1990; Bates
et al., 2013). While traditionally leveraged in areas outside of HPO, homotopy methods are begin-
ning to show promise within this domain, offering potential advantages in training efficiency and
model accuracy that have yet to be fully explored in comparison to conventional optimization tech-
niques. Early applications to machine learning by Chow et al. (1991), followed by Pathak (2018);
Chen and Hao (2019); Mehta et al. (2022), have utilized data continuation and model continuation
strategies. These approaches aim to simplify the original optimization task into a series of incre-
mentally challenging stages, primarily focusing on elementary parameter optimization and model
initialization.

Extending beyond these foundational applications, recent studies by Iwakiri et al. (2022) and
Suzumura et al. (2017) have applied homotopy methods to hyperparameter tuning for specific ma-
chine learning models, such as support vector machines and neural networks. These efforts un-
derscore the efficiency and effectiveness of homotopy methods in navigating the intricate hyperpa-
rameter spaces, yielding improvements over traditional techniques like grid search. Building upon
these advancements, our contribution with the HomOpt framework broadens the scope of homotopy
methods to a more generalized application in HPO across an extensive range of machine learning
algorithms. HomOpt distinguishes itself by incorporating a dynamic selection of surrogate models,
including GAMs for their interpretability and CatBoost for managing complex datasets. This ap-

6

proach not only adheres to the foundational principles of homotopy but also significantly enhances
its adaptability and utility for contemporary machine learning challenges.

Moreover, HomOpt aligns with insights from Mehta et al. (2022) on the application of homo-
topy for understanding neural network loss surface topology. Although Mehta et al. do not directly
address HPO in their work, they provide valuable perspectives on leveraging homotopy methods
to overcome optimization obstacles. These insights are integral to the objectives of the HomOpt
framework. Our work moves beyond the initial limited scope of homotopy applications in machine
learning, proposing a flexible and comprehensive approach to HPO that aims to improve the ef-
ficiency and efficacy of model tuning across a diverse array of machine learning algorithms and
datasets.

The prior work on hyperparameter optimization leveraging homotopy methods presents com-
pelling advancements that HomOpt seeks to build upon. The work by Felten et al. (2023) develops
a two-phase hyperparameter optimization approach for multi-objective reinforcement learning, in-
tegrating homotopy optimization to systematically adjust hyperparameters from simple to complex
configurations. This method not only highlights its versatility but also demonstrates its potential to
streamline the optimization process in complex multi-objective environments. Similarly, Liu et al.
(2023) harness homotopy within a Bayesian Optimization framework to address the challenges of
HPO, providing a novel perspective on integrating these methods for more efficient model tuning.

While continuation algorithms as discussed in Rojas-Delgado et al. (2022) provide a direct ap-
proach to hyperparameter optimization by transforming a surrogate of the fitness function progres-
sively to approximate the true fitness function, HomOpt takes a different approach by embedding
these algorithms within a homotopy framework. Unlike the approach where continuation primar-
ily simplifies the fitness landscape statically, HomOpt employs a dynamic homotopy process that
not only transitions between different surrogate models but also adapts these models in response to
new data. This dynamic adaptation allows HomOpt to efficiently navigate complex hyperparameter
landscapes by exploiting the structured continuity of homotopy, which methodically explores the
path of least resistance between local optima across evolving surrogate models.

This use of homotopy extends the traditional application of continuation algorithms by incorpo-
rating a sequence of surrogate models that are continuously updated. Each model in the sequence is
designed to capture increasingly accurate representations of the underlying hyperparameter space,
thus facilitating a more granular optimization process compared to fixed-model methods like Dif-
ferential Evolution (Storn and Price, 1997). In essence, HomOpt not only follows the continuity
principle inherent in continuation methods but also enhances it through strategic model transitions,
which are governed by both the homotopy paths and the insights gained from new data accumula-
tions. This approach allows for a flexible, yet precise, exploration and exploitation strategy that is
robust to the typical pitfalls of high-dimensional optimization, such as the curse of dimensionality
and local optima entrapment.

3. Homotopy-Based Hyperparameter Optimization

We propose a new data-driven hyperparameter optimization approach that efficiently navigates the
complex landscape of model parameters through the integration of surrogate modeling and homo-
topy techniques. The efficacy of the HomOpt framework (Algorithm 1) in navigating the hyper-
parameter optimization landscape hinges on the selection of surrogate models and the construction
of an appropriate homotopy between them. First, surrogates are used to model the objective since

7

Algorithm 1: Homotopy Optimization Framework

1 Input: Timeframe T , trial limit NT , sample sizeW , localization threshold D, sampling
method Inner Method, data fraction k.

2 Output: Optimal hyperparameter set.
3 Initialize: Counter CT ← 0, trial data.
4 while within time T and trial limit NT do
5 if preliminary phase or at specific intervals then
6 Sample hyperparameters via Inner Method.
7 else if designated intervals then
8 Adjust parameters by perturbation, focusing on the best within D.
9 else

10 // Train exploration model f on a selected fraction of recent data.
11 // Train exploitation model g on top-performing configurations or updated dataset
12 Employ homotopy optimization (see Alg. 2), transitioning from exploration to

exploitation models, to identify promising candidates.
13 Evaluate new candidates, refresh trial data.
14 end
15 Update trial data with new evaluations.
16 end
17 Derive the set with minimum loss from trial data as the optimal set.

Algorithm 2: Homotopy Optimization

1 Input N number of steps along interval, homotopy function H(x, t), x(0) = x0 a local
minimum of H(x, 1)

2 Output Local minimum of H(x, 0)
3 ∆← 1/N
4 t← 1
5 for k← 1 to N do
6 t← t−∆

7 Use Nelder-Mead optimization to minimize H(x, t) starting with x(k−1) to obtain x(k).

8 return x(N)

the function and its gradient are computationally expensive to evaluate. In particular, a sequence
of surrogate models is constructed as new data is gathered. A continuous deformation from the
current surrogate model to the updated one that includes the new data is formed. Second, lever-
aging the concept of continuous deformation further, HomOpt utilizes homotopy to establish a
pathway between local optima of consecutive surrogate models. This methodical approach not only
enhances the efficiency of the optimization process but is also underpinned by solid mathematical
foundations, promoting a more consistent convergence towards optimal parameters with reduced
iterations. HomOpt’s design is deliberately model-agnostic, offering the flexibility to incorporate
various types of surrogate models to suit different optimization challenges.

8

The first step is to select a family of surrogate models. The versatility in surrogate model selec-
tion positions HomOpt to adaptively align with the problem’s characteristics more effectively than
fixed-model methods like Differential Evolution (Storn and Price, 1997), particularly in complex or
high-dimensional spaces where the objective function’s nature challenges traditional assumptions.
This adaptability is a critical advantage in environments with non-convex, noisy, or discontinuous
loss functions, though it necessitates judicious surrogate model selection to mitigate misalignment
risks with the optimization landscape (Forrester et al., 2008). Some examples include polynomial
spline fitting with several degrees of freedom and radial basis function interpolation. Selecting an
appropriate surrogate model involves evaluating the model’s capacity to approximate the true loss
function’s behavior across the hyperparameter space. Mathematically, this capacity can be char-
acterized by the model’s approximation error, ϵ, defined as the difference between the true loss
function, L(x), and the surrogate model’s prediction, M(x), over the hyperparameter vector x
(Forrester and Keane, 2009; Tibshirani and Hastie, 1987):

ϵ(x) = |L(x)−M(x)|. (1)

The choice between models hinges on minimizing this error across the domain of interest. In
our investigation, we demonstrate the adaptability and breadth of HomOpt through the deployment
of two distinct surrogate models. We use a generalized additive model (GAM) (Hastie and Tibshi-
rani, 1990), which is a type of statistical model that is used to describe the relationship between
a response variable and one or more predictor variables and Catboost, a gradient boosting library
that is specifically designed to handle categorical features. GAMs, with their flexibility to model
nonlinearities through smooth functions, are particularly suited for datasets where the relationship
between hyperparameters and the loss function is expected to be smooth but complex. This is sup-
ported by the model’s ability to fit additive smooth functions, si(xi), for each hyperparameter xi,
optimizing the smoothness penalty to prevent overfitting (Hastie and Tibshirani, 1990). GAMs are
similar to generalized linear models (GLMs), but they allow for nonlinear relationships between the
response (output or target variable we try to predict) and predictor variables (input features used to
make the prediction) by using smooth functions to model the relationships. These can be estimated
using penalized regression techniques, such as penalized splines, and they can provide more flexible
and accurate models than GLMs in many cases. The results of some initial empirical experiments
along with some theoretical advantages described below suggest that the extrapolation behavior is
more reasonable for GAMs and, for multidimensional data, is more suitable and provides a more
accurate fit. In our implementation we utilize GAMs via PyGAM (Servén et al., 2018).

From a theoretical standpoint, GAMs provide a more interpretable model than other surrogate
models as the smoothing functions that are used to model the relationships between the response
and predictor variables can be visualized and analyzed directly. This can be especially useful for
understanding and explaining the underlying patterns and relationships in the data, which can be
difficult to do with more complex and opaque models like random forests. Additionally, GAMs
can provide more accurate predictions for certain types of data, such as data with nonlinear or
non-monotonic relationships between the response and predictor variables. Moreover, relationships
between the response and predictor variables in GAMs can provide insight into the importance of
each feature. For example, the magnitude and significance of the coefficients of the smoothing
functions can be used to determine the relative importance of each feature, and the shape of the
smoothing function can provide additional information about the nature of the relationship between
the response and predictor variables. Although a detailed theoretical analysis of these aspects is

9

beyond the scope of this paper, they represent a powerful tool for understanding and interpreting
the results of the hyperparameter optimization process. For practical demonstration, additional
visualizations and analyses that illustrate these capabilities in optimizing the Branin function are
presented in Appendix B.

In contrast, models like CatBoost are ensemble methods that offer robust performance in the
presence of categorical variables and complex interaction effects. Their suitability can be assessed
through the ensemble diversity, δ, which measures the variance in predictions across the ensemble,
providing an indication of the model’s ability to explore the parameter space (Liaw et al., 2002;
Dorogush et al., 2017; Prokhorenkova et al., 2018):

δ = Var
(
{Mi(x)}Ni=1

)
, (2)

where Mi(x) denotes the prediction of the i-th model in the ensemble for hyperparameters x, and
N is the number of models in the ensemble. CatBoost stands out for its efficient handling of cate-
gorical features and robust gradient boosting mechanism, making it an invaluable tool for exploring
and exploiting the hyperparameter space. Unlike traditional boosting algorithms, CatBoost does
not require extensive preprocessing of categorical features, thereby streamlining the optimization
process. Moreover, its gradient boosting mechanism enables iterative refinement of predictions,
allowing HomOpt to dynamically balance exploration and exploitation strategies. This capability
is crucial for efficiently navigating through the hyperparameter space and identifying promising
regions for further exploration.

Following the selection of the family of surrogate models, the second step is to construct a con-
tinuous deformation between surrogate models as new data is collected and then utilize homotopy
methods (Algorithm 2) to track a local minimum along this deformation as illustrated in Figure 2.
Unlike discrete methods such as Bayesian Optimization with Gaussian Processes (Rasmussen et al.,
2006) or Tree Parzen Estimator (Bergstra et al., 2011b), HomOpt’s continuous approach allows for
a refined search near promising areas, potentially uncovering superior optima (Watson et al., 1997).
The choice of homotopy plays a crucial role in navigating from one surrogate model to another.
While linear homotopy offers simplicity and ease of implementation, alternative forms could poten-
tially offer more nuanced transitions, accommodating regions of the hyperparameter space where
the loss function’s gradient undergoes significant changes. The decision to employ a linear versus a
non-linear homotopy can be informed by examining the transition smoothness, σ, defined as:

σ =

∫ 1

0

∥∥∥∥dHdt
∥∥∥∥ dt, (3)

where
∥∥dH

dt

∥∥ measures the norm of the derivative of H with respect to t, quantifying the rate of
change in the homotopy path, guiding the selection of a linear versus non-linear approach (Allgower
and Georg, 1990; Yamamura et al., 1999). A smaller value of σ indicates a smoother transition,
potentially leading to more stable optimization trajectories.

For a general overview of homotopy methods, with a focus on nonlinear polynomial functions,
see (Bates et al., 2013). In the context of optimization using surrogate models that depend upon
continuous variables, local minima are critical points of the surrogate model, i.e., the gradient of the
surrogate model vanishes at each local minimum. Although computing all critical points of the ob-
jective function using homotopy methods has shown to be useful in some applications (Mehta et al.,
2022; Baskar et al., 2022), the approach utilized here does not rely upon computing all critical points

10

Figure 2: Evolution of Minima Using the Homotopy Method: This figure illustrates the iterative refinement
of minima through the application of the homotopy method in surrogate model optimization. The process be-
gins with the construction of surrogate models, f(x) and g(x), based on initial and expanded data samples,
respectively. The homotopy function H(x, t) smoothly transitions between these surrogates as t varies from
0 to 1. The green circles represent the local minima of H(x, t) at different t values, illustrating the dynamic
nature of the optimization process. The path of these evolving minima is traced across the homotopy, high-
lighting the progress in approximating the optimal solution.

to provide a scalable framework to higher-dimensional and non-polynomial systems. The versatil-
ity of HomOpt is demonstrated through two distinct implementations using Generalized Additive
Models (GAM) and CatBoost models, each demonstrating the framework’s dynamic adaptability to
evolving datasets and optimization goals.

3.1 Implementation with Generalized Additive Models (GAM)

We begin with a GAM, represented as f(x), tailored to an initial dataset of N1 observations. This
model acts as the surrogate for the objective function in an unconstrained optimization environment,
where an initial local minimum, xold, is pinpointed. Upon acquiring new observations, expanding
the dataset to N2 points, we transition to an updated GAM, g(x). To make this transition, we deploy
a linear homotopy to facilitate a seamless deformation from f to g. This establishes a dynamic
pathway through the optimization landscapes of the surrogate models:

H(x, t) = t · f(x) + (1− t) · g(x), where H(x, 1) = f(x), and H(x, 0) = g(x). (4)

This methodology introduces a family of unconstrained optimization problems, defined by the
objective function H(x, t), with a known local minimum at t = 1 transitioning from xold. It thus
delineates a homotopy path of local minima, parameterized by t, emanating from xold towards
a new local optimum, xnew, as t shifts to 0. Employing standard homotopy theory (Sommese and
Wampler, 2005) when f and g are analytic offers guarantees on the path’s existence and smoothness,
culminating at the desired local minima xnew at t = 0. Our framework is designed to tackle a broad
spectrum of HPO problems, employing strategies like Nelder-Mead optimization (Nelder and Mead,
1965), which do not depend on the smoothness or differentiability of the surrogate models.

3.2 Implementation with CatBoost Models

We extend our approach to incorporate CatBoost models, aiming to deepen our exploration of the
homotopy concept within HPO. We introduce two CatBoost models, denoted as f(x) for exploration
and g(x) for exploitation, each serving a specific strategic purpose.

Exploration Model f(x): Tailored to probe the hyperparameter space, f(x) is trained across
a broad dataset of hyperparameter configurations and their associated performance outcomes to

11

identify unexplored, potentially high-performing regions. This model leverages the predictive power
of CatBoost to forecast promising areas within the parameter space that merit further optimization.

Exploitation Model g(x): This model concentrates on optimizing within regions previously
recognized for their potential. It aims to intensify the search and optimization efforts in these se-
lected areas, improving the precision and effectiveness of the HPO process.

The HomOpt framework employs a dynamic optimization approach, modulated by a homo-
topy parameter t, to balance between the exploration and exploitation models. The optimization
trajectory is again governed by:

H(x, t) = t · f(x) + (1− t) · g(x),

where t is systematically adjusted to ensure a seamless transition from broad exploration to fo-
cused exploitation. This methodical strategy for generating new configurations and evaluating them
against the combined output of f(x) and g(x) demonstrates the framework’s capacity for adapt-
ability. Moreover, it reflects how iterative refinement, informed by continuous feedback, enhances
the HPO strategy.

3.3 One-Dimensional Illustration

0.5 1.0 1.5 2.0 2.5
x

1

0

1

2

3

4

5

f(x
)

Sample points
optimal point

Gramacy & Lee
f(x)[10 Samples]

g(x) [20 Samples]

(a) Start of optimization

0.5 1.0 1.5 2.0 2.5
x

1

0

1

2

3

4

5

f(x
)

Sample points
optimal point

Gramacy & Lee
f(x)

g(x)

(b) After 8 optimization steps

Figure 3: The Plot of the Gramacy and Lee function on the domain [0.5, 2.5] (blue curve). The strategy used
by HomOpt is to find a homotopy continuation path from the minimum of f(x) to the minimum of the g(x).
(a) Local surrogate approximations of f(x) (green curve), and surrogate approximation of g(x) (cyan curve)
at the initial stages. (b) Local surrogate approximations of f(x) (green curve), and surrogate approximation
of g(x) (cyan curve) after eight homotopy optimization steps.

To illustrate HomOpt, we consider the optimization of the test function p(x) defined by (Gra-
macy and Lee, 2012) on the domain [0.5, 2.5], where

p(x) =
sin(10πx)

2x
+ (x− 1)4. (5)

The plot of p(x) is shown in blue in Figure 3. Consider two GAMs f and g constructed from 10 and
20 sample points, respectively, as shown in Figure 3(a). Note that the number of samples used in

12

f and g were selected arbitrarily for illustration purposes. The strategy for HomOpt is to consider
the homotopy path from a known local minimum of f(x) to a local minimum of g(x) that we
want to compute. Figure 3(b) shows the optimized surrogate curves f(x) and g(x), along with the
corresponding optimal point obtained after eight iterations of the HomOpt method demonstrating
convergence to the global minimum.

3.4 Two-Dimensional Example

x20 10 0 10 20y
20

10
0

10
20

f(x,y)

5
10
15
20
25
30

(a) Griewank Function

x
20 10 0 10 20 y20 10 0 10 20

f(x
,y

)

0
5
10
15
20
25
30

Sample points optimal point

(b) HomOpt convergence to optimal point

Figure 4: (a) Plot of the modified Griewank function on the domain [−20, 20]2. (b) HomOpt converged
towards the optimal point shown (black point) using 100 randomly sampled points (red points).

6 4 2 0 2 4 6 6
4

2
0

2
4

6

1
2
3
4
5
6

(a) Surrogate from 10 samples

6 4 2 0 2 4 6 6
4

2
0

2
4

6

1
2
3
4
5
6

(b) Surrogate from 20 samples

6 4 2 0 2 4 6 6
4

2
0

2
4

6

1
2
3
4
5
6

(c) Surrogate from 40 samples

Figure 5: Plots of the modified Griewank function on the domain [−7, 7]2 with the surrogate approximation
plotted as a black grid fit to different numbers of samples. As the numbers of samples increases, the surrogate
function begins to get a better approximation of the underlying function and converge towards the global
optimum.

13

Now consider the two-dimensional case. The Griewank function, introduced by Griewank (Sur-
janovic and Bingham, 2013), is a standard test example in optimization problems in the 2D plane.
However, to prevent the global minimum from being located at the origin and increase the difficulty
of the problem, a modified function is considered over the domain [−20, 20]2:

g(x, y) =
(x− 5)2 + (y + 3)2

40
− cos(x− 5) · cos

(
y + 3√

2

)
+ 1 (6)

which is plotted in Figure 4(a).
In Figure 4(b), the optimal point (in black) for the Griewank function is shown along with the

sampled points (in red). HomOpt was able to successfully converge to the optimal point within
100 sampled points. The Griewank function is relatively simple and a low-dimensional problem
and as such 100 sampled points was sufficient to accurately approximate the objective function and
converge to the optimum. It is important to note that for more complex and higher dimensional
problems, it may be necessary to use a larger number of sampled points. As depicted in Figure 5,
the black grid representing the approximation of HomOpt improved as more sample points were
added, learning the overall shape of the Griewank function within 40 sample points.

3.5 Optimization Software Framework Integration

Our work is designed to extend the Scalable Hardware-Aware Distributed Hyperparameter Optimi-
zation (SHADHO) framework, known for its versatility in executing a wide array of hyperparameter
optimization strategies, including Random Search, Bayesian Optimization, Particle Swarm Opti-
mization (PSO), Sequential Model-based Algorithm Configuration (SMAC), and Tree-structured
Parzen Estimator (TPE) (Kinnison et al., 2018). SHADHO is designed for distributed computing
environments, offering a scalable solution for complex machine learning model optimization across
extensive hyperparameter spaces. A unique feature of SHADHO is its capability to incorporate
hardware specifications into the optimization process, optimizing computational resources along-
side model performance metrics.

Building upon SHADHO’s software framework, we introduce the extension of the integration of
HomOpt. This extension specifically takes advantage of GAM approach. This method dynamically
adapts to the evolving data landscape, training surrogate models on fractions of the data determined
by the parameter k, and iteratively refining the search for optimal hyperparameters via a homotopy
process. Our method stands out by its employment of random perturbations and Nelder-Mead
optimization, aimed at discovering and converging to local optima with enhanced precision.

In parallel, we’ve conducted experiments outside SHADHO’s immediate framework using Cat-
Boost to investigate HomOpt not only in the context of boosting base strategies but to also compare
it directly against state of the art methods. Despite the robust capabilities of SHADHO in dis-
tributed hyperparameter optimization, it currently lacks specific integrations necessary for running
the complete set of HPOBench benchmarks. We adopt a similar homotopy-inspired approach but
pivots towards CatBoost’s strengths in handling categorical features and complex data relation-
ships. By alternating between exploration and exploitation models within the CatBoost framework,
this optimizer fine-tunes the hyperparameter search, showcasing the flexibility and adaptability of
the HomOpt method across different surrogate models. This specific implementation and all of the
experimentation scripts is available for reproducibility1.

1. See repository at https://github.com/sabraha2/HOMOPT

14

https://github.com/sabraha2/HOMOPT

HomOpt’s can seamlessly integrate with existing optimization frameworks like SHADHO, pro-
viding a powerful, scalable solution for hyperparameter tuning. The source code for SHADHO’s
latest release, featuring HomOpt, is available for the community to explore and further develop2.

4. Experiments

We evaluate HomOpt on a multitude of tasks. We begin with a collection of machine learning
benchmarks for classification tasks on tabular data using a Multi-Layer Perceptron (MLP), Sup-
port Vector Machine (SVM), Random Forest, XGBoost, and Logistic Regression provided through
HPOBench (Eggensperger et al., 2021).

Additionally, we include a set of difficult open-set classification experiments. In the open-set
scenario, models have incomplete knowledge of the world they must operate in and unknown classes
are queried during testing (Scheirer et al., 2012). Open-set classification is notoriously sensitive to
hyperparameters and provides a complex scenario where the loss landscape is arbitrary, polluted
by noise, and may consist of steep gradients resulting in the absence of regularity. This set of
experiments also captures how well HomOpt can boost methods in changing environments and
unseen conditions.

We use the Extreme Value Machine (EVM) (Rudd et al., 2017), which is a scalable nonlinear
classifier that supports open-set classification by rejecting inputs that are beyond the support of the
training set. The EVM relies on a strong feature representation and every represented sample in
the feature representation becomes a point. It utilizes a binning strategy that groups all the points
in their feature representation by their corresponding label. These bins are utilized to create a “1
vs. rest” classifier for each known class. It generates a classifier where a Weibull distribution is fit
on the data for each known class and is made to avoid the negative data points (unknown classes).
This process is repeated for all known classes. When a new data point (a sample represented by its
feature vector) is provided to the EVM, it is evaluated in the feature space, and the probability of
the point belonging to each representative class is determined.

Parameter Description Domain

Threshold Probability threshold used to determine if an input coor-
dinate point should be classified as ‘unknown’ if the point
falls below this probability of inclusion.

[0, 1]

Tailsize Defines how many negative samples are used to estimate
the model parameters.

[0, 0.5]

Cover threshold The probability threshold used to eliminate extreme vec-
tors if they are covered by other extreme vectors with that
probability.

[0, 1]

Distance multiplier The multiplier to compute margin distances. [0, 1]

Distance function The distance function used to compute the distance be-
tween two samples.

Cosine or Eu-
clidean

Table 1: Hyperparameters used in training the EVM.

2. See the extended SHADHO framework at https://github.com/jeffkinnison/shadho

15

https://github.com/jeffkinnison/shadho

Table 2: OpenML Task IDs used for HPOBench experiments. The table displays the total number of instances
(combining the training and testing sets) (#obs) and the number of features prior to any preprocessing (#feat)
for each dataset.

Name TID #obs #feat

blood-transf.. 10101 748 4

vehicle 53 846 18

Australian 146818 690 14

car 146821 1728 6

phoneme 9952 5404 5

segment 146822 2310 19

credit-g 31 1000 20

kc1 3917 2109 22

sylvine 168912 5124 20

kr-vs-kp 3 3196 36

jungle che.. 167119 44819 6

mfeat-factors 12 2000 216

shuttle 146212 58000 9

jasmine 168911 2984 145

cnae-9 9981 1080 856

numerai28.6 167120 96320 21

bank-mark.. 14965 45211 16

higgs 146606 98050 28

adult 7592 48842 14

nomao 9977 34465 118

The hyperparameters involved in training the EVM are included in Table 1. The datasets used in
the HPOBench experiments can be found in Table 2 and the benchmark details along with their con-
figuration spaces can be found in Table 3. For further specifications regarding specifics on the bench-
marks and datasets from HPOBench please refer to the original paper (Eggensperger et al., 2021).

Furthermore, we assess the efficacy of HomOpt using CatBoost surrogate models on the chal-
lenging NB201 neural architecture search (NAS) tabular benchmarks (Dong and Yang, 2020) within
HPOBench, targeting the CIFAR-10 and ImageNet16-12 0 datasets. This evaluation not only
demonstrates HomOpt’s ability to improve base methods, but compares HomOpt directly against
state-of-the-art black box and multi-fidelity optimization techniques, allowing us to measure its per-
formance in a comparative landscape. In this context, fidelity refers to the accuracy and complexity
of the model evaluations used to optimize the objective function. Lower-fidelity models typically
offer quicker but less accurate evaluations, while high-fidelity models provide more accurate but
computationally expensive evaluations. It is important to note that unlike multi-fidelity methods,
which vary the accuracy and computational expense of model evaluations, HomOpt consistently
applies a single-fidelity approach throughout the optimization process. This approach ensures uni-

16

Table 3: Configuration spaces for the benchmarks included in HPOBench, with hyperparameters and their
ranges for each model.

Benchmark Name Range

SVM C [2−10, 210]

gamma [2−10, 210]

LogReg alpha [1e-05, 1.0]

eta0 [1e-05, 1.0]

XGBoost colsample bytree [0.1, 1.0]

eta [2−10, 1.0]

max depth [1, 50]

reg lambda [2−10, 210]

RandomForest max depth [1, 50]

max features [0.0, 1.0]

min samples leaf [1, 2]

min samples split [2, 128]

MLP alpha [1.0e−08, 1.0]

batch size [4, 256]

depth [1, 3]

learning rate init [1.0e−05, 1.0]

width [16, 1024]

formity in the quality and detail of evaluations, focusing on achieving precision with every iteration.
The outcomes of these benchmarks reveal HomOpt’s robust capabilities in managing complex hy-
perparameter optimization tasks and highlight its performance benefits over traditional methods,
even without leveraging multiple levels of fidelity. The configuration spaces for the NAS bench-
marks can be found in Table 4.

Table 4: Configuration space for the NAS-Bench-201 benchmark on CIFAR-10 and ImageNet16-120.

Component Type Choices / Range

Edge 0 Categorical {none, skip connect}
Edge 1 Categorical {none, skip connect, nor conv 1x1, nor conv 3x3}
Edge 2 Categorical {none, skip connect, nor conv 1x1, nor conv 3x3, avg pool 3x3}
Edge 3 Categorical {none, skip connect, nor conv 1x1, nor conv 3x3, avg pool 3x3}

Epochs Integer [12, 200]

17

4.1 Evaluation Criteria

For the HPOBench classification benchmarks on popular ML algorithms, the optimizer performance
is evaluated based on the validation performance (i.e., the objective value seen by the optimizer).
This objective value was minimized over 1− accuracy and a summary across all of the benchmark
experiments are reported. Additional results including the corresponding values for test scores are
included for each experiment in Appendix A.

In the evaluation of optimization methods within our HPOBench ML experiments, we employ
the simple regret as a performance metric. Simple regret measures the gap between the best loss
value that a method has achieved by iteration t and the best observed loss value across all methods
and benchmarks. It is defined for iteration t as:

Rt =
t

min
i=1

f(xi)− f(x∗) (7)

where Rt signifies the simple regret at iteration t, minti=1 f(xi) denotes the lowest loss value se-
cured by the method up to that point, and f(x∗) represents the lowest loss value found among all
trials and methods across the given benchmarks. This best observed value serves as an approxi-
mation of the global minimum when the true optimal solution is unknown. Lower values of Rt

indicate a performance closer to this best found solution, reflecting improved effectiveness of the
optimization method. Conversely, higher values suggest a greater deviation from the optimal per-
formance. For enhanced visual discernment, regret is plotted on a logarithmic scale. The goal is
to minimize simple regret; thus, a downward trend in the regret plot is desirable, as it indicates
progressive improvement in optimization performance.

For the open-set experiments, the trained EVM is optimized to minimize the loss on a validation
set of data containing samples from both known and unknown classes within the number of search
trials listed in Table 5. This loss is defined as the negative F1 score with weighted averaging:

F1 =
2 · Precision · Recall
Precision + Recall

=
2 · TP

2 · TP + FP + FN
(8)

where TP, FP, and FN are the number of true positives, false positives, and false negatives, respec-
tively. The negative F1 score used as the loss function for optimization is defined as:

Negative F1 = −F1 (9)

Minimizing the negative F1 score effectively aims to maximize the F1 score, as a higher F1 score
indicates better model performance.

In evaluating HomOpt on NAS tabular benchmarks, we focus on the median optimized regret
as a key performance metric. This metric provides insight into the effectiveness of the optimization
strategy by measuring the difference between the function value of the incumbent (best observed
configuration) and the global optimum over time. For our analysis, we specifically report results
based on version 2 (v2) of the trajectory evaluation criteria, which prioritizes configurations purely
based on their function value, disregarding the budget or computational resources used to obtain
them. This approach aligns with our goal to assess the raw optimization capability of the methods
in identifying high-performing configurations as efficiently as possible.

The choice of v2 over version 1 (v1) is motivated by the nature of HomOpt as a hyperparam-
eter optimization method rather than a multi-fidelity optimizer. Unlike multi-fidelity approaches

18

that strategically allocate resources across different levels of budget to expedite the search process,
HomOpt focuses on navigating the hyperparameter space within a single fidelity. In this context,
v2’s disregard for budget in determining incumbents allows us to directly compare the intrinsic
optimization performance of HomOpt against other methods without the confounding effects of
budget management.

4.2 Experimental Setup

HomOpt can be used to augment any base HPO strategy. We thus compare the performance boost of
HomOpt with GAM surrogates against the base performance of common popular hyperparameter
optimization approaches: Random Search, Bayes, TPE, and SMAC. The numbers of iterations
and samples used in the different optimization methods were chosen based on previous empirical
experiments and theoretical considerations to balance the trade-off between the computational cost
and the expected performance of the method. With TPE we used 20% of the results for the top-k
mixture model seeded with 10 random search iterations and 10 generated candidates samples. In
the Bayes examples, we used 20 random search iterations with 10 candidate samples. And for the
SMAC runs, we used 20 random search iterations with 20 candidate samples. HomOpt similarly
was initialized with 20 evaluations (W = 20) from each of the base strategies.

All experiments were run for 500 iterations across 5 separate seeds and averaged together. The
HPOBench classification experiments were run on a multitude of dataset tasks from OpenML (Van-
schoren et al., 2014), which is open platform for sharing datasets, and the open-set experiments
were conducted on the handwritten digits dataset MNIST (Deng, 2012) and Labeled Faced in the
Wild (LFW) (Huang et al., 2007).

For the open-set experiments, we chose MNIST and LFW to consider two datasets of different
complexity and modified each classification task to convert from a closed-set task to an open-set
one. Table 5 summarizes the dataset experiments in terms of number of search trials, number of
known and unknown classes, and number of training, validation, negatives, and testing samples.
Negatives are samples from the unknown class without labels used to better inform the “1 vs. rest”
classifiers when training the EVM. The number of trials for each experiment was determined and
adjusted according to the time required to train a single model for the given dataset. If the dataset
contained many images per class, fitting the EVM to the feature vectors for large samples required
longer compute time and thus the number of search trials was reduced.

Experiment # Search Trials # Known Classes # Unknown Classes Training Validation Negatives Testing

MNIST 1000 6 4 28824 12000 19176 10000

LFW 1000 34 5715 1333 2481 6110 3309

Table 5: Summary of dataset characteristics for open-set experimental sets.

For the handwritten digits dataset MNIST, we designate handwritten digits 0 to 5 as the known
classes and digits 6 to 9 as the unknown. Each image is represented as a flattened vector of the image
pixels (784 features). For Labeled Faces in the Wild (LFW), we use classes with 30 or more face
image samples to designate the known classes (34) and assign the remaining classes (5715) as the
unknown set. The network used to extract features is an ArcFace (Deng et al., 2022) based feature
extractor (Albiero et al., 2020) trained on the MS-Celeb-1M dataset (Guo et al., 2016) resulting in
a 512 dimensional feature vector.

19

Threshold, cover threshold, and distance multiplier are sampled from a uniform distribution of
range [0, 1]. The fitting algorithm for the EVM requires that the tailsize not exceed greater than
half the number of training samples. For this reason, the tailsize hyperparameter was sampled from
a uniform distribution between the range [0, 0.5] and used as a multiplier to determine how many
negative samples were included in estimating the model parameters.

Our default values for the parameters in the experiments were values found to be effective in
empirical studies on simple problems and common choices found in literature. For all experiments,
the distance threshold D is computed by the variance of the best 10% of the observed sample points
scaled by 0.005 (also known as the jitter strength) as the local perturbation search around the ob-
served minimum in Algorithm 1. In all the experiments we use 5 iterations which are the number
of minimizations to compute the homotopy (N). This strikes a balance between the computational
costs and finding a good solution. Fewer iterations may not find a good solution, while more iter-
ations may be computationally expensive without much benefit in terms of improved performance.
We use a k of 0.5 which are the fraction of complete trials used to train one of the GAMs. Using
half the completed trials provides a good balance between using enough data to train the model and
not overfitting to the data. A smaller value of k would mean the GAM is trained on fewer data
points, which may result in underfitting. A larger value of k would mean the GAM is trained on
more data points, which may result in overfitting. The GAM model surrogates use a penalty term on
the smooth functions of 10−4 and 25 splines for all experiments. The penalty term helps to control
the complexity of the surrogate model. A smaller penalty term would result in a model that fits the
data well but is likely to overfit. A larger penalty term would result in a model that is less likely to
overfit but may not fit the data as well. Similarly, fewer splines would result in a simpler model that
is less likely to overfit but may not fit the data as well, while more splines would result in a more
complex model that fits the data well but is likely to overfit.

In our experiments, we have search domains that consist of both discrete and categorical hy-
perparameters. To perform optimization on these domains, we first cast each hyperparameter to
its corresponding index in an array. Then, we convert these indices to floating-point numbers so
that we can use continuous optimization algorithms. Finally, we round the output of the opti-
mization algorithm to the nearest index to get the final hyperparameter configuration. This al-
lows us to use continuous optimization algorithms on search domains that consist of discrete and
categorical hyperparameters.

The NAS tabular benchmarks uses CatBoost models as surrogates within the HomOpt frame-
work. We use the same setup on both CIFAR-10 and ImageNet16-120. For each trial, based on the
accumulated trial data, the algorithm decides whether to sample a new configuration randomly (dur-
ing the warm-up phase) or proceed with the optimization process. We again set the warm-up phase
to 20 trials and upon transitioning to optimization, the algorithm employs two distinct CatBoost
models: one for exploration and one for exploitation, each trained with 1000 iterations. The ex-
ploration model is trained on a broader dataset to identify unexplored regions with potential, while
the exploitation model focuses on refining the search around previously identified promising areas.
The exploitation model, in particular, is trained on the top configurations determined by sorting the
trial data by loss and selecting the best performers. The selection criterion dynamically adjusts to
consider at least 5 configurations or a proportion (20%). The core of the optimization process is
the homotopy optimization loop, consisting of 100 steps. This loop gradually transitions the focus
from exploration to exploitation by adjusting the homotopy parameter t from Algorithm 2 from 1

20

(pure exploration) towards 0 (pure exploitation). This strategic modulation allows the algorithm to
leverage the strengths of both strategies over the course of the optimization process.

We compare HomOpt against the following optimization techniques for the NAS benchmarks:

• Hyperband enhanced with Bayesian Optimization (BOHB): Merges the rapid configura-
tion assessment capabilities of Hyperband with the probabilistic modeling strength of TPE,
optimizing the exploration and exploitation of the search space (Falkner et al., 2018).

• Random Search (RS): Employs a straightforward and unbiased approach by uniformly sam-
pling the hyperparameter space, serving as a baseline for evaluating the efficiency of more
complex methods (Bergstra and Bengio, 2012b).

• Bayesian Optimization with Kernel Density Estimators (BO-KDE): Leverages kernel
density estimators to model the probability distribution of effective hyperparameters, refin-
ing the search strategy over successive iterations (Bergstra et al., 2011b).

• Optuna with Median Stopping Rule (Optunamed tpe): Integrates TPE with a median stop-
ping rule, which prunes less promising trials early, enhancing computational efficiency (Golovin
et al., 2017).

• Optuna Variants for Enhanced Sampling:

– Optunahb: Adapts Hyperband’s resource allocation strategy to work with TPE, focus-
ing on accelerating convergence towards optimal configurations.

– Optunars: Combines the benefits of TPE with the straightforward, unbiased approach
of random search, offering a balanced exploration method.

• Optuna’s Tree-structured Parzen Estimator (Optunatpe): Utilizes Gaussian Mixture Mod-
els for probabilistically guiding the search towards regions of the hyperparameter space likely
to yield better performance (Akiba et al., 2019).

4.3 Results

4.3.1 HPOBENCH CLASSIFICATION EXPERIMENTS

We compare the performance of HomOpt on the tuning of different sets of parameters on the SVM,
Random Forest, Logistic Regression, MLP and XGBoost benchmarks from the HPOBench suite
across multiple dataset tasks from the OpenML library. In all these experiments we use the same
parameters for HomOpt across all benchmarks and datasets. Figures 6 - 10 reflect the regret at
each iteration for all the ML benchmarks. The regret plots illustrate the difference between the
performance at each iteration compared to the best value found for the entire dataset. Thus, the
lower the regret, the better the optimization algorithm is performing. A summary of the perfor-
mance on the best observed validation accuracy is additionally included in Appendix C.1.1 where
we see an improvement in minimizing the validation loss for a majority of the datasets in 4 of the 5
benchmarks.

In the Random Forest benchmark shown in Figure 6, for each of the 13 datasets, we can see
a consistent trend where HomOpt successfully improves the performance of all the base methods
alone where the regret plots demonstrated a faster convergence to a better optima. The trials where

21

0 200 400

10 2

10 1

Lo
g

Re
gr

et

blood-transfusion

0 200 400
10 3

10 2

mfeat-factors

0 200 400

10 2

10 1

Australian

0 200 400

10 3

10 2

10 1

car

0 200 400

10 2

Lo
g

Re
gr

et

segment

0 200 400

10 3

10 2

10 1
jungle_chess

0 200 400

10 2

10 1

jasmine

0 200 400

10 2

sylvine

0 200 400
10 2

10 1

Lo
g

Re
gr

et

credit-g

0 200 400
Iteration

10 2

10 1
kc1

0 200 400
Iteration

10 2

10 1

vehicle

0 200 400
Iteration

10 2

10 1
phoneme

0 200 400
Iteration

10 3

10 2

10 1

Lo
g

Re
gr

et

cnae-9

method
bayes
random
smac
tpe

type
base
hom

Figure 6: Comparison of all methods on 13 different tasks for the Random Forest Benchmark from the
HPOBench suite. The mean and standard error of the regret at each iteration are displayed across 5 repeti-
tions.

22

HomOpt augmented the base methodologies are indicated with the dashed line which have steeper
slope compared to the base methods alone (indicated by the solid lines). Each of the datasets had
varying number of instances and features as indicated in Table 2. The most significant improvement
of HomOpt over the base methods can actually be seen in the dataset with the highest number of
features but relatively low number of instances (cnae-9). Random Forest has four hyperparameters
(Table 3), and although the ranges may not be too wide, the combination and interaction of this
space can make it challenging. The min samples leaf and min samples split hyperparameters have
relatively narrow ranges, but the interaction between these hyperparameters and max depth can
make the search space challenging. For example, setting min samples leaf or min samples split too
small can lead to overfitting, especially when max depth is also large. On the other hand, setting
these hyperparameters too large can lead to underfitting, especially when max depth is small.

Compared to the Random Forest benchmark, the SVM benchmark illustrated in Figure 7 con-
sists of only two hyperparameters, leading to a lower dimensionality in its search space. However,
the search space for SVM is more extensive than that of the Random Forest benchmark, as both
hyperparameters (C and gamma) have a range spanning from 2−10 to 210. These ranges are sig-
nificantly large, covering several orders of magnitude, which poses a challenge when navigating
through the search space. HomOpt demonstrates a relative boost over the base methodologies
regarding in specific datasets such as the Australian, car, segment, jasmine, sylvine, and vehicle
datasets. On the other hand, in datasets like blood-transfusion, mfeat-factors, credit-g, kc1, and
cnae-9, the results across all methods, including those augmented with HomOpt, are relatively sim-
ilar. The search space in these datasets may contain complex interactions between hyperparameters,
making it difficult for all methods to find the optimal configurations. Consequently, the convergence
to the optimum in these cases may not be as significant when compared to the base methodolo-
gies for these datasets. While HomOpt with the default parameters demonstrates an overall boost
in many of the datasets concerning the overall optima, the convergence to the optimum is not as
pronounced. In several cases, the results are comparable or only marginally better than the base
methodologies. This suggests that HomOpt might offer advantages in specific scenarios, but its
performance may be influenced by a combination of factors, such as the inherent complexity of
the datasets, the optimization algorithm’s ability to navigate the search space, and the interactions
between hyperparameters in the SVM benchmark.

The search space for the Logistic Regression benchmark is relatively straightforward, consist-
ing of only two hyperparameters: alpha and eta0. These hyperparameters have a range of 1e-05 to
1.0, which is notably smaller compared to the broader ranges observed in SVM’s hyperparameters.
This simpler search space allows for more manageable exploration and optimization, as it does not
involve as many complex interactions between hyperparameters as seen in other benchmarks. The
impact of HomOpt on the Logistic Regression benchmark (Figure 8) exhibits a trend similar to the
results observed in the Random Forest benchmark. In both cases, the trials incorporating HomOpt
demonstrate an overall improvement in performance across all 20 datasets. Additionally, HomOpt
facilitates a faster convergence towards a lower optimal value, suggesting that the optimization algo-
rithm is more efficient in navigating the search space and identifying better hyperparameter config-
urations than the base methodologies alone. This improved performance of HomOpt in the Logistic
Regression benchmark can be attributed to several factors. The relatively simple search space, with
fewer hyperparameters and a smaller range, enables a more effective exploration of possible config-
urations. Additionally, the inherently lower complexity of the Logistic Regression model, compared

23

0 200 400
10 3

10 2

Lo
g

Re
gr

et
blood-transfusion

0 200 400

10 2

10 1 mfeat-factors

0 200 400
10 2

10 1

Australian

0 200 400

10 1
car

0 200 400

10 2

10 1

Lo
g

Re
gr

et

segment

0 200 400

10 1

3 × 10 2

4 × 10 2

6 × 10 2

jasmine

0 200 400

10 2

10 1

sylvine

0 200 400
10 3

10 2

10 1

kr-vs-kp

0 200 400

10 2Lo
g

Re
gr

et

credit-g

0 200 400
Iteration

10 2

kc1

0 200 400
Iteration

10 2

10 1

vehicle

0 200 400
Iteration

10 3

10 2

phoneme

0 200 400
Iteration

10 2

Lo
g

Re
gr

et

cnae-9

method
bayes
random
smac
tpe

type
base
hom

Figure 7: Comparison of all methods on 13 different tasks for the SVM Benchmark from the HPOBench suite.
The mean and standard error of the regret at each iteration are displayed across 5 repetitions.

to models with larger search spaces or more hyperparameters, could also contribute to the improved
performance observed when using HomOpt.

The MLP model has a larger search space with its five hyperparameters, leading to a greater
number of possible configurations. The interactions between these hyperparameters are quite com-
plex, further contributing to the challenge of optimizing this model. For instance, the depth and
width of the network directly impact its capacity and complexity, while the alpha (L2 regulariza-
tion) and learning rate init parameters control the model’s generalization performance. Addition-
ally, the batch size parameter influences not only the convergence speed but also the quality of the
final solution. Navigating these intricate interactions within the MLP search space can be extremely
challenging for HPO algorithms. Despite these challenges, HomOpt has demonstrated a significant
boost in performance compared to the base methodologies in 5 different datasets (Figure 9). This

24

0 200 400

10 2

10 1

Lo
g

Re
gr

et

blood-transfusion

0 200 400
10 3

10 2

10 1

100 mfeat-factors

0 200 400

10 2

10 1

shuttle

0 200 400

10 3

10 2

10 1
higgs

0 200 400

10 2

10 1

Lo
g

Re
gr

et

Australian

0 200 400

10 2

10 1

car

0 200 400

10 2

10 1

segment

0 200 400
10 3

10 2

10 1

bank-marketing

0 200 400

10 3

10 2

10 1

Lo
g

Re
gr

et

jungle_chess

0 200 400

10 2

4 × 10 3

6 × 10 3

2 × 10 2

3 × 10 2
numerai28.6

0 200 400

10 2

10 1

jasmine

0 200 400
10 3

10 2

10 1

sylvine

0 200 400

10 2

10 1

Lo
g

Re
gr

et

kr-vs-kp

0 200 400
10 2

10 1

credit-g

0 200 400

10 2

kc1

0 200 400

10 2

10 1

vehicle

0 200 400
Iteration

10 3

10 2

10 1

Lo
g

Re
gr

et

adult

0 200 400
Iteration

10 2

10 1 phoneme

0 200 400
Iteration

10 3

10 2

10 1

nomao

0 200 400
Iteration

10 2

10 1

cnae-9

method
bayes
random
smac
tpe

type
base
hom

Figure 8: Comparison of all methods on 20 different tasks for the Logistic Regression Benchmark from
the HPOBench suite. The mean and standard error of the regret at each iteration are displayed across 5
repetitions.

25

0 200 400
2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

Lo
g

Re
gr

et
blood-transfusion

0 200 400
Iteration

10 2

10 1

Australian

0 200 400
Iteration

10 2

10 1

segment

0 200 400
Iteration

10 2

10 1

credit-g

0 200 400
Iteration

10 1

Lo
g

Re
gr

et

vehicle

method
bayes
random
smac
tpe

type
base
hom

Figure 9: Comparison of all methods on 5 different tasks for the MLP Benchmark from the HPOBench suite.
The mean and standard error of the regret at each iteration are displayed across 5 repetitions.

improvement is evidenced by lower optimal scores and faster convergence rates. Furthermore, the
standard error of the regret in the MLP benchmark is consistently lower than that of the SVM bench-
mark across the five repetitions. This suggests that the optimization process for MLP is more stable
and less prone to random fluctuations compared to SVM. This could be attributed to the fact that
the MLP search space is more constrained compared to SVM due to the smaller range of hyperpa-
rameters, resulting in a more focused search. This, in turn, could lead to a more stable optimization
process with a more prominent boost in the performance.

XGBoost has four hyperparameters: colsample bytree, eta, max depth, and reg lambda. The
search space complexity is higher than that of SVM and Logistic Regression due to the increased
number of hyperparameters. The ranges of these hyperparameters are quite different, with some
having smaller ranges (e.g., colsample bytree) and others having larger ranges (e.g., max depth and
reg lambda). Among all five of the benchmarks from HPOBench, HomOpt demonstrated the least
noticeable improvement in the XGBoost experiments3. As seen by the regret plots in Figure 10 the
results among all the methods appeared to have a similar effect in regards to the convergence and
the overall optimum. We can see a small boost in performace for random and bayes with HomOpt
in the blood-transfusion dataset which has only 4 features and 748 instances but otherwise a no-
ticeable boost can not be seen. One possible reason why HomOpt did not perform as well on the
XGBoost benchmark compared to the other benchmarks could be due to the interactions between
the four hyperparameters. The interactions may be more intricate and complex compared to the
other benchmarks, making it more challenging for HomOpt to effectively explore the search space
and find the optimal solution. These hyperparameters are also interdependent with each other. For
instance, a higher eta value may require a higher reg lambda value to counteract the increased learn-
ing rate. The ranges of the hyperparameters in XGBoost vary widely. For example, the colsample
bytree parameter has a range of [0.1, 1.0], while the max depth and reg lambda parameters have

3. We include a study into the meta-parameters for this benchmark in the supplemental material (Section A.1)

26

ranges of [1, 50] and [2−10, 210], respectively. This heterogeneity in the ranges could also con-
tribute to the difficulty of exploring the search space efficiently.

0 200 400

10 2

10 1

Lo
g

Re
gr

et

blood-transfusion

0 200 400

10 2

segment

0 200 400
10 3

10 2

sylvine

0 200 400
Iteration

10 2

credit-g

0 200 400
Iteration

10 2Lo
g

Re
gr

et

kc1

0 200 400
Iteration

10 2

vehicle

0 200 400
Iteration

10 2

phoneme

method
bayes
random
smac
tpe

type
base
hom

Figure 10: Comparison of all methods on 14 different tasks for the XGBoost Benchmark from the HPOBench
suite. The mean and standard error of the regret at each iteration are displayed across 5 repetitions.

4.3.2 OPEN-SET BENCHMARKS

Optimizing the EVM model can be challenging due to the complexity of its hyperparameters and
the high-dimensional nature of the data it handles. The EVM algorithm has five hyperparameters,
each with its own domain and range, which must be tuned to achieve optimal performance. The
tailsize parameter, in particular, can be difficult to optimize, as it determines the number of negative
samples used to estimate the model parameters. This parameter can have a significant impact on
the model’s performance, but it is also highly dependent on the characteristics of the input data.
Additionally, the distance function parameter can be difficult to optimize because it affects the
way the model computes distances between samples, and this can have a significant impact on the
model’s accuracy. Finding the right combination of hyperparameters to optimize the EVM model
can be a time-consuming and challenging task for any HPO algorithm. In Figure 11, we evaluate
the performance of HomOpt in tuning the 5 hyperparameters of an open-set recognition algorithm,
the EVM on two separate datasets over 5 random seeds. HomOpt again demonstrates a faster
convergence to a better optimum value for both datasets, boosting all of the methods that were
tested and also on average found a better objective value (observed F1 score). Compared to some
of the other models in HPOBench, the EVM has a relatively small and constrained hyperparameter
search space. The threshold, tailsize, cover threshold, and distance multiplier parameters all have
ranges between 0 and 1, while the distance function is limited to two options: Cosine or Euclidean
distance. This limited search space may partially explain why HomOpt was able to perform well
on the EVM benchmark.

27

0 100 200 300 400 500
Iteration

10 2

10 1

Lo
g

Re
gr

et
dataset = LFW

0 100 200 300 400 500
Iteration

10 2

10 1

dataset = MNIST

method
bayes
random
smac
tpe

type
base
hom

Figure 11: Comparison of all methods on MNIST and LFW for the open-set benchmarks. The mean and stan-
dard error of the regret at each iteration are displayed across 5 repetitions. HomOpt boosts the performance
of all the methods for both of the datasets.

4.3.3 NAS-BENCHMARKS

The empirical evaluation of HomOpt on the CIFAR-10 benchmark provides additional perspectives
on its optimization capabilities, especially when compared to traditional black-box and state-of-
the-art multi-fidelity methods. The utilization of surrogate models, coupled with homotopy-based
optimization techniques, allows HomOpt to effectively exploit high-fidelity evaluations, achieving
good performance with the smallest number of function calls among the tested optimizers. This
is reflected in Table 6 by HomOpt’s low actual worst-case time (act wc time) and an initial sharp
decline in median optimized regret shown in the associated figures (Figure 12a).

Table 6: Comparative analysis of average performance metrics for various hyperparameter optimization
methods applied on the Cifar 10 benchmark. The table includes average wall-clock time for actual runs
(act wc time) in seconds, the difference in wall-clock time from the fastest method (diff wc time) in seconds,
the number of function calls (n calls), and the simulated wall-clock time (sim wc time) in seconds. This
comprehensive overview allows for a direct comparison of efficiency and speed among methods, highlighting
HomOpt’s competitive performance in terms of speed and number of evaluations required.

Optimizer act wc time diff wc time n calls sim wc time

HomOpt 12857.8 9.15614e+06 200 843861
BOHBeta2 117634 26006.7 3914.5 9.97399e+06
BOHB 99333.2 3554.43 3149.59 9.99645e+06
BOKDE 38644.6 4753.34 1303.84 9.99525e+06
OptunaRS 43463.7 3585.54 1363.11 9.99641e+06
Optunahb

TPE 212687 2054.04 5525.86 9.99795e+06
Optunamed

TPE 83264.5 3370.23 2852.06 9.99663e+06
RS 41791.9 95544.2 1351.45 9.90446e+06

28

Despite its strengths in quickly navigating the search space, HomOpt exhibits a relatively high
differential worst-case time (diff wc time), suggesting performance variability across runs. While
this may be a concern in scenarios demanding consistent outcomes, it is worth noting that such
variability could stem from the complex landscapes of deep learning optimization tasks, where even
subtle changes in hyperparameters can lead to vastly different model performances.

(a) Cifar-10 (b) ImageNet

Figure 12: Comparison of median optimized regret across simulated runtimes for different hyperparame-
ter optimization techniques on NAS benchmarks. The graphs display results for HomOpt in pink and other
contemporary methods. The performance on Cifar-10 (left) and ImageNet (right) demonstrates HomOpt’s
efficiency, showing a fast convergence towards lower regret values, particularly evident in the Cifar-10 bench-
mark. The shaded regions represent the interquartile range across multiple trials, highlighting the consistency
and reliability of HomOpt’s in different experimental settings.

HomOpt primarily uses high-fidelity evaluations, which are detailed and accurate assessments
of model performance. This approach does not prioritize the quick, less detailed evaluations seen
in multi-fidelity methods, which can sometimes lead to computational savings. By focusing exclu-
sively on high-fidelity evaluations, HomOpt ensures that every evaluation provides deep insights
into the optimization landscape, minimizing the risk of being misled by the less accurate results of
lower-fidelity evaluations. Over time, this method helps HomOpt consistently find the best solu-
tions, maintaining strong performance even in challenging scenarios.

To further enhance HomOpt’s efficacy, particularly in maintaining performance improvements
over extended periods, an integration of dynamic adaptation strategies could be instrumental. Bor-
rowing from the principles of multi-fidelity methods, HomOpt could implement a semi-multi-
fidelity approach that incorporates surrogate-assisted low-fidelity evaluations to guide the homotopy
transformations. Such a strategy would not only mitigate the observed performance variability but
also enrich the exploration phase, thereby reinforcing HomOpt’s capacity for sustained optimiza-
tion. Moreover, augmenting HomOpt with adaptive resource allocation could refine its long-term
performance consistency. By progressively focusing computational efforts on promising regions of
the search space, as indicated by the surrogate model’s insights, HomOpt can balance exploration
and exploitation more effectively.

29

Table 7: Comparative analysis of average performance metrics for various hyperparameter optimization
methods applied to the ImageNet benchmark. This table quantifies each method’s actual wall-clock time
(act wc time) in seconds, the difference in wall-clock time from the fastest method (diff wc time) in seconds,
the number of function calls (n calls), and the simulated wall-clock time (sim wc time) in seconds. Notably,
HomOpt demonstrates competitive efficiency with significantly lower wall-clock time and fewer function calls
compared to other methods, emphasizing its optimized performance for large-scale datasets like ImageNet.

act wc time diff wc time n calls sim wc time

HomOpt 13976.69 6.022e+06 200 3.978396e+06
BOHBeta2 31056.87 1.347e+04 894.28 9.987e+06
BOHB 22548.32 1.374e+04 718.84 9.986e+06
BOKDE 10371.78 1.639e+04 298.37 9.9836e+06
OptunaRS 8964.93 1.584e+04 297.82 9.984e+06
Optunahb

TPE 36041.43 7.283e+03 1101.5 9.993e+06
Optunamed

TPE 17203.68 1.525e+04 538.85 9.985e+06
RS 9942.98 1.593e+04 298.10 9.984e+06

On the ImageNet benchmark, HomOpt continues to demonstrate a similar trend of efficient
convergence (Figure 12b) with the lowest number of function calls (Table 7). Its actual worst-case
time (act wc time) remains competitive, and the simulated worst-case time (sim wc time) is no-
tably the lowest among all methods, reinforcing HomOpt’s effectiveness in challenging conditions.
Again, HomOpt exhibits a relatively high differential worst-case time (diff wc time), suggesting
performance variability across runs on both benchmarks. In Figure 12 we can see HomOpt is able
to eventually converge to an optimal and maintain raw competitive performance even against its
multi-fidelity counterparts.

It’s important to note that while HomOpt does not inherently leverage multi-fidelity techniques,
its efficiency and effectiveness in identifying optimal or near-optimal configurations demonstrate its
robustness as an optimization tool. This focus on pure optimization performance, as captured by
the median optimized regret under v2 criteria, underscores HomOpt’s potential to enhance hyper-
parameter search processes across a range of computational budgets and resource constraints.

5. Limitations

Despite HomOpt’s strong performance across a range of benchmarks, it’s important to acknowl-
edge the framework’s reliance on surrogate models—namely in this work, Generalized Additive
Models (GAM) and CatBoost—brings forth certain limitations. Surrogate models, while designed
to reduce the computational overhead typically associated with direct evaluations in methods like
Bayesian Optimization, do introduce their own complexities. These include the computational cost
associated with constructing and updating the models, and the necessity for precise tuning of their
hyperparameters to align with the objective function’s characteristics. Misalignment or inadequate
tuning can result in suboptimal optimization paths.

Furthermore, HomOpt’s current framework is highly efficient at exploiting well-understood re-
gions of the search space, yet it may lack robust mechanisms for broader exploration, particularly
in vast or complex hyperparameter spaces. This limitation may prevent HomOpt from identify-
ing diverse global solutions or adapting quickly to new optimization landscapes, which are critical

30

in dynamic environments. Enhancing HomOpt’s exploration capabilities could involve integrating
strategies that promote greater diversity in the search process, such as periodic resets or incorporat-
ing elements of randomness in the choice of surrogate models.

To enhance the robustness of the optimization process, adopting a strategy that leverages multi-
ple surrogate models or integrates assessments of model uncertainty could prove beneficial (Hutter
et al., 2019). For this study, our utilization of GAM and CatBoost as surrogates was deliberate;
GAMs were chosen for their interpretability and flexibility, allowing for a nuanced understanding
and adjustment of the relationship between hyperparameters and the optimization objective. Our
GAM configuration employed a penalty term of 10−4 on the smooth functions and used 25 splines,
aiming to balance complexity and overfitting risks. CatBoost, on the other hand, provided a gradi-
ent boosting framework that excels in handling categorical features and complex data relationships,
complementing the GAM’s capabilities.

While HomOpt demonstrates configurability as a strength, selecting the optimal settings for
both the framework itself and its surrogate models’ hyperparameters presents a challenge. Ablation
studies highlighted this, underscoring the sensitivity of optimization outcomes to these settings.
Future iterations could benefit from employing adaptive strategies, such as reinforcement learning
(Sutton and Barto, 2018), to dynamically tune these meta-parameters, mitigating the trial-and-error
approach. Alternatives to GAM and CatBoost, including random forests (Breiman, 2001), Bayesian
networks (Ghahramani, 2006), and other gradient boosting machines (Friedman, 2001), offer further
avenues for exploration. Though beyond this paper’s scope, such alternatives promise adaptability
to diverse problem settings (Bhosekar and Ierapetritou, 2018).

The computational efficiency and scalability of HomOpt are contingent upon the chosen surro-
gate model’s complexity. While this may limit its applicability in large-scale, distributed computing
environments compared to simpler strategies, leveraging parallel surrogate model training and eval-
uation could ameliorate these constraints (Kandasamy et al., 2018). Furthermore, the efficacy of
HomOpt hinges on the quality and diversity of the training data for the surrogate models. Incor-
porating active learning or transfer learning principles could augment data efficiency, mitigating
this limitation and potentially enhancing optimization performance across varied domains (Settles,
2009; Pan and Yang, 2009).

In the current configuration of HomOpt, only one optimal point is found. However, this can
be modified by utilizing a different surrogate which tracks the change of multiple minima at spread
out regions. This can also be modified by taking the number of points within the top α% instead
of utilizing a single point. We also consider the adaption of HomOpt for other applications key to
hyperparameter optimization such as incorporating domain knowledge. HomOpt provide a frame-
work integrating the the use of homotopies to track the transition between minimums which can
enable the incorporation of domain knowledge in the form of constraints or heuristics that better
guide the optimization process.

Additionally, while the continuous deformation between models underpins HomOpt’s thorough
exploration capabilities, addressing irregular or noisy objective functions may require adaptive ho-
motopy paths or integrating derivative-free optimization techniques for improved convergence (Rios
and Sahinidis, 2013).

As we continue to refine HomOpt, we are optimistic about its potential to streamline the hyper-
parameter optimization process. By incorporating advanced strategies such as adaptive homotopy
paths and exploring alternative surrogate models, HomOpt can become even more versatile and

31

powerful. These future directions promise to mitigate the limitations observed while maximizing
the strengths of this framework.

6. Conclusion

We introduced HomOpt an advanced HPO framework that introduces the use of continuous defor-
mation between surrogate models, coupled with homotopy methods, to adeptly navigate the hyper-
parameter space. This innovative approach facilitates the tracking of local minima across evolving
surrogate landscapes, thereby pinpointing critical regions of interest with unprecedented efficiency.
HomOpt not only expedites the convergence towards optimal solutions but also harmonizes with a
variety of established HPO methodologies, enhancing their performance by achieving faster conver-
gence and uncovering performant solutions in a multitude of benchmark scenarios. These bench-
marks span a diverse array of optimization challenges, underscoring the comprehensive nature of
our evaluation and the methodological rigor of HomOpt.

Significantly, HomOpt’s design philosophy embodies versatility, allowing for seamless inte-
gration with any HPO approach and showcasing marked improvements in convergence speeds
across both well-defined and more exploratory model settings, all while maintaining a minimal
set of assumptions about the objective function’s behavior. Looking ahead, we are hope to broaden
HomOpt’s horizons by venturing into novel optimization contexts, diversifying the surrogate model
repertoire, and probing its efficacy in multi-objective optimization landscapes.

Key areas for future enhancement include the adaptation of the HomOpt framework to embrace
a wider spectrum of loss functions and the refinement of surrogate model selection processes. Em-
phasizing mathematical strategies to bolster the framework’s scalability and precision, especially
within complex, high-dimensional domains, will be pivotal in broadening HomOpt’s applicability
and impact (Boyd and Vandenberghe, 2004). Moreover, while HomOpt navigates the nuances of
various loss functions, its flexibility regarding hyperparameter space—unconstrained by data type
or dimensionality—further accentuates its utility and adaptability to diverse machine learning tasks.

HomOpt offers a promising pathway to refining the efficiency and efficacy of model develop-
ment across an expansive range of applications. As we continue to push the boundaries of what is
possible with HPO, HomOpt serves as a catalyst for future innovation, to drive the development of
optimization solutions that are both more efficient and universally applicable.

Acknowledgements

This work was funded by DEVCOM Army Research Laboratory under cooperative agreement,
W911NF-20-2-0218.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-

generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD interna-
tional conference on knowledge discovery & data mining, pages 2623–2631, 2019.

Vı́tor Albiero, Kai Zhang, and Kevin W Bowyer. How does gender balance in training data affect face
recognition accuracy? In 2020 ieee international joint conference on biometrics (ijcb), pages 1–10. IEEE,
2020.

32

Eugene L. Allgower and Kurt Georg. Numerical continuation methods, volume 13 of Springer Series
in Computational Mathematics. Springer-Verlag, Berlin, 1990. ISBN 3-540-12760-7. doi: 10.1007/
978-3-642-61257-2. URL https://doi.org/10.1007/978-3-642-61257-2. An introduc-
tion.

Aravind Baskar, Mark Plecnik, and Jonathan D. Hauenstein. Computing saddle graphs via homotopy con-
tinuation for the approximate synthesis of mechanisms. Mechanism and Machine Theory, 176:104932,
2022.

Daniel J Bates, Andrew J Sommese, Jonathan D Hauenstein, and Charles W Wampler. Numerically solving
polynomial systems with Bertini. SIAM, 2013.

Yoshua Bengio. Gradient-Based Optimization of Hyperparameters. Neural Computation, 12(8):1889–1900,
08 2000. ISSN 0899-7667. doi: 10.1162/089976600300015187. URL https://doi.org/10.
1162/089976600300015187.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient descent
is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994. doi: 10.1109/72.279181.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(10):281–305, 2012a. URL http://jmlr.org/papers/v13/
bergstra12a.html.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13(Feb):281–305, 2012b.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems, volume 24. Curran As-
sociates, Inc., 2011a. URL https://proceedings.neurips.cc/paper/2011/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimiza-
tion. Advances in neural information processing systems, 24, 2011b.

James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. Hyperopt: a python library
for model selection and hyperparameter optimization. Computational Science & Discovery, 8(1):014008,
jul 2015. doi: 10.1088/1749-4699/8/1/014008. URL https://doi.org/10.1088/1749-4699/
8/1/014008.

Bruno Betrò. Bayesian methods in global optimization. Operations Research ’91, page 16–18, 1992. doi:
10.1007/978-3-642-48417-9 6.

Atharv Bhosekar and Marianthi Ierapetritou. Advances in surrogate based modeling, feasibility analysis, and
optimization: A review. Computers & Chemical Engineering, 108:250–267, 2018.

D.W. Boeringer and D.H. Werner. Efficiency-constrained particle swarm optimization of a modified bern-
stein polynomial for conformal array excitation amplitude synthesis. IEEE Transactions on Antennas and
Propagation, 53(8):2662–2673, 2005. doi: 10.1109/TAP.2005.851783.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

33

https://doi.org/10.1007/978-3-642-61257-2
https://doi.org/10.1162/089976600300015187
https://doi.org/10.1162/089976600300015187
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1088/1749-4699/8/1/014008

Qipin Chen and Wenrui Hao. A homotopy training algorithm for fully connected neural networks. Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2231):20190662,
2019.

J. Chow, L. Udpa, and S.S. Udpa. Homotopy continuation methods for neural networks. In 1991., IEEE
International Sympoisum on Circuits and Systems, pages 2483–2486 vol.5, 1991. doi: 10.1109/ISCAS.
1991.176030.

Jiankang Deng, Jia Guo, Jing Yang, Niannan Xue, Irene Kotsia, and Stefanos Zafeiriou. Arcface: Additive
angular margin loss for deep face recognition. IEEE Trans. Pattern Anal. Mach. Intell., 44(10):5962–5979,
2022. doi: 10.1109/TPAMI.2021.3087709. URL https://doi.org/10.1109/TPAMI.2021.
3087709.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the web].
IEEE signal processing magazine, 29(6):141–142, 2012.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?
id=HJxyZkBKDr.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. CatBoost: gradient boosting with categorical
features support. In Workshop on ML Systems at NIPS 2017, 2017.

Kai-Bo Duan and S. Sathiya Keerthi. Which is the best multiclass svm method? an empirical study. In
Proceedings of the 6th International Conference on Multiple Classifier Systems, MCS’05, page 278–285,
Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3540263063. doi: 10.1007/11494683 28. URL https:
//doi.org/10.1007/11494683_28.

Katharina Eggensperger, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Surrogate benchmarks for
hyperparameter optimization. In MetaSel@ ECAI, pages 24–31, 2014.

Katharina Eggensperger, Philipp Müller, Neeratyoy Mallik, Matthias Feurer, René Sass, Aaron
Klein, Noor H. Awad, Marius Lindauer, and Frank Hutter. HPOBench: A collection
of reproducible multi-fidelity benchmark problems for HPO. In Joaquin Vanschoren and
Sai-Kit Yeung, editors, Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual,
2021. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/93db85ed909c13838ff95ccfa94cebd9-Abstract-round2.html.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter optimization at
scale. In International conference on machine learning, pages 1437–1446. PMLR, 2018.

Florian Felten, Daniel Gareev, El-Ghazali Talbi, and Grégoire Danoy. Hyperparameter optimization for
multi-objective reinforcement learning. arXiv preprint arXiv:2310.16487, 2023.

Alexander Forrester, Andras Sobester, and Andy Keane. Engineering design via surrogate modelling: a
practical guide. John Wiley & Sons, 2008.

Alexander IJ Forrester and Andy J Keane. Recent advances in surrogate-based optimization. Progress in
aerospace sciences, 45(1-3):50–79, 2009.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pages
1189–1232, 2001.

34

https://doi.org/10.1109/TPAMI.2021.3087709
https://doi.org/10.1109/TPAMI.2021.3087709
https://openreview.net/forum?id=HJxyZkBKDr
https://openreview.net/forum?id=HJxyZkBKDr
https://doi.org/10.1007/11494683_28
https://doi.org/10.1007/11494683_28
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/93db85ed909c13838ff95ccfa94cebd9-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/93db85ed909c13838ff95ccfa94cebd9-Abstract-round2.html

Zoubin Ghahramani. Learning dynamic bayesian networks. Adaptive Processing of Sequences and Data
Structures: International Summer School on Neural Networks “ER Caianiello” Vietri sul Mare, Salerno,
Italy September 6–13, 1997 Tutorial Lectures, pages 168–197, 2006.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and David Sculley.
Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD inter-
national conference on knowledge discovery and data mining, pages 1487–1495, 2017.

Robert B. Gramacy and Herbert K. H. Lee. Cases for the nugget in modeling computer experiments. Stat.
Comput., 22(3):713–722, 2012.

Zachary A Griffin and Jonathan D Hauenstein. Real solutions to systems of polynomial equations and pa-
rameter continuation. Advances in Geometry, 15(2):173–187, 2015.

Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. Ms-celeb-1m: A dataset and bench-
mark for large-scale face recognition. In European conference on computer vision, pages 87–102. Springer,
2016.

Trevor J Hastie and Rob J Tibshirani. Generalized additive models, volume 43 of. Monographs on statistics
and applied probability, 15, 1990.

Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the wild: A database
for studying face recognition in unconstrained environments. Technical Report 07-49, University of Mas-
sachusetts, Amherst, October 2007.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods, systems,
challenges. Springer Nature, 2019.

Ilija Ilievski, Taimoor Akhtar, Jiashi Feng, and Christine Shoemaker. Efficient hyperparameter optimization
for deep learning algorithms using deterministic rbf surrogates. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31, 2017.

Hidenori Iwakiri, Yuhang Wang, Shinji Ito, and Akiko Takeda. Single loop gaussian homotopy method for
non-convex optimization. Advances in Neural Information Processing Systems, 35:7065–7076, 2022.

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás Póczos. Parallelised bayesian
optimisation via thompson sampling. In International Conference on Artificial Intelligence and Statistics,
pages 133–142. PMLR, 2018.

James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-international
conference on neural networks, volume 4, pages 1942–1948. IEEE, 1995.

J. Kinnison, N. Kremer-Herman, D. Thain, and W. Scheirer. Shadho: Massively scalable hardware-aware
distributed hyperparameter optimization. In 2018 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 738–747, 2018. doi: 10.1109/WACV.2018.00086.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. The Journal of Machine Learning Research, 18
(1):6765–6816, 2017.

Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R news, 2(3):18–22, 2002.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, Stefan Falkner, André Biedenkapp, and Frank
Hutter. Smac v3: Algorithm configuration in python. https://github.com/automl/SMAC3,
2017.

35

https://github.com/automl/SMAC3

Sulin Liu, Qing Feng, David Eriksson, Benjamin Letham, and Eytan Bakshy. Sparse bayesian optimization.
In International Conference on Artificial Intelligence and Statistics, pages 3754–3774. PMLR, 2023.

Ilya Loshchilov and Frank Hutter. CMA-ES for hyperparameter optimization of deep neural networks. In
International Conference on Learning Representations (ICLR 2016). Workshop Track., pages 1–4, 2016.

Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In Francis R. Bach and David M. Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, vol-
ume 37 of JMLR Workshop and Conference Proceedings, pages 2113–2122. JMLR.org, 2015. URL
http://proceedings.mlr.press/v37/maclaurin15.html.

Mark McLeod, Stephen J. Roberts, and Michael A. Osborne. Optimization, fast and slow: Optimally switch-
ing between local and bayesian optimization. In Jennifer G. Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 3440–3449.
PMLR, 2018. URL http://proceedings.mlr.press/v80/mcleod18a.html.

Dhagash Mehta, Tianran Chen, Tingting Tang, and Jonathan D. Hauenstein. The loss surface of deep lin-
ear networks viewed through the algebraic geometry lens. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44(9):5664–5680, 2022.

J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The Computer Journal, 7(4):
308–313, 01 1965. ISSN 0010-4620. doi: 10.1093/comjnl/7.4.308. URL https://doi.org/10.
1093/comjnl/7.4.308.

Robert Nisbet. Handbook of statistical analysis and data mining applications. Academic Press, an imprint
of Elsevier, London, United Kingdom, second edition edition, 2018.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge and data
engineering, 22(10):1345–1359, 2009.

Harsh Nilesh Pathak. Parameter Continuation with Secant Approximation for Deep Neural Networks. PhD
thesis, Worcester Polytechnic Institute, 2018.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin.
Catboost: unbiased boosting with categorical features. Advances in neural information processing systems,
31, 2018.

Carl Edward Rasmussen, Christopher KI Williams, et al. Gaussian processes for machine learning, volume 1.
Springer, 2006.

Werner C. Rheinboldt. Numerical analysis of continuation methods for nonlinear structural problems.
Computers & Structures, 13(1):103–113, 1981. ISSN 0045-7949. doi: https://doi.org/10.1016/
0045-7949(81)90114-0. URL https://www.sciencedirect.com/science/article/pii/
0045794981901140.

Luis Miguel Rios and Nikolaos V Sahinidis. Derivative-free optimization: a review of algorithms and com-
parison of software implementations. Journal of Global Optimization, 56:1247–1293, 2013.

Jairo Rojas-Delgado, JA Jiménez, Rafael Bello, and José Antonio Lozano. Hyper-parameter optimization
using continuation algorithms. In Metaheuristics International Conference, pages 365–377. Springer,
2022.

36

http://proceedings.mlr.press/v37/maclaurin15.html
http://proceedings.mlr.press/v80/mcleod18a.html
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://www.sciencedirect.com/science/article/pii/0045794981901140
https://www.sciencedirect.com/science/article/pii/0045794981901140

Ethan M Rudd, Lalit P Jain, Walter J Scheirer, and Terrance E Boult. The extreme value machine. IEEE
transactions on pattern analysis and machine intelligence, 40(3):762–768, 2017.

Walter J. Scheirer, Anderson Rocha, Archana Sapkota, and Terrance E. Boult. Towards open set recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 35:1757–1772, July 2012.

Daniel Servén, Charlie Brummitt, Hassan Abedi, and hlink. dswah/pygam: v0.8.0. Zenodo, 2018.

Burr Settles. Active learning literature survey. University of Wisconsin-Madison Department of Computer
Sciences, 2009.

Andrew J. Sommese and Charles W. Wampler, II. The numerical solution of systems of polynomials arising
in engineering and science. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.

Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic for global optimization
over continuous spaces. Journal of global optimization, 11:341–359, 1997.

Sonja Surjanovic and Derek Bingham. Virtual library of simulation experiments: Griewank function, 2013.
URL https://www.sfu.ca/˜ssurjano/griewank.html.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Shinya Suzumura, Kohei Ogawa, Masashi Sugiyama, Masayuki Karasuyama, and Ichiro Takeuchi. Homo-
topy continuation approaches for robust sv classification and regression. Machine Learning, 106:1009–
1038, 2017.

Robert Tibshirani and Trevor Hastie. Local likelihood estimation. Journal of the American Statistical Asso-
ciation, 82(398):559–567, 1987.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in machine
learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

Layne T Watson, Maria Sosonkina, Robert C Melville, Alexander P Morgan, and Homer F Walker. Algo-
rithm 777: Hompack90: A suite of fortran 90 codes for globally convergent homotopy algorithms. ACM
Transactions on Mathematical Software (TOMS), 23(4):514–549, 1997.

Jia Wu, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-Hao Deng. Hyperparameter op-
timization for machine learning models based on bayesian optimizationb. Journal of Electronic Sci-
ence and Technology, 17(1):26–40, 2019. ISSN 1674-862X. doi: https://doi.org/10.11989/JEST.
1674-862X.80904120. URL https://www.sciencedirect.com/science/article/pii/
S1674862X19300047.

Weicheng Xie, Wenting Chen, Linlin Shen, Jinming Duan, and Meng Yang. Surrogate network-based
sparseness hyper-parameter optimization for deep expression recognition. Pattern Recognition, 111:
107701, 2021. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2020.107701. URL https:
//www.sciencedirect.com/science/article/pii/S0031320320305045.

Kiyotaka Yamamura, Tooru Sekiguchi, and Yasuaki Inoue. A fixed-point homotopy method for solving modi-
fied nodal equations. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
46(6):654–665, 1999.

Yudong Zhang, Shuihua Wang, Genlin Ji, et al. A comprehensive survey on particle swarm optimization
algorithm and its applications. Mathematical problems in engineering, 2015, 2015.

37

https://www.sfu.ca/~ssurjano/griewank.html
https://www.sciencedirect.com/science/article/pii/S1674862X19300047
https://www.sciencedirect.com/science/article/pii/S1674862X19300047
https://www.sciencedirect.com/science/article/pii/S0031320320305045
https://www.sciencedirect.com/science/article/pii/S0031320320305045

Appendix A. Meta-Parameter Analysis

A.1 Meta-Parameter Sensitivity Analysis on XGBoost Benchmark

Since HomOpt demonstrated minimal improvement on the XGBoost benchmark, we performed an
additional study on one of the datasets to illustrate the sensitivity of parameters within HomOpt
on the performance of the optimization. On dataset credit-g, we run HomOpt for each of the base
sampling methods (Bayes, Random, SMAC, TPE), with the method parameters and domains indi-
cated in Table 8. This search was done over 100 iterations for a single seed for each combination
of method parameters. The studies visualized in the contour plot (Figure 13) with SMAC samples,
revealed that the performance of the optimization using HomOpt is sensitive to the choice of cor-
responding method parameters and domains. In our experiments our default method parameters
use a k of 0.5, five iterations to compute the homotopy, a jitter strength of 0.005 and 20 warm up
samples. The contour plot demonstrates how changes in these method parameter values can affect
the optimization performance, where certain regions have higher performance (indicated by a lower
loss value which are the blue regions). In this case, a higher k value of 0.6 and more warm samples
(30+) resulted in higher performance for this dataset.

Variable Description Domain

D Local perturbation factor [5, 5e-1, 5e-2, 5e-3, 5e-4, 5e-5]

W Number of warm-up samples [10, 30, 50, 70, 90]

N Number of minimization steps to compute homotopy [3, 6, 9]

k Fraction of completed trials to train the GAMs [0.2, 0.4, 0.6, 0.8, 1]

Table 8: HomOpt parameters and domain spaces for ablation study on XGBoost benchmark.

A pivotal direction for future work involves developing more sophisticated techniques for in-
telligently determining optimal method parameters, akin to how BOHB automates the configura-
tion of its optimization process. This entails leveraging machine learning models or meta-learning
approaches to predict optimal parameter settings based on dataset characteristics or previous opti-
mization outcomes. Such advancements could include:

• Automated Parameter Tuning: Implement algorithms to dynamically refine HomOpt’s pa-
rameters, adjusting based on real-time optimization metrics.

• Meta-Learning for Parameter Selection: Utilize meta-learning to predict optimal parameter
settings from historical optimization data, reducing the need for manual tuning.

• Adaptive Sampling Techniques: Integrate strategies that modulate exploration and exploita-
tion balance according to the optimization landscape’s observed sensitivity.

• Performance Prediction Models: Develop models to foresee the impact of parameter adjust-
ments on optimization outcomes, guiding initial HomOpt configurations towards efficiency.

These initiatives aim to bolster HomOpt’s performance and versatility, ensuring its broader
applicability and reduced dependency on manual parameter tuning.

38

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

9

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0.2 0.4 0.6 0.8 1

20

40

60

80

4 6 8
0.2

0.4

0.6

0.8

1

4 6 8

0

0.2

0.4

0.6

0.8

1

4 6 8
0

1

2

3

4

5

4 6 8

20

40

60

80

0 1 2 3 4 5
0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
3

4

5

6

7

8

9

0 2 4

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

20

40

60

80

20 40 60 80
0.2

0.4

0.6

0.8

1

20 40 60 80
3

4

5

6

7

8

9

20 40 60 80
0

1

2

3

4

5

20 40 60 80

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k iterations jitter warm

Figure 13: Contour plots visualizing the interactions between pairs of method parameters with SMAC sam-
ples on XGBoost sensitivity study. In this plot k represents the proportion of trial data used to train one of the
GAMs, iterations are the number of minimizations to compute the homotopy, jitter refers to the distance
threshold as the local perturbation search around the observed minimum and warm represents the number
of samples used for the surrogate approximation. Changes in the method parameter values can affect the
optimization performance, where certain regions have higher performance (indicated by a lower loss value
which are the blue regions)

39

Appendix B. Enhancing Interpretability in Hyperparameter Optimization with
GAMs

GAMs offer greater interpretability over more complex models, which can be for hyperparameter
optimization. This study focused on optimizing the Branin function, a commonly used test function
in optimization studies, defined by:

f(x1, x2) = a(x2 − bx21 + cx1 − r)2 + s(1− t) cos(x1) + s,

where a = 1, b = 5.1
4π2 , c = 5

π , r = 6, s = 10, and t = 1
8π . The hyperparameters x1 and x2 ranged

from [−5, 10] and [0, 15], respectively. The optimization was performed employing HomOpt with
random sampling method across 100 evaluations.

The analysis utilized partial dependence plots to illustrate how variations in each hyperparam-
eter (x1 and x2) independently influence the output of the Branin function. These visualizations
revealed critical sensitivities; particularly, x1 displayed non-linear effects with distinct peaks and
troughs indicating regions of high sensitivity, while x2 showed a more linear relationship, suggesting
straightforward adjustments can effectively optimize this parameter. The optimization landscape,
visualized in the contour plot, highlighted the distribution of tested hyperparameter combinations
and their corresponding outputs, revealing both the global search behavior and focal points of opti-
mization.

Figure 14: Visualization of hyperparameter effects and optimization landscape using Generalized Additive
Models (GAMs). The first panel displays the partial dependence of the Branin function on hyperparameter
x1 with a 95% confidence interval, highlighting the non-linear impact of x1 on the model output. The sec-
ond panel shows the partial dependence for hyperparameter x2 , illustrating its predominantly increasing
influence on the Branin function, defined within a 95% confidence interval. The final panel depicts the op-
timization landscape over the x1 and x2 space, with white dots representing tested parameter combinations
and the red dot marking the optimal setting. This panel visually corroborates the areas of interest identified in
the partial dependence plots and demonstrates the coverage of the search space by the optimization process.

By leveraging partial dependence plots, GAMs provide a clear visualization of how variations in
each hyperparameter affect model performance, revealing critical non-linear relationships and sen-
sitivities. Such insights allow practitioners to prioritize which hyperparameters to tune, adjust their
ranges effectively to avoid overfitting and underfitting, and implement adaptive sampling strate-
gies to focus computational resources on promising areas of the hyperparameter space. This not

40

only optimizes the efficiency of the search process but also supports dynamic adjustments based on
emerging data insights.

Appendix C. Extended EVM Results

Here we include additional results from the experiments. In the EVM experiments, we report the
corresponding Normalized Mutual Information (NMI) score for each experiment which measures
the similarity between the predicted label and the true class label as well.

NMI(C, T) =
2× I(C, T)

H(C) +H(T)
(10)

H(C) = −
∑
c

p(c) log2 p(c) (11)

H(T) = −
∑
t

p(t) log2 p(t) (12)

Table 9 reported the validation and testing score for MNIST data set experiments for open
set recognition. In general, we can see the results for HomOpt are improved against all the base
strategies random, TPE, Bayes, and SMAC. We can see consistent results (see Table 10) in the LFW
experiment improves among all the base methods. It is noticeable that the highest validation and
testing scores for MNIST data set achieves from the HomOpt with random seeds used for warm-
up, while LFW data set achieves the highest scores from the HomOpt with SMAC seeds used for
warm-up trials.

Method Validation F1 Validation Accuracy Validation NMI Testing F1 Testing Accuracy Testing NMI

Random 0.8982 ± 0.006 0.8958 ± 0.007 0.7547 ± 0.014 0.8988 ± 0.005 0.8969 ± 0.007 0.7579 ± 0.013
PSHHO+Random 0.9160 ± 0.003 0.9127 ± 0.004 0.7889 ± 0.008 0.9039 ± 0.006 0.9022 ± 0.007 0.7657 ± 0.012

TPE 0.8889 ± 0.011 0.8859 ± 0.011 0.7431 ± 0.022 0.8788 ± 0.004 0.8766 ± 0.004 0.7287 ± 0.009
PSHHO+TPE 0.9140 ± 0.003 0.9106 ± 0.004 0.7838 ± 0.005 0.8982 ± 0.007 0.8964 ± 0.006 0.7579 ± 0.012

Bayes 0.8771 ± 0.008 0.8749 ± 0.006 0.7200 ± 0.015 0.8669 ± 0.010 0.8655 ± 0.008 0.7054 ± 0.018
PSHHO+Bayes 0.9132 ± 0.002 0.9092 ± 0.003 0.7793 ± 0.003 0.8995 ± 0.003 0.8981 ± 0.004 0.7583 ± 0.004

SMAC 0.9034 ± 0.005 0.9001 ± 0.006 0.7650 ± 0.013 0.8924 ± 0.006 0.8907 ± 0.007 0.7468 ± 0.013
PSHHO+SMAC 0.9110 ± 0.006 0.9081 ± 0.005 0.7797 ± 0.009 0.8992 ± 0.004 0.8976 ± 0.005 0.7599 ± 0.008

Table 9: Average validation/testing score comparison for each base method and corresponding homotopy
approach across 5 separate seeds for the EVM experiments with MNIST dataset.

Method Validation F1 Validation Accuracy Validation NMI Testing F1 Testing Accuracy Testing NMI

Random 0.8556 ± 0.009 0.9659 ± 0.004 0.8254 ± 0.019 0.8191 ± 0.058 0.9596 ± 0.028 0.7927 ± 0.011
PSHHO+Random 0.8654 ± 0.004 0.9673 ± 0.001 0.8309 ± 0.009 0.8248 ± 0.015 0.9610 ± 0.002 0.7981 ± 0.011

TPE 0.8400 ± 0.018 0.9618 ± 0.006 0.8060 ± 0.026 0.7992 ± 0.026 0.9554 ± 0.005 0.7729 ± 0.024
PSHHO+TPE 0.8563 ± 0.016 0.9632 ± 0.007 0.8140 ± 0.030 0.8175 ± 0.014 0.9571 ± 0.005 0.7844 ± 0.023

Bayes 0.8426 ± 0.007 0.9617 ± 0.002 0.8049 ± 0.010 0.7919 ± 0.013 0.9542 ± 0.003 0.7657 ± 0.014
PSHHO+Bayes 0.8622 ± 0.008 0.9671 ± 0.003 0.8288 ± 0.016 0.8161 ± 0.015 0.9589 ± 0.003 0.78855 ± 0.015

SMAC 0.8510 ± 0.004 0.9657 ± 0.003 0.8241 ± 0.014 0.8218 ± 0.016 0.9602 ± 0.003 0.7951 ± 0.003
PSHHO+SMAC 0.8698 ± 0.005 0.9699 ± 0.001 0.8433 ± 0.007 0.8231 ± 0.010 0.9613 ± 0.002 0.8001 ± 0.009

Table 10: Average validation/testing scores comparison for each base method and corresponding homotopy
approach across 5 separate seeds for the EVM experiment with LFW dataset.

41

C.1 Extended HPOBench Results

In this section, we present the additional results for the HPOBench experiments, specifically focus-
ing on the validation and test scores. The validation and test scores showcase the average percent
improvement and standard error achieved over 5 trials for each dataset experiment within the bench-
mark.

C.1.1 VALIDATIONS SCORES

Table 11: Average percent improvement and standard error for the best observed loss over five trials of
HomOpt over the base methodology for each dataset and method in the SVM Benchmark. Bold values
indicate where HomOpt outperforms the base methodology.

Dataset
Method

bayes random smac tpe

10101 5.22 ± 1.63 4.35 ± 2.38 8.33 ± 1.32 5.22 ± 2.54
12 1.05 ± 0.43 1.05 ± 0.43 1.63 ± 0.94 1.40 ± 0.47

146818 29.52 ± 17.26 55.24 ± 12.74 52.38 ± 12.78 -40.00 ± 44.97
146821 -3.24 ± 1.01 54.29 ± 26.30 57.84 ± 25.82 16.76 ± 20.82
146822 67.24 ± 1.09 40.65 ± 2.62 -8.24 ± 5.46 47.78 ± 1.36
168911 21.87 ± 5.96 -40.45 ± 11.20 3.23 ± 10.08 15.11 ± 8.84
168912 38.63 ± 16.36 45.12 ± 15.89 47.43 ± 14.96 27.10 ± 16.45

3 56.34 ± 25.81 9.68 ± 85.50 98.47 ± 0.68 -587.50 ± 416.03
31 -10.00 ± 5.39 -10.00 ± 5.39 -10.00 ± 5.39 -10.00 ± 5.39

3917 2.50 ± 1.67 2.50 ± 1.67 2.50 ± 1.67 2.50 ± 1.67
53 41.54 ± 17.77 28.67 ± 22.20 0.00 ± 28.69 -33.75 ± 42.09

9952 -14.86 ± 17.23 -1.59 ± 4.29 -1.72 ± 3.53 -1.64 ± 3.77
9981 -2.75 ± 1.27 -2.00 ± 0.94 -2.75 ± 1.27 -3.00 ± 1.40

42

Table 12: Average percent improvement and standard error for the best observed loss over five trials of
HomOpt over the base methodology for each dataset and method in the Random Forest benchmark. Bold
values indicate where HomOpt outperforms the base methodology.

Dataset
Method

bayes random smac tpe

10101 35.12 ± 8.78 28.24 ± 3.55 17.14 ± 1.75 -5.00 ± 9.26
12 60.00 ± 10.95 35.00 ± 6.12 48.00 ± 8.00 -120.00 ± 37.42

146818 61.82 ± 16.61 63.08 ± 4.49 42.22 ± 6.48 16.67 ± 11.79
146821 93.04 ± 1.06 80.00 ± 6.48 0.00 ± 15.81 -40.00 ± 24.49
146822 69.70 ± 3.95 38.95 ± 11.36 24.62 ± 7.46 3.64 ± 16.91
167119 46.36 ± 0.15 34.72 ± 0.27 3.99 ± 1.19 0.59 ± 0.30
168911 54.29 ± 2.81 22.32 ± 8.68 13.21 ± 2.00 -0.00 ± 2.83
168912 73.75 ± 2.00 40.00 ± 1.17 28.00 ± 3.58 14.74 ± 3.07

31 45.71 ± 13.24 38.00 ± 6.80 15.24 ± 5.51 -41.18 ± 42.78
3917 61.61 ± 2.00 49.33 ± 1.91 29.41 ± 2.08 24.83 ± 2.76
53 64.44 ± 1.04 42.50 ± 3.33 -9.09 ± 7.61 1.67 ± 3.12

9952 63.68 ± 1.95 29.18 ± 2.22 25.26 ± 2.58 1.43 ± 2.45
9981 81.67 ± 3.12 40.00 ± 6.12 30.00 ± 12.25 60.00 ± 6.32

43

Table 13: Average percent improvement and standard error for the best observed loss over five trials of
HomOpt over the base methodology for each dataset and method in the Logistic Regression Benchmark.
Bold values indicate where HomOpt outperforms the base methodology.

Dataset
Method

bayes random smac tpe

10101 9.41 ± 1.44 6.40 ± 1.60 4.08 ± 1.12 7.60 ± 1.47
12 78.79 ± 18.21 90.00 ± 4.84 75.00 ± 0.00 35.79 ± 37.19

146212 39.34 ± 15.76 46.21 ± 7.74 37.63 ± 5.04 44.88 ± 7.69
146606 17.02 ± 2.16 4.57 ± 1.40 6.01 ± 0.04 5.94 ± 2.32
146818 16.88 ± 3.37 19.33 ± 0.67 12.14 ± 1.43 20.67 ± 0.67
146821 29.49 ± 1.67 27.44 ± 3.82 16.77 ± 2.14 -3.46 ± 3.24
146822 7.93 ± 10.59 1.91 ± 7.37 9.21 ± 2.23 25.00 ± 3.17
14965 4.33 ± 2.44 4.82 ± 1.30 2.91 ± 2.01 3.03 ± 2.28
167119 2.96 ± 0.17 1.04 ± 0.20 0.67 ± 0.02 2.73 ± 0.37
167120 -0.05 ± 0.13 0.38 ± 0.21 -0.45 ± 0.21 0.66 ± 0.39
168911 19.55 ± 1.75 3.85 ± 2.27 -1.62 ± 1.77 -0.44 ± 2.24
168912 25.96 ± 6.75 4.63 ± 4.89 8.83 ± 0.57 9.50 ± 8.18

3 69.43 ± 10.67 67.37 ± 0.49 19.37 ± 2.69 49.68 ± 17.90
31 17.25 ± 1.87 10.56 ± 2.73 8.29 ± 2.98 9.46 ± 2.93

3917 0.92 ± 1.23 -0.23 ± 1.24 1.36 ± 0.23 -1.40 ± 0.23
53 17.78 ± 14.46 18.06 ± 3.86 20.00 ± 1.81 31.85 ± 13.24

7592 7.64 ± 2.28 3.89 ± 3.50 4.28 ± 0.08 -1.36 ± 3.21
9952 2.13 ± 1.08 2.98 ± 0.61 -0.35 ± 0.63 -3.18 ± 0.31
9977 24.91 ± 9.65 20.36 ± 8.15 25.20 ± 0.29 7.44 ± 11.08
9981 83.08 ± 4.49 30.00 ± 9.35 55.00 ± 14.58 65.71 ± 11.61

Table 14: Average percent improvement and standard error for the best observed loss over five trials of
HomOpt over the base methodology for each dataset and method in the MLP Benchmark. Bold values
indicate where HomOpt outperforms the base methodology.

Dataset
Method

bayes random smac tpe

10101 3.72 ± 0.57 0.98 ± 1.65 7.14 ± 3.69 3.90 ± 1.65
146818 57.50 ± 3.64 17.50 ± 3.06 -32.00 ± 8.00 20.00 ± 7.28
146822 59.22 ± 0.73 43.59 ± 4.51 30.67 ± 0.67 50.73 ± 1.42

31 40.00 ± 2.07 35.56 ± 5.05 25.83 ± 4.04 4.44 ± 4.44
53 78.46 ± 5.10 44.62 ± 2.88 40.00 ± 2.23 40.00 ± 8.37

44

Table 15: Average percent improvement and standard error for the best observed loss over five trials of
HomOpt over the base methodology for each dataset and method in the XGBoost Benchmark. Bold values
indicate where HomOpt outperforms the base methodology.

Dataset
Method

bayes random smac tpe

10101 17.33 ± 2.21 13.79 ± 1.54 -10.91 ± 1.82 -5.45 ± 0.91
146822 -11.43 ± 5.35 -22.86 ± 3.50 -17.14 ± 5.35 -5.71 ± 5.71
168912 -2.67 ± 6.18 -9.33 ± 6.53 -11.43 ± 5.35 1.25 ± 5.00

31 -5.00 ± 4.59 6.67 ± 2.08 -7.50 ± 1.25 10.00 ± 2.08
3917 -27.00 ± 2.00 9.60 ± 4.66 -8.18 ± 4.64 -3.48 ± 5.74
53 5.45 ± 6.17 -8.00 ± 3.74 -4.00 ± 8.12 0.00 ± 5.48

9952 -1.28 ± 2.48 6.27 ± 1.90 -1.28 ± 1.28 0.43 ± 3.10

45

C.1.2 TEST SCORES

Table 16: Average percent improvement and standard error for the corresponding test loss (1-accuracy) at
best observed loss over five trials of HomOpt over the base methodology for each dataset and method in the
RandomForestBenchmark. Bold values indicate where HomOpt outperforms the base methodology.

method bayes random smac tpe
dataset

10101 -11.76 ± 3.22 -2.22 ± 5.98 -13.33 ± 2.22 -9.47 ± 5.10
12 11.11 ± 6.09 2.86 ± 5.35 -11.43 ± 5.35 -36.00 ± 9.80

146818 -8.57 ± 5.71 20.00 ± 8.89 -0.00 ± 10.46 7.50 ± 9.35
146821 56.92 ± 5.76 4.00 ± 16.00 -26.67 ± 26.67 -86.67 ± 34.32
146822 -15.29 ± 4.40 -32.86 ± 8.63 5.88 ± 6.17 -35.71 ± 3.91
167119 -16.40 ± 1.16 -7.15 ± 0.82 0.27 ± 0.85 -0.94 ± 0.89
168911 2.76 ± 2.01 -5.00 ± 1.91 -3.21 ± 1.54 2.86 ± 1.34
168912 -0.54 ± 3.35 2.11 ± 3.16 -1.11 ± 4.94 -1.11 ± 1.67

31 15.17 ± 5.52 15.20 ± 5.28 12.80 ± 10.23 15.56 ± 3.95
3917 2.76 ± 4.28 8.97 ± 3.71 5.33 ± 3.27 -3.08 ± 4.93
53 10.43 ± 3.53 8.70 ± 5.99 11.82 ± 1.82 -6.32 ± 6.09

9952 22.00 ± 4.25 -6.27 ± 2.93 3.16 ± 4.35 16.77 ± 2.42
9981 23.33 ± 12.47 3.33 ± 9.72 -120.00 ± 37.42 4.00 ± 9.80

Table 17: Average percent improvement and standard error for the corresponding test loss (1-accuracy) at
best observed loss over five trials of HomOpt over the base methodology for each dataset and method in the
SVMBenchmark. Bold values indicate where HomOpt outperforms the base methodology.

method bayes random smac tpe
dataset

10101 -3.75 ± 2.50 -5.00 ± 2.34 2.35 ± 2.35 -5.00 ± 2.34
12 0.22 ± 0.14 0.22 ± 0.14 4.11 ± 3.84 1.44 ± 1.31

146818 32.26 ± 19.75 62.58 ± 15.72 64.52 ± 16.42 -105.00 ± 74.96
146821 0.00 ± 0.00 27.33 ± 41.12 59.23 ± 24.18 18.46 ± 18.46
146822 57.08 ± 1.06 -5.71 ± 5.91 17.50 ± 5.17 53.06 ± 2.41
168911 33.15 ± 8.37 -71.51 ± 20.25 -9.64 ± 16.05 25.37 ± 11.27
168912 36.48 ± 15.05 35.40 ± 16.11 37.20 ± 15.49 23.12 ± 14.28

3 56.34 ± 23.00 -31.72 ± 99.04 94.25 ± 0.48 -1224.00 ± 708.84
31 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

3917 -0.00 ± 0.96 -0.00 ± 0.96 -0.00 ± 0.96 -0.00 ± 0.96
53 37.46 ± 14.15 -2.86 ± 24.42 -23.33 ± 22.92 -62.22 ± 35.94

9952 -16.94 ± 22.46 -15.25 ± 6.72 9.41 ± 2.96 0.60 ± 8.32
9981 -0.65 ± 0.43 -1.09 ± 0.69 -1.54 ± 0.56 -0.65 ± 0.55

46

Table 18: Average percent improvement and standard error for the corresponding test loss (1-accuracy) at
best observed loss over five trials of HomOpt over the base methodology for each dataset and method in the
LRBenchmark. Bold values indicate where HomOpt outperforms the base methodology.

method bayes random smac tpe
dataset

10101 -4.44 ± 1.11 -6.67 ± 2.08 5.26 ± 2.35 8.00 ± 2.55
12 64.71 ± 11.91 36.00 ± 7.48 43.33 ± 6.67 52.50 ± 17.74

146212 39.01 ± 15.89 45.74 ± 7.84 36.41 ± 5.63 44.18 ± 7.26
146606 16.73 ± 1.74 3.42 ± 1.37 5.84 ± 0.12 5.89 ± 1.97
146818 -8.57 ± 16.66 20.00 ± 7.07 11.11 ± 11.65 -33.33 ± 10.54
146821 30.34 ± 4.55 29.66 ± 3.55 18.46 ± 5.63 -4.55 ± 3.80
146822 22.45 ± 8.09 -2.86 ± 9.52 -16.30 ± 1.89 36.73 ± 2.66
14965 2.85 ± 1.97 -0.99 ± 1.64 1.65 ± 2.42 1.03 ± 2.29
167119 4.02 ± 0.34 -0.25 ± 0.43 1.17 ± 0.19 3.58 ± 0.43
167120 0.30 ± 0.20 0.96 ± 0.14 0.58 ± 0.48 1.16 ± 0.62
168911 4.51 ± 1.29 -8.57 ± 1.19 -8.20 ± 1.16 -2.46 ± 2.73
168912 20.79 ± 5.17 1.11 ± 4.25 1.13 ± 0.96 13.82 ± 5.36

3 67.89 ± 12.47 57.78 ± 3.23 33.33 ± 4.22 46.15 ± 18.84
31 10.00 ± 6.43 10.71 ± 7.41 12.86 ± 4.16 19.37 ± 4.98

3917 1.88 ± 2.90 -14.29 ± 2.53 7.27 ± 0.74 1.88 ± 2.90
53 0.87 ± 17.25 24.17 ± 6.37 5.56 ± 3.04 18.26 ± 12.33

7592 9.55 ± 2.40 5.15 ± 4.00 1.66 ± 0.28 -1.59 ± 3.88
9952 0.32 ± 1.50 -0.16 ± 0.60 -2.58 ± 0.16 -2.15 ± 1.00
9977 20.85 ± 8.66 21.50 ± 7.28 18.12 ± 0.63 7.77 ± 9.79
9981 -3.33 ± 20.68 -30.00 ± 14.58 10.00 ± 11.30 5.71 ± 16.66

Table 19: Average percent improvement and standard error for the corresponding test loss (1-accuracy) at
best observed loss over five trials of HomOpt over the base methodology for each dataset and method in the
NNBenchmark. Bold values indicate where HomOpt outperforms the base methodology.

method bayes random smac tpe
dataset

10101 0.00 ± 1.76 1.05 ± 1.97 -0.00 ± 2.88 -3.33 ± 2.22
146818 -57.14 ± 10.10 -25.00 ± 11.18 1.82 ± 6.68 -32.50 ± 9.35
146822 39.13 ± 4.96 20.00 ± 11.42 12.00 ± 4.90 30.59 ± 6.81

31 3.85 ± 2.43 8.46 ± 3.73 -3.48 ± 1.63 9.23 ± 4.65
53 21.54 ± 7.46 21.33 ± 3.27 20.00 ± 4.71 1.54 ± 9.23

47

Table 20: Average percent improvement and standard error for the corresponding test loss (1-accuracy) at
best observed loss over five trials of HomOpt over the base methodology for each dataset and method in the
XGBoostBenchmark. Bold values indicate where HomOpt outperforms the base methodology.

method bayes random smac tpe
dataset

10101 -30.67 ± 5.42 -8.89 ± 4.16 -13.33 ± 4.16 7.62 ± 6.67
146818 13.33 ± 8.89 -11.43 ± 12.29 -20.00 ± 7.28 -64.00 ± 21.35
146822 -5.33 ± 3.89 -2.67 ± 4.52 -15.71 ± 6.93 2.35 ± 6.06
168912 1.62 ± 2.51 -10.29 ± 1.46 8.72 ± 2.08 -3.53 ± 4.78

31 11.67 ± 6.77 -2.50 ± 4.08 -17.14 ± 2.43 15.71 ± 2.90
3917 -32.50 ± 2.43 -2.00 ± 5.44 -33.33 ± 2.95 -27.50 ± 8.50

53 -15.29 ± 8.44 -12.63 ± 6.14 -10.00 ± 3.24 -7.78 ± 2.83
9952 3.51 ± 3.80 10.82 ± 1.23 4.56 ± 1.43 -4.29 ± 1.07

48

	Introduction
	Related Work
	Homotopy-Based Hyperparameter Optimization
	Implementation with Generalized Additive Models (GAM)
	Implementation with CatBoost Models
	One-Dimensional Illustration
	Two-Dimensional Example
	Optimization Software Framework Integration

	Experiments
	Evaluation Criteria
	Experimental Setup
	Results
	HPOBench Classification Experiments
	Open-Set Benchmarks
	NAS-Benchmarks

	Limitations
	Conclusion
	Meta-Parameter Analysis
	Meta-Parameter Sensitivity Analysis on XGBoost Benchmark

	Enhancing Interpretability in Hyperparameter Optimization with GAMs
	Extended EVM Results
	Extended HPOBench Results
	Validations Scores
	Test Scores

