Bertini_real: Software for One- and
Two-Dimensional Real Algebraic Sets

Daniel A. Brake!, Daniel J. Bates?, Wenrui Hao?, Jonathan D. Hauenstein?,
Andrew J. Sommese®, and Charles W. Wampler®

! North Carolina State University, USA
danielthebrake@gmail.com,
danielthebrake.org
2 Colorado State University, USA
bates@math.colostate.edu,
www.math.colostate.edu/~bates
3 Mathematical Biosciences Institute, USA
hao.50Qosu.edu
people.mbi.ohio-state.edu/hao.50
4 North Carolina State University, USA
hauenstein@ncsu. edu,
www.math.ncsu.edu/~jdhauens
5 University of Notre Dame, USA
sommese@nd. edu,
www.nd.edu/~sommese
5 General Motors Research and Development, USA
charles.w.wampler@gm.com,
www.nd.edu/~cwamplel

Abstract. Bertini real is a command line program for numerically
decomposing the real portion of a one- or two-dimensional complex ir-
reducible algebraic set in any reasonable number of variables. Using nu-
merical homotopy continuation to solve a series of polynomial systems
via regeneration from a witness set, a set of real vertices is computed,
along with connection information and associated homotopy functions.
The challenge of embedded singular curves is overcome using isosingular
deflation. This decomposition captures the topological information and
can be used for further computation and refinement.

Keywords: Numerical algebraic geometry, cell decomposition, algebraic
surface, algebraic curve, homotopy continuation, deflation

1 Introduction

Bertini real seeks to automate the task of visualizing and computing on real
algebraic curves and surfaces. From only a defining polynomial system, the pro-
gram computes a cellular decomposition of the real portion of a one- or two-
dimensional complex algebraic set. The output of Bertini real is a set of text
files, containing the set of computed vertices, the connections between them, and



2 Brake-Bates-Hao-Hauenstein-Sommese-Wampler

any associated homotopies. Using the homotopies, the decomposition can be re-
fined to the user’s desire with a supplemental program simply titled sampler.
An interactive visualization suite is provided in MATLAB.

Bertini real works by leveraging the power of homotopy continuation [2,
3], numerical irreducible decomposition [8], regeneration [5], randomization [3],
and isosingular deflation [6] to decompose the real parts of complex one- and
two-dimensional components of algebraic varieties. It produces a cell decompo-
sition, similar to the output of other decomposition methods, most notably the
Cylindrical Algebraic Decomposition [1].

2 Functionality

Bertini_real is an MPI parallel-enabled compiled program called from the com-
mand line. The two necessary ingredients to run the software are: 1) a Bertini
input file, and 2) a Numerical Irreducible Decomposition (NID) produced by
Bertini. It further depends on MATLAB for symbolic calculations (e.g. deflation,
symbolic derivatives and determinants), the Boost C++ support library, as well
as GMP and MPFR (for multiple-precision numerics). Compilation requires a
library-compiled version of Bertini [2].
The basic pattern for usage of Bertini _real is summarized below.

1. Create a NID, via Bertini. This gives a witness set for each irreducible
component, as well as information on each component’s degree, multiplicity,
and deflation requirements.

2. Run Bertini_real on a single irreducible component. Bertini_real checks
if the component is self-conjugate. If it is not, Bertini real finds the in-
tersection of the component with its conjugate and proceeds. The program
further deflates the system [6] so that the component is reduced and properly
deflated, so that we may track on it. It then finds a cell decomposition of
the real points in the complex set.

3. Refine the decomposition. Bertini_real produces raw decompositions that
are bare skeletons of the objects they describe. If the user wants to view
a smoothed version, or use the decomposition for further calculations, they
might want to refine using the program sampler, provided as part of the
Bertini real package.

4. Visualize. Visual interpretation of the data typically quickly reveals any
problems which might have been encountered during computations. The
suite of graphical software is provided through MATLAB.

3 Application

3.1 Curve

Consider a three-jointed revolute planar robot, with equal link lengths — and
let the length be unity. If we fix a point in the workspace of the robot, we get



Bertini_real 3

Fig. 1. Example of curve decomposition. A 3R planar robot of unit link length places
its end effector at the point (x,y) = (1,0). Left: projection onto the cosines of the
angles. Right: projection onto sines. These two plots are simpler than viewing the joint
angles directly, due to the periodic nature of trigonometric functions.

a curve of solutions in terms of the joint angles such that the end effector is
placed at the point. Equations are given below in (1), with s; = si = sin6;, and
¢; = ci = cosb;.

C1 — 83(0182 —+ 6281) —+ C1C2 — 81852 —+ 63(6102 — 8182) -1
51+ 182 + cas1 + s3(c1C0 — 5152) + c3(c152 + c251)

A+s3—1 =0 (1)
A+s3-1
cd+s3—1

In Fig. 1, we present the three components of the solution curve when we
grasp the point (z,y) = (1,0). On the left is a projection of the set onto the
cosines, and the figure on the right are the sines.

3.2 Surface

Now consider a two-joint revolute planar robot with link lengths ¢; = 1,65 = 0.5,
and let the target position for the end effector be variable and denoted (z,y),
as in (2). The set of points in the plane the robot can reach is realizable using a
surface decomposition. The workspace ought to be an annulus, and this is indeed
the result of the decomposition when projected onto (z,y) as in Fig. 2.

1 —x+ (c1c2)/2 — (s182)/2
s1—y+ (c182)/2 + (ca81)/2
2 +s2-1
3+s3-1

=0 (2)

4 Underlying theory

4.1 Curve

The implementation of curve decomposition in Bertini_real follows the algo-
rithm laid out in [7], depicted in Fig. 3, and summarized informally below.



4 Brake-Bates-Hao-Hauenstein-Sommese-Wampler

theta2

Fig. 2. Example of surface decomposition. A 2R planar robot with differing link lengths
is allowed to move freely, and we decompose its workspace as a surface in terms of (z, y)
and the sines and cosines of the joint variables. On the left, projection of the surface
onto (z,y) gives an annulus as expected. At the right, the surface is tilted, revealing
the two solutions, in terms of the arctangent of (s2,c2).

To begin, there is a little user set up, the foremost of which is to run Bertini
with configuration setting TrackType:1 to obtain a NID. Optionally, the user
may write a file containing a (random) real projection and a sphere of interest.
Bertini_real automatically tests for self-conjugacy. A non-self-conjugate com-
ponent is intersected with its own conjugate to produce a finite set of isolated
real points, which terminates the computation. Otherwise, Bertini_real carries
out the following six steps.

1. Find critical points. These points will include singular points, and points
such that the curve is tangent to the direction of projection, and they will
satisfy the system:

f(x)

Ferit = | qet ( jﬂf(?)) =0, (3)

where J indicates the Jacobian matrix of partial derivatives and m : CN — C
is the random real projection being used for the decomposition. Let ¢y, ..., ¢,
be the real critical points, ordered so that m(c1) < mi(c2) < -+ < m1(ep).

2. Intersect with sphere. To cut off unbounded arcs of the curve, or to focus
the view to the user’s region, we intersect with a sphere of center xy and
radius r, and solve the system (4), inserting the real intersection points into
the list of ordered critical points.

|

3. Slice. To find what will become the midpoints of the edges of the decom-
position, slice the curve between its critical points, by tracking from the
single witness linear £ to each midpoint projection value, p,,, = (m1(¢;) +



Bertini_real 5

1. Find critical points 2. Intersect with sphere 3. Slice

6. Refine 5. Merge 4. Connect the dots

o

Fig. 3. The six major steps for a curve decomposition as implemented in Bertini_real.
This illustration uses an elliptic curve, 23 — 2z +1 — 3% = 0.

7T1(Ci+1))/2, as:

- (@)
Hipidslice = [tﬁ(x) + (1 —t)(m(x) — Pmi)} .

4. Connect the dots. Use the following homotopy to track midpoints first left
and then right to the points on the curve above each critical point:

) f@)
Hirack = [ﬂ-(gg) — (tpm, + (1 — t)p)} 7

where p is taken first as p = m1(¢;) and then as p = 7 (¢i41)-

5. Merge. Optionally, we can remove superfluous intersections which lie in the
same projection fiber as critical points. These points arise when the curve
has non-critical branches above a critical point, and they can be removed to
produce a simpler decomposition.

6. Refine. Optionally, the user can refine the decomposition to their specifica-
tion. By using the same homotopy as in Step 4, we can move the generic point
in the center of each edge to any projection value p, m1(¢;) < p < m1(¢it1).
Two methods are available in Bertini_real: 1) a fixed-number method,
where the user specifies how many points they want per edge; and 2) an
adaptive method, where the user specifies a distance tolerance and a limit
on the of number of refinement iterations.

4.2 Surface

The implementation of surface decomposition in Bertini_real follows the algo-
rithm laid out in [4], depicted in Fig. 4, and summarized informally below.



6 Brake-Bates-Hao-Hauenstein-Sommese-Wampler

1. Decompose 2. Decompose 3. Intersect with
critical curve singular curves sphere
6. Refine 5. Connect the dots 4. Slice

Fig.4. The six major steps for a surface decomposition as implemented in
Bertini_real. This example uses the Whitney Umbrella, ? — 3%z = 0, a degree 3
surface in three variables, which is unbounded and contains a curve of singularity
(around part of which, the surface is one-real dimensional.

Similarly to a curve decomposition, there is a small amount of user set up.
Of course, one must obtain a NID, and the user may choose a projection and
sphere. Self-conjugacy testing, and deflation are performed automatically. The
six steps below are for self-conjugate components only. Any non-self-conjugate
component is intersected with its conjugate component, producing at most a
curve, which is then treated as in the curve case above. The decomposition of a
surface is found with respect to two random real projections, 71, m : CN — C,
as follows.

1. Decompose the critical curve. The critical curve is analogous to the outline
of an object when viewed in an image plane and is also the set where the
tangent is parallel to the two directions of projection, 71, 7. The curve is
defined by the system:

f

J

feriteurve = det ng((xx)) =0. (5)
J71'2 (LU)

Witness sets for the components of the critical curve are obtained via regen-
eration from the witness set, using a left-nullspace approach, and these are
passed the curve method for decomposition with respect to .

2. Decompose singular curves. As a matter of course from computing the wit-
ness set for the critical curve, we also obtain witness points for singular
curves, since every singular curve will also satisfy (5). We use isosingular de-
flation [6] to deflate the input system these witness points, thereby producing



Bertini_real 7

full witness sets. These are then decomposed with respect to m; exactly as
for any other component of the critical curve.

3. Intersect with sphere. The intersection of the surface with a sphere of radius
r and center xy will result in a curve, defined by (4). The intersection curve
is treated as part of the critical curve, so it too is decomposed with respect
to my.

4. Slice. We perform a curve decomposition at each of two sets of m projection
values — at each critical m1-value, and halfway between each pair, coming from
the critical points of the critical curve, singular curves, and the sphere curve.
Call these critical slices and mid-slices, respectively. Each of these slices has
a constant 7y value and is decomposed with respect to .

5. Connect the dots. The midpoints of each edge of each mid-slice become the
center point for a face of the decomposition. The decompositions of the mid-
slices reveal how the midpoint is connected to the top and bottom edges of
its face, each coming from the critical curve, the sphere curve, or a singular
curve. The description of the face is completed by finding which edges in
the adjacent left and right critical slices connect to the midpoint. This is
determined using a homotopy that keeps the midpoint from crossing its top
and bottom edges as it is moved to the left and right critical projection
values: see [4].

6. Refine. The decomposition to this point is coarse, in that it provides a coarse
triangulation of the surface. A refinement method is provided in the separate
executable sampler, which refines each edge and face in the decomposition,
to contain a number of points of the user’s choice. Adaptive and eventually
optimal sampling for surfaces is a matter of ongoing development.

5 Technical contribution

5.1 Advances

Bertini_real allows a non-expert access to the algorithms of [7,4] for decom-
posing the real points of complex algebraic curves and surfaces, whereas the
previous prototype codes required expertise and worked only on sets of low de-
gree. Importantly, Bertini_real is the first implementation that removes the
restriction to almost-smooth surfaces that was needed in [4] — non-smooth sur-
faces can now be treated in any number of variables. The largest curve we have
decomposed so far is a 3-3 Burmester curve [9] in 14 variables of degree 630.

5.2 Challenges

The main algorithms as implemented in Bertini_real are all for affine varieties.
One can decompose any projective variety one wants, by considering patch equa-
tions and the transformation into an affine space. However, the Bertini tracker
loops used by Bertini_real expect there to be a single homogenizing variable
for a single non-homogeneous variable group. Furthermore, Bertini as written



8 Brake-Bates-Hao-Hauenstein-Sommese-Wampler

was not intended to be called as a library as we do with Bertini_real, so link-
ing into the loops required a great deal of finesse. This experience is helping the
setting up of specifications for the next version of Bertini.

While curves are comparatively easy to decompose, Bertini_real’s surface
decomposer is currently capable of dealing with only moderately sized systems
— surfaces involving no randomization and six variables are generally currently
tractable. However, we have encountered difficulty decomposing a particular
Burmester surface, involving eight polynomials in ten variables. While we can
readily obtain the witness points for the critical curve, computing the critical
points of the critical curve remains a barrier for this problem. The code uses
a determinantal formulation of the criticality condition, wherein we compute a
symbolic determinant involving a Jacobian matrix. MATLAB struggles with this,
eventually spitting out a system over 25 MB in size. Worse, Bertini must then
parse this input file to create procedures for evaluating the function and its
Jacobian, which overwhelms the available computing resource.

The major obstacle to running large problems through the surface decom-
poser is therefore the elimination of the determinant. Alternate methods that
avoid the determinant are the subject of further research.

Acknowledgments All authors were partially supported by AFOSR grant
FA8650-13-1-7317. DJB was partially supported by NSF grant DMS-1025564.
DAB and JDH were additionally supported by DARPA YFA.

References

1. D.S. Arnon, G.E. Collins, and S. McCallum. Cylindrical algebraic decomposition I:
The basic algorithm. SIAM Journal on Computing, 13(4):865-877, 1984.

2. D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. “Bertini: Software
for Numerical Algebraic Geometry.” Available at bertini.nd.edu.

3. D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Numerically solv-
ing polynomial systems with Bertini, volume 25. SIAM, 2013.

4. G.M. Besana, S. Di Rocco, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler.
Cell decomposition of almost smooth real algebraic surfaces. Numerical Algorithms,
63(4):645-678, 2013.

5. J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Regeneration homotopies
for solving systems of polynomials. Mathematics of Computation, 80(273):345-377,
2011.

6. J.D. Hauenstein and C.W. Wampler. Isosingular sets and deflation. Foundations of
Computational Mathematics, 13(3):371-403, 2013.

7. Y. Lu, D.J. Bates, A.J. Sommese, and C.W. Wampler. Finding all real points of a
complex curve. Contemporary Mathematics, 448:183-205, 2007.

8. A.J. Sommese, J. Verschelde, and C.W. Wampler. Numerical decomposition of the
solution sets of polynomial systems into irreducible components. SIAM Journal on
Numerical Analysis, 38(6):2022-2046, 2001.

9. Y. Tong, D. H. Myszka, and A. P. Murray. “Four-bar linkage synthesis for a com-
bination of motion and path-point generation.” Proc. ASME IDETC/CIE 2013,
Portland, OR, Aug. 4-7, 2013.



