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Abstract—Minimizing the Euclidean distance (¢2-norm) from
a given point to the solution set of a given system of polynomial
equations can be accomplished via critical point techniques.
This article extends critical point techniques to minimization
with respect to Hamming distance ({yo-“norm”) and taxicab
distance (¢;-norm). Numerical algebraic geometric techniques
are derived for computing a finite set of real points satisfying
the polynomial equations which contains a global minimizer.
Several examples are used to demonstrate the new techniques.
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I. INTRODUCTION

Two common non-smooth objective functions arising in
applications are the Hamming distance (p-“norm™) [1]] and
the taxicab distance (¢1-norm). For example, one problem in
compressed sensing [2], [3] is to obtain the sparsest vector
which satisfies a linear system. That is, given A € R"*N
and y € R"”, solve

min{||z|lo : Az =y} €))

where # € RY and ||z|o = #{j : z; # 0}. A common
technique for trying to solve is to replace the Hamming
distance ||z||o with the taxicab distance ||z|; = >, |z;
namely by solving the convex optimization problem

)

min{||z|1 : Az = y}. )

Some additional applications include error correction [4],
facial recognition [5]], and magnetic resonance imaging [6].
Rather than consider solutions to linear equations as in
and (2), we consider constraint sets which are the solution set
to a system of polynomial equations having real coefficients.
That is, for a real polynomial system g : RN — R", let

Ve(g) ={z € CV : g(x) = 0} and Vr(g) = Ve(g) NRY,

commonly called the complex and real variety of g, respec-
tively. We aim to solve

min{||z|lo : z € Vr(g)} (3)

and

cx € Vr(g)} “4)

Since Vr(g) need not be convex, (4) need not be a convex
program in contrast to the convex program .

An early method for solving the sparse-solution problem
was the greedy algorithm in compressive sensing [7]. A
subsequent method is basis pursuit stemming from [8]],
where one represents a function, or signal, in terms of an
existing dictionary of basis functions. More recent methods
have included nonlinear basis pursuit (NBP), where the
problem has arisen as nonlinear compressive sensing [9],
which is an iterative method using monomial representation
to solve a convex version of (@).

A problem related to (3) and (@) is the Euclidean distance
(€2-norm) minimization problem

z € Ve(g)} (5)
where ||z[|3 = >, 7. This problem has been studied

extensively in computational algebraic geometry via critical
point conditions. For example, in addition to containing a
global minimizer of (5)), Seidenberg showed in [10] that
the set of critical points of (3)) also contains a point on
each connected component of Vg(g). Modifications of this
method which compute a finite subset of critical points
containing a global minimizer as well as a point on each
connected component were developed in [11]], [12]] with the
term Euclidean distance degree coined in [13]], [14]. Model
selection [13] is one of many applications of solving (5). For
more details on basic algebraic geometry, see [[L6]], [[17].
Following a similar strategy, this paper develops critical
point systems consisting of polynomial equations for (3)

min{|z,

min{l2[|3 :



and (@). Then, under genericity assumptions, we construct a
homotopy-based method to compute a finite set of critical
points which contains a global minimizer. Hence, a global
minimizer can be obtained via a post-processing search of
the finite set of critical points.

The rest of the paper is organized as follows. Section
derives polynomial necessary conditions for (3) and (@). Sec-
tion [I1I] describes a homotopy-based approach for computing
a finite set of solutions satisfying these necessary conditions.
Section [[V] provides local homotopy methods for obtaining a
critical point starting from a given point. We conclude with
additional examples in Section [V]

II. NECESSARY CONDITIONS

For a real polynomial system g : RN — R”, the following
reviews necessary conditions for (3) and then extends to
necessary conditions for (3) and (@).

A. Minimizing |||

For a € RV, the following proposition provides Fritz John
[18] necessary conditions for solving

z € Vr(9)}- (6)

Note that it must be the case that either Vg(g) = 0 or (6) has
a global minimum. Let P™ denote n-dimensional projective
space.

min{||z — a||§ :

Proposition IL1. If 2* € Vr(g) solves (0), then there exists
A* € P™ such that G(z*, \*) = 0 where

g9(z)
No(z —a) + 37, \iVgi(x) 1 "

and V g;(x) is the gradient of g; evaluated at x.

G(z,\) =

The system G in (7) is the critical point system for (6]
and the set of critical points of () is the set of points z
such that there exists A € P" with G(z,\) = 0.

Example IL2. For g(z) = 2?+2%—1 and a = (—0.6,0.45),
the critical point system

3+ a3 -1
z1 + 0.6 2x
2132

xro — 0.45
yields two critical points, namely p; = (—0.8,0.6) and
p2 = (0.8, —0.6) which are shown in Figure |1} It is easy
to verify that p; and py are the global minimizer and
maximizer, respectively, for (6).

Gz, \) = "

B. Minimizing ||x||o
For a € R, we aim to derive necessary conditions for

z € Vr(9)} ®)

via a polynomial system. Two difficulties are that the map
2+ ||z — al|p is not continuous and thus not differentiable,

min{||z — a|o :

and there need not be isolated global minima, both of which
will impact our use of homotopy methods in Section
Both difficulties can be ameliorated by introducing another
layer of optimization: namely, for b € RY consider

min{x—b% : z € Ve(9) }

lz — allo = min{lly —allo : y € V(9)}

©))
In particular, this problem describes computing points
x € Vr(g) nearest to b in the Euclidean norm which agree
with ¢ in the maximum number of coordinates.

Proposition IL3. If x* € Vg(g) solves Q), then there exists
X* € P" such that G(z*,\*) = 0 where

B 9(x)
Gz, ) = [ (x—a)o(No(z—0)+ >, Angi(x))( 0

and o denotes the Hadamard (entrywise) product.

Proof: Let J = {j : ¥} = a;} and m = #J.

By reordering the coordinates, we can assume without
loss of generality that J = {N —m + 1,...,N}. Let
7 : RN=™ — RN be defined by 7(z) = (z,a). Thus, for
a=(a1,...,aN-m), 2* = (x],...,z%_,,) solves

min{||z — o2 : 7(2) € Vr(g)}.
Hence, Prop. yields A* € P" such that (2*, \*) solves

g(m(2))

Aoz = a) + 3551 \iVgi(n(2))
Since m;‘ = a; for j € J, the result immediately follows. B
The system G in is the critical point system for
and the set of critical points of (8] is the set of points x
such that there exists A € P with G(z,\) = 0. In fact,
the previous proof can be extended to show that the set of
critical points consists of critical points on every possible

choice of slices z; = a; for j € J C {1,...,N}.

Example IL4. For g and a from Ex. with b = a,
23+ a3 -1

(.’,E2 — 045)()\0(I2 — 045) + )\1(21‘2))
yields 6 critical points: p; and p, from Ex. and

ps = (~0.6,0.8), p1 = (~0.6,-0.8),

ps = (—v0.7975,0.45), pe = (v/0.7975,0.45).
The points p; and ps are the global minimizer and max-
imizer for J = (), ps and p, are the global minimizer
and maximizer for J = {1}, and p5 and pg are the global
minimizer and maximizer for J = {2}, respectively, which

are shown in Figure Thus, ps,...,ps, are all global
minimizers for (§).

G(z,\) =
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Figure 1. Hamming critical points for the unit circle from Ex. m The
stars are the global minimizers while the blue dots are the Euclidian distance
(¢2) global minimizer and maximizer from Ex.

In (), the objective function was dependent upon all
variables. A natural extension of Prop. [[[.3] applies if one
considers only a subset of the variables. For example, if
h : RN x RM — R" is a real polynomial system and
a € RV, consider

(1.7y) € VR(h)}

For b € RY and ¢ € RM, the corresponding critical point
system is

min{||z — a||o :

h(z,y)
(z—a)o oz —b) + 252y AiVahi(z,y)) | (D)
Aoy =€) + 322y AiVyhi(a,y)
where V,h;(x,y) is the gradient of h; with respect to z
evaluated at (x,y).
C. Minimizing ||x||1

For a € RY, we aim to derive necessary conditions for

cx € Vr(9)} (12)

via a polynomial system. Although =z — ||z — a|; is
continuous, it is not differentiable. However, for x € RV
with z; # a;,

min{||z — a||;

1 if z; > a;
-1 if z; < a;.

0 .
a—xlﬂx —ally = sign(z; —a;) = {

To avoid the piecewise nature, we square, yielding

9 2

This leads to the following necessary conditions.

Proposition IL5. If z* € Vg(g) solves (12)), then there exists
A* € P such that G(xz*,\*) = 0 where

g9(z) ]

(2 —a)o (ML - (X1, \Vgi(@)”)
(13)

G(z,\) = [

and o denotes the Hadamard (entrywise) product, 1 denotes
the vector of all ones, and 2 =vou.

Proof: Let J = {j : xj = a;} and m = #J.

By reordering the coordinates, we can assume without
loss of generality that J = {N —m + 1,...,N}. Let
7 : RN=™ 5 RN be defined by 7(z) = (z,a). Hence,
for a = (a1,...,aN—m), 2* = (2}, ..., 2%_,,) solves

min{||z — a1 : 7(2) € Vr(9)}.

Since z +— ||z — al]y is differentiable at z*, Fritz John
conditions yield \* € P™ where (2%, \*) satisfies

0 " 0
ol =l + XA a(a(2) =0

for j =1,...,N —m. Hence, (z*, \*) satisfies

2 n 2
A2 = (Aoa‘Zp - a||1> = <2Ai£g(7r(z))>
J i=1 7

for j = 1,..., N — m. This shows that (z*, \*) solves the
first N — m equations of

(x—a)o [ A21 — (Z )\Z-Vgl-(ac)> = 0.

i=1
The last m equations are satisfied since z; = a; for j € J.
|
The system G in (13) is the critical point system for (12)
and the set of critical points of (12) is the set of points x
such that there exists A € P™ with G(x,\) = 0. Due to
the squaring, if A = [Ao,...,\,] with G(x,\) = 0, then
G(z,N) = 0 where X = [—)Xo, A1, ..., \n]. Therefore, a
necessary condition for a real critical point x to solve (12)
is to have \ € P" satisfy

sign(Ao(a; — z;)) = sign (Z )\ngi(acj)> (14)

i=1
for all j with x; # a;. This is trivially satisfied if A\g = 0.
Example IL6. For g and a from Ex.[[I.2]

3423 -1
(214 0.6)(A3 — (2z1A1)?)
(22 — 0.45) (A% — (222M1)?)

G(z,\) =

yields 16 solutions which map 2-to-1 to the following set of
8 critical points: ps, ..., ps from Ex. [[4] together with

pr=(/1/2,V/1/2),  ps = (=/1/2,/1/2),
P9 = (\/1/727_\/@), P1io = (_\/mv _\/m)

Each of the four points ps,...,pg are local minimizers
with ps being the global minimizer for (12). Each of the
four points p7,...,p1o are local maximizers with pg being
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Figure 2. Taxicab critical points and the objective function over the unit
circle. The star is the global minimizer and the blue dots are other critical
points for Ex. [[[.6]

the global maximizer. Figure 2] shows the critical points and
the value of the objective function on the unit circle.

Example IL7. Repeating Ex. and with
a = (—0.6,0.95) yields the following global minimizers

(with numerical approximations listed to 4 decimal places):
4y : (—0.5340,0.8455)
ly : (—0.6,£0.8), (£0.3122,0.95)
fl . (—06,08)
We note that p7, ..., pio from Ex.[[.6|were ¢; critical points,
with only pg and pj¢ satisfying the sign condition (T4).

One advantage of defining the critical point set without
enforcing reality or is that the critical point set is an
algebraic set, i.e., closed in the Zariski topology on CV.
This is exemplified in the following.

Example IL.8. For g(z) = 23+23—1 and a = (0,0), every
point satisfying g = 0 is a critical point of (6) where the
set of global minimizers is Vr(g). For g(x) = 21 + 22 — 1
and any a € R?, every point satisfying g = 0 is a critical
point of (T2) where the set of global minimizers is the line
segment t(a1,1 —a1) + (1 —¢)(1 — az,aq) for t € [0, 1].

ITII. CRITICAL POINT HOMOTOPIES

Since the set of critical points need not be finite, this
section extends the construction of a critical point homotopy
for () developed in [12] to compute a finite subset of the
critical points containing a global minimizer under certain
assumptions. For the real polynomial system g : RN — R™,
we assume:

(A) each irreducible component of V¢(g) has
dimension N — n, i.e., codimension 7.
One way to always satisfy (A) is by replacing the polyno-
mial system g with the polynomial ¢’ = Y"1 | g? so that
Vr(g) = Vr(¢') and every irreducible component of V¢ (g')
has dimension N — 1, i.e., codimension 1.

Throughout the remainder of the paper, a point is generic
if it is outside of a Zariski closed proper subset. A non-
generic point may also be called special. We refer the reader
to [16], [17] for further information.

A. Homotopy for ||z||2

Given a € RY and g satisfying (A), there are two consid-
erations for computing a finite subset of critical points to (6)):
singular points of V¢(g) and nongenericity of a. Since each
singular point of V¢(g) is trivially a critical point, systems
with infinitely many singular points pose a challenge for
computing a finite subset of critical points. This is addressed
in [1L1]], [12]] by considering a family of perturbations of g
via infinitesimals and parameter homotopies, respectively.
In particular, we will assume that ¢ € RY and v € C are
chosen so that V¢ (g — t7ye) is smooth of codimension n for
all ¢ € (0, 1].

For special choices of a, one could have infinitely many
global minimizers for (@), e.g., in Ex. the origin is
the center of the unit circle. Following [L1], [12], we will
assume genericity of @ in that one obtains the maximum
number of isolated solutions for (7) applied to g — tye
for all ¢ € (0,1]. The previous two assumptions hold with
probability one for random choices of € € RN, v € C, and
a € RY yielding the following derived from [12, Thm. 5].

Proposition ITL1. Suppose that g satisfies (A) and € € RY,
v € C, and a € RY satisfy the aforementioned genericity
assumptions. Then, the homotopy

g(x) —tye
H(z,\t) =
Moz —a)+ > \iVgi(x)

defines finitely many smooth solution paths for t € (0,1] and
the set of x-coordinates for the finite endpoints at t = 0 is
a finite set of critical points containing a global minimizer

of ().

Remark III.2. This immediately provides a three-step pro-
cess for solving (6)): solve H(x,A,1) = 0 to compute the
start points, compute the x-coordinates of the endpoints
at t = 0 defined by H(z,\,t) = 0, and sort through
the endpoints to find a global minimizer. One approach to
computing the start points is to utilize regeneration [19],
and exploit the 2-homogeneous structure [20]. More de-
tails regarding using numerical algebraic geometry to solve
H(xz, A, 1) = 0 and track the paths defined by H(z, A,t) =0
can be found in the books [[17], [21].

Example II1.3. Consider the polynomial system

.13% — T9
g(x)=| mwoy—23 | =0

123 — x%



which defines the twisted cubic curve. Hence, g consists of 3
polynomials while Vc(g) has codimension 2. We consider
two ways to satisfy (A) :

« selecting a well-constrained subset, namely

[ l‘%—xg

L1T2 — I3

Gi(z) =

« taking a sum of squares, namely

Go(z) = (xf — £2)2 + (z10 — 23)% + (125 — x%)Q

For a = (2,4,2), applying Prop. with either
G, or (3 yields a unique real critical point, namely
t; = (1.4395,2.0722,2.9830) which is listed to 4 decimal
places and shown as the blue dot in Figure[3] For Gy, 5 paths
are tracked with one converging to ¢;. For Go, 32 paths are
tracked with two converging to ¢;.

B. Homotopy for ||z||o

The free choice of b € RY in () and removes
any genericity assumption on a in this case. However, the
genericity assumption on € and y are slightly increased in
that one now requires the smoothness of

U  Vel@) -ty nVe(z; —aj5€d)  (15)
JcA{1,...,n}

for all ¢ € (0, 1], which is still satisfied with probability one.

Proposition II.4. Suppose that g satisfies (A) and each
of e € RN, v € C, and b € RY satisfy the genericity
assumptions as in Prop. Then the homotopy

H(z, ) = 9(@) = tye —0
o (x —a)o (Xo(z —b) + X7, \iVgi(w))

defines finitely many smooth solutions paths for t € (0,1]

and the set of x-coordinates for the finite endpoints att = 0

is a finite set of critical points containing a global minimizer
of @).

Proof: It immediately follows from Prop. [lII.1] that this
computes a global minimizer of

min{||z — b[|3 : © € Vr(g), z; = a; for j € J}

for each choice of J C {1,...,n}. Hence, one obtains a
global minimizer of (g). |
One has a similar three-step solving procedure for solv-

ing (8) as in Remark

Example IILS. With the setup from Ex. [[II.3] applying
Prop. to either Gy or G2 yields 4 real critical points,
namely t; from Ex. and, to 4 decimal places:

ty = (1.2599,1.5874,2), t3 = (—2,4,-8), t4 = (2,4,8).

The point ¢4 is the global minimizer of (§) which is shown
in Figure [3] For G, 11 paths are tracked with 5 converging
to real points: one each to t1, t2, t3 and two to t4. For G5, 80
paths are tracked with 12 converging to real points: two each
to tq,to,t3 and six to 4.

ty

bt

Figure 3. Hamming critical points for the twisted cubic. The red star is the
global £p minimizer with two coordinates equal. The green dots are critical
points with one coordinate equal. The blue dot, which has no coordinates
equal, is the global ¢2 minimizer from Ex. [IIL.3

C. Homotopy for ||z||1

In contrast to (6), for which only special values of a
yield infinitely many global minimizers, Ex. [[L.§] shows
that this need not be the case for (12). Thus, we will
additionally assume that there is an isolated point in the
set of global minimizers to (IZ). A genericity assumption
on € and v yielding smoothness in (I3) for ¢ € (0,1]
yields the following.

Proposition ITL6. Suppose that g satisfies (A) and € € RY,
v € C, and a € RY satisfy the aforementioned genericity
assumptions and those in Prop. Then, the homotopy

g(x) — tye o
(x—a)o (Agl - (X Az‘Vgi(ﬂc))OQ) } -

defines finitely many smooth solution paths for t € (0,1] and
the set of x-coordinates for the finite endpoints at t = 0 is
a finite set of critical points containing a global minimizer

of (12).

Proof: The genericity assumptions yield smooth solu-
tion paths for ¢ € (0, 1]. Thus, it only remains to show that
one obtains a critical point that is a global minimizer of (T2).
This follows from the assumption regarding the existence
of an isolated global minimizer together with the theory of
parameter homotopies [22] extended in [23]]. [ ]

Again, one has a similar three-step solving procedure for

solving (I2) as in Remark

Example IIL.7. With the setup from Ex. |III.3] applying
Prop. to either G; or G yields 7 real critical points,

H(z,\t) = |:

namely s, t3,%4 from Ex. [lIL.5| along with
ts = (1,1,1), te = (1/3,1/9,1/27),
t7 =(—1/3,1/9,-1/27), ts=(-1,1,-1).

The global minimizer of is t9, which is shown in
Figure [ For G, 40 paths are tracked with 24 converging



to real points: four each to ¢y and t3, eight to ¢4, and two
each to t5,...,ts. Moreover, the points ts,...,ts fail the
sign condition (T4). For G2, 292 paths are tracked with 52
converging to real points: eight each to ¢o and t3, twenty
to t4, and four each to ts, ..., ts. All critical points trivially
satisfy the sign condition (T4) due to \g = 0.

Figure 4. Taxicab critical points for the twisted cubic. The red star is the
global ¢1 minimizer. Critical points ¢s,. .. ts fail the sign condition (T4)
with respect to G'1 and trivially pass with respect to Ga.

IV. LOCAL HOMOTOPIES

The homotopies in Prop. [[I[.T} [[IT.4] and [[IT.6] are global
homotopies in that all paths are smooth for ¢ € (0,1] and
one obtains a global minimizer under proper assumptions. In
this section, we turn to local homotopies derived from [24]
that aim to locate a critical point near a given real point.
With these local homotopies, there is no guarantee that the
path will be smooth for ¢ € (0, 1]. However, if it is smooth,
the endpoint corresponds with a real critical point.

A. Local homotopy for ||z||2

As described in [24]], given a real polynomial system
g:RYN = R"™ and z* € RY, one considers the homotopy
H(z,\t) = 9(z) - tgla”) ~0
Xo(x —a*)+ > A\iVgi(z)
(16)
with start point, at t = 1, x = 2* and A = [1,0,...,0]. This
is called a gradient descent homotopy in [24].

B. Local homotopy for ||z||o

If one knows a priori which coordinates of x* should
remain fixed, i.e., knows J C {1,...,n} such that one
aims to locate a point on Vr(g) N Vr(x; —27,j € J), then
one can simply modify the gradient descent homotopy (T6)
appropriately. This would aim to locate a point closest to
the given point x* in the /2-norm which has the same set
of J coordinates at x*.

Since this information is often not known, we consider an
alternative approach. Suppose that one is given a,z* € RY

such that a; # «} for ¢ =1,..., N. Then, one could try the
homotopy H(z, A,t) given by

g(x) —tg(z”)

(z—a)o (Ao(z—a)+ >, \iVgi(z)) — tho(z" — a)*?
)
with start point, at t =1, x = 2* and A = [1,0,...,0].

C. Local homotopy for ||x||1

Rather than utilize squaring as in Prop. [lIL.6] we
consider the following local homotopy H(z, A, t) given
a,v,z* € RY such that a; # z} fori=1,...,N:

g(x) —tg(z")
(x—a)o (Nov+ >y A\iVgi(z)) —tho(z* —a)owv
(18)
with start point, at t = 1, x = 2* and A = [1,0,...,0]. In
the special case that v°2 = 1 and the path is smooth for
t € (0,1], then the endpoint corresponds to a real critical

point for (T2).

D. Local homotopy example

The local homotopy (I6) was applied to 500 points
uniformly sampled in [—3, 3]? for

g(x) = 23 + 27 (x1 — 1)(21 — 2)

in Fig. 3(a)]. With a = 0, Figure [3 shows the same
setup for the local homotopy (T7).

Figure 5. Results of local homotopy (I7) with Vg(g) shown in blue.

We also applied the local homotopy (I8) with @ = 0 and

Vg(z*)
[Vg(z*)ll2’

The results are shown in Figure [6]

V=



Figure 6. Results of local homotopy (I8) with Vr(g) shown in blue.

V. ADDITIONAL EXAMPLES
A. Torus
Consider the torus with R = 2 and r = 0.5 defined by

g= @+ 2+ 22+ R? — 1?2 —4R*(2® + ) = 0.

For a = (0.45, 1,0.2), applying Prop. yields 24 distinct
real critical points for the Hamming distance which are plot-
ted in Figure [7] In particular, there are 8 global minimizers
which are (to 4 decimal places):

q1 = (0.45,1.4746,0.2), g2 = (0.45,2.4167,0.2),
= (2.2457,1,0.2), = (1.1734,1,0.2),
(—1.1734,1,0.2), = (—2.2457,1,0.2),
= (0.45,—1.4746,0.2), g¢s = (0.45,—2.4167,0.2).

*QG
q5 A
% qy °
e
+
a ;*QAL
%43
°
° x17
°
«48

Figure 7. Hamming critical points on the torus. The stars are the global
minimizers with two coordinates being equal. The other colored dots are
critical points having either one (green) or no (blue) coordinates equal.

Next, applying Prop. [[IL.g] yields 48 distinct real critical
points for the taxicab distance which are plotted in Figure [§]
Of these, 32 satisfy the sign condition (T4) with the global
minimizer being q; .

° o8

4 *q *
o o
o (l+ %3 ° A
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(e}
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’ [e] &
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Figure 8.  Taxicab critical points on the torus. The star is the global
minimizer. The blue dots are other critical points which satisfy the sign
condition (T4) while the black circles fail this condition.

B. Matrix Rigidity

We close by recovering a low rank matrix from a given
matrix which has possibly undergone transcription errors. In
particular, we aim to compute the r-rigidity [23], [26]],
of an n X n matrix M, which equals

min{||Eljg : M =A+E, rank A <r}.

Specifically, we demonstrate our homotopy-based approach
for computing the 1-rigidity of selected matrices in R3*3.
Since rank A < 1, we write A = wv?, u and v € R3,
and assume v; = 1. Thus, we can utilize the polynomial
system (T1)) to enforce the sparsity condition on E as well
as taking the vector of coordinates (E,u,v) to be as close
to the origin (with respect to the 2-norm) as possible. For
generic M, this system yields 1593 critical points.
Deforming from a generic M to the rank 2 matrix

1 11
M =12 0 0
3 00

yields 405 paths that converge to real points with 225 distinct
values for (E, u,v). The two Hamming minimizers

1 1 000
u= |0, v=|1], E=12 0 0
0] 1 13 0]
and
(1] (17 (0 1 1]
u= , v= |0, E=1]0 0 O
3 0] 0 0 0]

have 4 paths converging to each of them. Hence, the
1-rigidity of M’ is 2.

Finally, we consider the full rank matrix

2 2 3
M'=|-3 2 -6
-2 1 =3



For this matrix, 423 paths converged to real points with
346 distinct values for (E,u,v). The unique Hamming
minimizer, which was the endpoint of 15 paths, is

2 1 03 0
u=|-4|, v=1|-1/2|, E=1]1 0 0
—2 3/2 00 0

Hence, the 1-rigidity of M" is also 2.
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