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Abstract
Let Z be a two dimensional irreducible complex component of the solution set of

a system of polynomial equations with real coefficients in N complex variables. This
work presents a new numerical algorithm, based on homotopy continuation meth-
ods, to decompose into 2-cells any almost smooth real algebraic surface contained
in Z. Each 2-cell (a face) has a generic interior point and a boundary consisting
of 1-cells (edges). Similarly, the 1-cells have a generic interior point and a vertex
at each end. Each 1-cell and each 2-cell has an associated homotopy for moving
the generic interior point to any other point in the interior of the cell, defining an
invertible map from the parameter space of the homotopy to the cell. This work
draws on previous results for the curve case. Once the cell decomposition is in
hand, one can sample the 2-cells and 1-cells to any resolution, limited only by the
computational resources available.

1 Introduction

Let

f(z) :=

 f1(z1, . . . , zN )
...

fν(z1, . . . , zN )

 = 0 (1)
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be a polynomial system with each fi having real coefficients. Let V (f) denote the
underlying solution set

V (f) := {x ∈ CN | f(x) = 0},

which is an algebraic set, and let f−1(0) denote the set V (f) with its full possibly
nonreduced structure.

In this article we give a numerical algorithm to decompose the two-dimensional set
of real points, ZR = Z ∩ RN , of a two-dimensional irreducible complex component
Z ⊂ V (f) into cells under the assumptions that

1. Z is self-conjugate, i.e., Z is taken to itself under conjugation; and

2. the singularities of the solution set of f(z) = 0 meet Z in at most a finite set.

Note that if Z is not self-conjugate, then there must exist another irreducible component
conjugate to it, and the real points of Z, which must lie in the intersection of the two
components, can be a set of dimension at most one. Hence, the first assumption is not a
restriction but rather is a condition for Z to contain a real surface. However, the second
assumption is restrictive: in effect we are assuming that Z as an irreducible component
of f−1(0) is smooth except on a finite set. In particular, this means that Z meets other
components of V (f) in at most a finite set. In this article, we call any Z that meets the
second criterion “almost smooth.”

The almost smoothness condition eliminates several possibilities that would other-
wise introduce complexity in our algorithm. First, if Z were a set of multiplicity greater
than one, any path cut out on Z would be singular and would therefore not be conducive
to numerical path tracking. This can be overcome by deflation procedures [22, 41], but
we do not wish to introduce that complication into this article. Similarly, if Z were to
contain a singular curve within an otherwise nonsingular real surface, that curve would
define some of the 1-cell boundaries to 2-cells produced by our algorithm. If that curve
is not of multiplicity one, numerically tracking along it requires deflation. Also problem-
atic are examples with components of different dimension, e.g. the Whitney umbrella,
which consists of a two dimensional real surface and a one dimensional “handle.” Part
of the handle extends free of the surface and is not part of any 2-cell in a decomposition
of the surface. Again, such curves could be tracked using deflation.

While we see no fundamental barrier to adding procedures that would remove the
almost smooth restriction, for the sake of simplicity we choose to impose this condition
in this first presentation of our approach. The self-conjugacy and almost smoothness
conditions can be checked at the outset: see Remark 6.1 below.

The data structure we introduce is a main contribution of this article. Let S =
RN ∩ Z be the set of real points of Z, i.e., S is the real surface we wish to decompose.
The decomposition leads to a finite list of 2-cells, a finite list of boundary 1-cells, and a
finite list of end points. The boundary of each 2-cell is a subset of the list of 1-cells, and
the endpoints of each 1-cell are in the list of points. Each 1-cell and each 2-cell has a
generic interior point and an associated homotopy for moving the generic interior point
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to any other point in the interior of the cell. The homotopy for each n-cell (n = 1 or
2) has n parameters and implicitly defines an invertible mapping from the interior of a
patch of parameter space to the interior of the cell. If S is compact, a decomposition in
RN covers all of S: each point of S is a member of the interior of exactly one 2-cell or
the interior of exactly one 1-cell or is in the list of end points. If S is not compact, we
compactify it by homogenizing f so that Z becomes an irreducible component in PN and
S = PN

R ∩ Z. By using multiple patches on PN
R , we again produce a cell decomposition

that covers all of S.
The cell decomposition shares characteristics of the witness-set data structure that is

a mainstay of numerical algebraic geometry, and similarly allows straightforward numer-
ical manipulation of the real surface. The cell structure is specified using representative
points and projections. Once computed, the data structure may be used to:

1. generate as many points as desired spread out over a given cell or group of cells;

2. subdivide the cells into smaller cells;

3. decide if a real point satisfying the original polynomial system lies on the surface
being decomposed; and

4. if the point does lie on the surface, the data-structure facilitates a decision of
which cell or boundary curve the point lies on.

A cell decomposition can also be used in several ways to analyze the surface. Chief
among these is visualization. Implicit curves and surfaces are in general difficult to
graph. The 2-cells in our cell decomposition can be subdivided into smaller cells to
provide a triangulation of the surface to any desired resolution. Using standard com-
puter graphics, these triangles can be used to visualize projections of the surface into
R3. Alternatively, the cells could be sampled as points and visualized as a point cloud.

A second use is for optimization. Approximate maxima of a general real continu-
ous function on the surface could be found by examining its values on a fine enough
subdivision of the surface.

A third use is in topological analysis of the surface. In particular, the list of cells
and how they meet provides all the data needed to compute the homology of the real
surface. Also, in [33], the technique has been put to use in designing mechanisms for
generating one degree of freedom mechanical motion. Allowing a design parameter, such
as a link length, to vary, the collection of all motion curves forms a surface. Then, the
cell decomposition determines all the critical values of the design parameter where the
topology of the motion curve changes. This allows an engineer to choose a design whose
motion has the desired characteristics for the intended purpose of the machine.

Throughout this paper, we rely on the algorithms of numerical algebraic geometry
that are implemented in the software package Bertini [8]. These methods are based
on numerically tracking paths defined by polynomial homotopy functions, which can
be constructed so that the end points of the paths expose all the irreducible solution
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components of a polynomial system. These methods treat the solution set in complex
space and require additional work to find the real solutions, if any, inside each complex
component. An algorithm for the cell decomposition of the real points in a complex
curve is given in [27]. This article extends that approach to the surface case. We give
a summary of these prior results before using them to treat the case at hand.

1.1 Related work

The decomposition of the set of real solutions to polynomial systems has been studied
extensively using many different approaches including cylindrical algebraic decomposi-
tions, subdivision, and isotopic methods. The cylindrical algebraic decomposition [14]
provides a decomposition of the real space into connected sets based on the signs of the
given polynomials. Such a decomposition naturally leads to algorithms for decomposing
algebraic sets, and in particular, algebraic surfaces, e.g., [4, 11, 13, 16]. These methods
rely upon computing critical points of projections, as does our method presented below.
The symbolic-numeric decomposition method in [10] produces certifiable results without
assumptions regarding the genericity of the projection.

Subdivision methods, e.g., [1, 26, 34], start with a bounded input domain and di-
vide the domain based on a regularity criterion. Classically, the presence of singularities
caused difficulties with topological regularity criteria. One approach to handle singu-
larities with subdivision methods was presented in [1]. This approach, which is based
on polar varieties, can be applied to a bounded part of a surface which has infinitely
many singularities, such as the singular “handle” of the Whitney umbrella on a bounded
domain.

Isotopic methods, e.g., [2, 12], compute simplicial complexes which are isotopic to the
algebraic set. These methods, as does the method presented below, can yield topological
information, such as the number of connected components, from a finite amount of data.

The significant new contribution of our approach is its reliance on exclusively numer-
ical and local geometrical methods, without the need of any algebraic information (i.e.
generators of the ideal) of the relevant components of the solution set. The resulting
algorithms are therefore easily parallelized.

2 Background on Numerical Algebraic Geometry

The cell decomposition algorithm depends on concepts and sub-algorithms from numeri-
cal algebraic geometry, which we briefly review here. See [41, 43] for detailed expositions
of the field.

Genericity. If A ⊂ CN is an irreducible algebraic set, we say that a property P
holds generically on A if it holds on a dense, Zariski-open subset of A, that is, P
is true on the complement in A of some proper algebraic subset of A. Thus, if we
pick a point of A at random, P will be true for that point with probability one.
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Almost all the algorithms in numerical algebraic geometry depend on the choice of
one or more random quantities from some algebraic set, and the algorithm succeeds
generically on that set. Such an algorithm is said to succeed with probability one.

Randomization. If Z is a k-dimensional irreducible component of V (f) with
f a system of ν equations as in (1), then for a generic matrix M ∈ R(N−k)×ν ,
Z is also an irreducible component of M · f . By the simple version of Bertini’s
Theorem given as Theorem 13.5.1 in [41], the statement holds for generic complex
M ∈ C(N−k)×ν . That it also holds for generic real M is a consequence of the
fact that for any n, the intersection of Rn with a nonempty Zariski-open subset
of Cn is also a nonempty Zariski-open set of Rn. Because of this, we may assume
throughout the remainder of this paper that f is a system of N − 2 equations, for
if ν > N − 2, we simply replace f by a smaller randomized version.

Note also that all probability one results still hold ifM is replaced by Λ·M ′, where
M ′ is generic in R(N−k)×ν and Λ is any invertible matrix of consistent dimension.
For example, M may be chosen in reduced row echelon form:

[
I M ′′], where I

is the size (N − k) identity matrix and M ′′ is random.

Witness sets. Let Z be an irreducible component of the solution set of the
system f(z) = 0 given in (1). By a witness set for Z we mean a triple {f, L,W}
where L(z) is a system of dimZ random affine linear polynomials and W is the
intersection Z ∩ V (L). By genericity, V (L) meets Z transversely in a finite set of
d = degZ smooth points {w1, . . . , wd} of Z. In addition to finding the degree and
dimension of Z, some methods used to compute a witness set also determine the
multiplicity of Z as a component of f−1(0).

The set W in {f, L,W} is called a witness point set for Z. Witness sets are funda-
mental constructs for the numerical representation and manipulation of algebraic
sets.

Numerical Irreducible Decomposition. A numerical irreducible decomposi-
tion consist of a collection of witness sets, one for each irreducible component of
the solution set V (f).

Here below we list the main available algorithms in numerical algebraic geometry
that will be called upon by the cell decomposition. Each algorithm solves an essential
problem in the field. Except as noted, all of these algorithms are provided in Bertini, a
publicly available software package [8].

Problem 1: Path tracking

Input : Homotopy function H(x, t) : CN × C → CN ; a start point w such that
H(w, 1) = 0.

Output: The endpoint w′ = limt→0 x(t), if it exists.
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The term “homotopy function” implies that the Davidenko ordinary differential
equation,

∂H

∂x

dx

dt
+
dH

dt
= 0,

with initial condition x(1) = w, has a unique solution path for t ∈ (0, 1]. As long as
Hx := ∂H/∂x remains full rank, standard o.d.e. solution methods can be applied to
integrate x(t). Better yet, predictor-corrector methods use an o.d.e. method to predict
along t, then apply Newton’s method at fixed t to remove integration error. When H
is an analytic function and the endpoint w′ exists, it can be computed accurately even
if Hx loses rank at t = 0 by use of a Puiseux series [32] or a Cauchy integral [31].
The limit might not exist if the path diverges to infinity, but in the context of solving
polynomials, this phenomenon can be eliminated using a homogeneous transformation
[29] (that is to say, by working on a random patch of projective space).

Path tracking is the basis of most algorithms in numerical algebraic geometry, and
so it is applied automatically as necessary to solve homotopies defined inside the Bertini
software package. There is also a provision for user-defined homotopies, which facilitates
the development of new algorithms by the user.

Problem 2: Isolated solutions

Input : Polynomial system, f : CN → Cn, N ≤ n
Output: Finite set of points, X ⊂ V (f), that includes all isolated points in V (f)

For N = n, this functionality is provided by classical polynomial homotopy algo-
rithms. These define a function H(x, t) and compute a set of start points such that,
with probability one, H is a homotopy function and after solving Problem 1 for each
start point, the set of endpoints that do not diverge is the set X we seek. In the ear-
liest formulations [15, 17], the number of homotopy paths is the total degree of f (the
product of the degrees of the polynomials in f). Later approaches are able to take advan-
tage of structure in the monomials that appear in f , such as multi-homogeneity [30] or
more detailed monomial sparsity using polyhedral methods [23, 25]. For large systems,
and especially for those with structure not captured by sparsity alone, the regenera-
tion method [19] can be the most efficient approach. For N < n, it suffices to replace
f with N random linear combinations of its polynomials, apply one of the foregoing
methods, and then discard any point x for which f(x) ̸= 0. Since such randomization
often destroys sparsity, regeneration is favorable in this situation. The software package
Bertini [8] provides the total-degree, multi-homogeneous, and regeneration methods.
Polyhedral methods are available in software packages HOM4PS-2.0 [24] and PHC [42].

Problem 3: Numerical irreducible decomposition

Input : Polynomial system, f : CN → Cn

Output: A collection of witness sets, one for each irreducible component in V (f)
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The computation of a numerical irreducible decomposition proceeds in three main
stages: witness generation, junk removal, and decomposition. First, witness supersets
are generated for each pure-dimensional component of V (f). In essence, for each dimen-
sion i, i = 0, . . . , N , this consists of choosing a system, Li, of i random linear equations,
and then applying an algorithm to solve Problem 2 for the system {f, Li}. Although
such a dimension-by-dimension procedure is valid, cascade methods are generally more
efficient [35, 20]. The solution sets so obtained may contain extra points: the compu-
tation for dimension i may yield some points from some pure-dimensional components
of dimension greater than i. A local dimension test [6] is used to remove these junk
points. Finally, each pure-dimensional component must be factored into its irreducible
pieces, which is done by monodromy [38] and verified by trace tests [39].

Problem 4: Sampling

Input : A witness set {f, L,W} for i-dimensional irreducible component Z; a
system of i linear equations L′.

Output: A finite set of points, W ′ ⊂ Z, that includes all isolated points of
Z ∩ V (L′).

Assuming that L is generic with respect to L′, this problem is solved by tracking
solution paths (see Problem 1) of H(x, t) = 0 defined by the homotopy function

H(x, t) := {f(x), tL(x) + (1− t)L′(x)}

with W as the set of start points. If L is not generic, this formulation can be modified
to become a bona fide homotopy using the “gamma trick” [41, p.94]. This is called the
sampling problem, because it produces new points W ′ on the component Z. If L′ is
chosen generically, then {f, L′,W ′} is also a witness set for Z.

Problem 5: Membership

Input : A witness set {f, L,W} for i-dimensional irreducible component
Z ⊂ CN ; a point y ∈ CN .

Output: Determine if y ∈ Z.

This can be solved using a homotopy membership test [38], as follows. Pick a generic
matrix A ∈ Ci×N , let L′(x) = A(x− y), and solve Problem 4 to get W ′. Then y ∈ W ′

if and only if y ∈ Z.

Problem 6: Extension

Input : A witness set {f, L,W} for irreducible component Z ⊂ CN ; a
polynomial system g : CN × Ck → Ck.

Output: A numerical irreducible decomposition of (Z × Ck) ∩ V (g).
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A valid, but often inefficient, procedure is to first compute a numerical irreducible
decomposition of h := {f, g} (Problem 3) and then use membership tests (Problem 5) to
determine which of the irreducible components is in Z×Ck. Witness points are generic
points of the component they represent, so if (x, y) ∈ CN × Ck is a witness point for
an irreducible component of V (h) and if x ∈ Z, then that irreducible component is in
(Z × Ck) ∩ V (g).

Since V (h) contains the intersections of all the irreducible components of V (f) with
V (g), when V (f) has more than one irreducible component, it is usually more efficient
to restrict computations just to Z ⊂ V (f). One approach is to first find a numerical
irreducible decomposition of V (g) and then intersect each of its irreducible components
with Z using the diagonal intersection homotopy [40], also available in Bertini. A more
direct solution method based on regeneration is also possible [21], but this is not yet
implemented in Bertini.

A variant of this problem, relevant to the cell decomposition of a surface, occurs
when g is a system of k homogeneous polynomials in k+ 1 new variables. This reduces
to the above problem by appending to system g a random inhomogeneous linear equation
in the new variables.

3 Cell decompositions

Our approach to computing a cell decomposition uses projections and critical sets in the
spirit of classical methods as found in Tarski-Seidenberg’s elimination of quantifiers [5]
and applications of Morse theory [3, 28, 18]. This is in line with the numerical approach
to the curve case [27].

A cell decomposition of a compact real surface S ⊂ RN consists of the following:

• a finite list of vertices (0-cells), V = {v1, . . . , vn0}, vi ∈ S;

• a finite list of edges (1-cells), E = {e1, . . . , en1}, where each edge, ei, is a structure
containing two indices specifying its boundary points in V; and

• a finite list of faces (2-cells), F = {f1, . . . , fn2}, where each face contains indices
specifying the 1-cells in E that form its boundary.

Furthermore, for each edge, ei, i = 1, . . . , n1, there exists a map ϕi : [0, 1] → S, such
that ϕi is a homeomorphism and is diffeomorphic on (0, 1). Similarly, for each face, fi,
i = 1, . . . , n2, there exists a map, ψi : Ai → S, where Ai is a subset of R2 homeomorphic
to a disk. Moreover, ψi is a homeomorphism that is diffeomorphic on the interior of
Ai and it maps the boundary of Ai to the subset of edges in E that are listed in fi. In
the cell decomposition we shall construct, we use Ai = [0, 1]× [0, 1]. Finally, these cells
must cover S uniquely, that is, every point of S is either a vertex in V or it is contained
in the interior of exactly one 1-cell or 2-cell described in E or F, respectively.

A cell decomposition of a compact real curve is analogous, but of course, contains
only vertices and edges.
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If a given surface S is not compact, there are two basic alternatives. One is to trim
off any part of the surface that extends beyond a designated finite region of RN and
then to compute a cell decomposition of the remainder, which is now compact. For
example, one could specify a box B = [a1, b1] × · · · × [an, bn] ⊂ RN and produce a
cell decomposition of B ∩ S. An alternative is to compactify S by placing it in real
projective space, PN

R . That is, given a real surface S in an irreducible component Z of
the solution set of a polynomial system f(x1, . . . , xn), as in (1), one homogenizes1 f to
obtain a homogeneous system F (X0, X1, . . . , Xn). Under the mapping z 7→ (1, z), the
set Z ⊂ CN maps to a Zariski open subset of some irreducible component of V (F ), say
Z ′ ⊂ PN . The real part of Z ′, say S′ = PN

R ∩Z ′, is compact, and we may compute a cell
decomposition of S′. To implement the second approach it is convenient to first build a
cell decomposition of real projective space, which we do next.

3.1 Cell decomposition of PN
R

The N -dimensional real projective space is equivalent to the set of lines through the ori-
gin in RN and can be represented by homogeneous coordinates X = [X0, X1, . . . , XN ] ∈
RN+1, where X = 0 is not allowed, and X ≡ Y if X = aY for some nonzero a ∈ R.
A cell decomposition of PN

R can be developed from the “positive” hyperfaces of the
hypercube in RN , as follows. First, define BN to be the unit hypercube in RN :

BN := [−1, 1]× · · · × [−1, 1]︸ ︷︷ ︸
Ntimes

The surface of BN+1 consists of 2(N + 1) hyperfaces, and we call (N + 1) of these
“positive”, defined as

H+
i := {X ∈ RN+1 |Xi = 1, X ̸=i ∈ BN}, i = 0, . . . , N.

Each point in PN
R can be mapped to a point on one of the positive hyperfaces of BN+1

by dividing through by the homogeneous coordinate of largest magnitude:

[X0, . . . , XN ] ≡ [X0, . . . , XN ]/Xi, where i = argmaxi|Xi|.

Where the maximum coordinate is not unique, the point is mapped to a lower-dimensional
hyperface that is part of the boundary of two or more hyperfaces.

The construction is easiest to understand by examining its application to P1
R and

P2
R, which will be the most important cases for our subsequent developments. For P1

R,
we have two positive hyperfaces which are just edges of the unit square:

E0 = {(1, u1) | u1 ∈ B1} and E1 = {(u0, 1) | u0 ∈ B1}.

The end points of these edges are two vertices A = (1, 1) and B = (−1, 1) ≡ (1,−1),
where we invoke the equivalence of points on the same line through the origin. This cell
decomposition is illustrated in Figure 1.

1The homogenization a polynomial fi(x1, ...xn) of degree di is, after clearing denominators,
Fi(X0, . . . , XN ) = Xdi

0 fi(X1/X0, . . . , XN/X0).
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AB

B

L

X1

X0

AB

Figure 1: A cell decomposition of P1
R as the positive edges of the unit square (on left)

and its topology (right). On the left diagram, an arbitrary line L is drawn and an open
circle marks the point used to represent it.

A

BC

D

B C

D

X0

X1

X2

u0

v0

u1

v1

u2

v2

Figure 2: A cell decomposition of P2
R as the positive faces of the unit cube. Local

coordinates (ui, vi) are indicated on the ith face, i = 0, 1, 2.

For P2
R, we have three faces

F0 = {(1, u0, v0) | (u0, v0) ∈ B2}, F1 = {(v1, 1, u1) | (u1, v1) ∈ B2}, and
F2 = {(u2, v2, 1) | (u2, v2) ∈ B2}.

Referring to Figure 2, the cell decomposition has four vertices, A,B,C,D, and six
edges, AB,BC,CD,DA,AC,BD. Call ui the “right-left” local coordinate and vi the
“up-down” coordinate on each face. One sees that the right edge CA for face F1 is the
top edge for face F2, while the left edge BD of face F1 is the bottom edge DB of face
F2. Using local coordinates to describe this latter equivalence, we have

BD = {(v1, 1,−1) | v1 ∈ [−1, 1]} ≡ {(u2,−1, 1) | u2 ∈ [−1, 1]}.

Notice that as v1 goes from −1 to 1, the left edge of F1 goes from B to D, whereas as
u2 goes from −1 to 1, the bottom edge of F2 goes from D to B. Similar relations hold
mutatis mutandis on all three faces. When gluing together the cells to form P2

R, the
proper local orientation of each edge must be respected.

For the case of P1
R, the edges Ei are the hyperfaces: Ei = H+

i , i = 0, 1; whereas in
the case of P2

R, we have Fi = H+
i , i = 0, 1, 2. It should be clear from these constructions

how PN
R is decomposed into (N + 1) cells H+

i , i = 0, . . . , N .
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4 Linear projections

We shall build cell decompositions of surfaces where for each face fi the domain Ai ⊂ R2

of the map ψi : Ai → S has local coordinates u ∈ R2 that are an affine linear projection
of the coordinates x ∈ RN . That is, let M ∈ R2×N be a rank 2 matrix, and define the
affine linear projection p : CN → C2 : x 7→ M · x. Analogously, in the curve case one
considers such projections where M is a nonzero 1×N matrix.

More generally, suppose f : RN → RN−k and let Jf(x) denote the Jacobian matrix
of f at x:

Jf(x) :=
∂f

∂x
(x). (2)

Further, let p : CN → Ck : x 7→M ·x for some matrixM ∈ Ck×N . The Jacobian matrix
for the system (f, p) is

J(f, p)(x) =

[
Jf(x)
M

]
. (3)

Definition 4.1 An affine linear projection p : x 7→ M · x is full rank at x∗ ∈ V (f) if
and only if

rank J(f, p)(x∗) = N, (4)

which is equivalent to the condition det J(f, p)(x∗) ̸= 0. The points where p is not full
rank are called critical points, and for Z an irreducible component of V (f), the union
of all such points in Z is the critical set of Z with respect to p, which we shall denote
as K(Z, p):

K(Z, p) := V (f, det J(f, p)) ∩ Z. (5)

Suppose that x∗ ∈ ZR. Let u
∗ = p(x∗) =M · x∗ for a real M , and define p−1

∗ (u∗) :=
x∗. Then, by the implicit function theorem, if p is full rank at x∗, then p is continuously
invertible on an open neighborhood of u∗. Thus, there exists a connected open two-
dimensional subset A ⊂ R2 with u∗ ∈ A on which p−1

∗ is well-defined and continuous.
For any point u ∈ A, the value of p−1

∗ (u) is found by establishing any smooth path
γ ⊂ A from u∗ to u, that is, γ is a smooth function γ : [0, 1] → A with γ(1) = u∗ and
γ(0) = u, and following the continuation path x(t) defined by

H(x, t) = {f(x), p(x)− γ(t)} (6)

from x = x∗ at t = 1 to t = 0. Then, p−1
∗ (u) = x(0). Let Ā be the closure of A in

the standard topology. Then, the domain of p−1
∗ can be extended to any point u in the

boundary δĀ if the limit as t→ 0 of x(t) exists and is independent of the path γ(t) from
u∗ to u. In that case, we say that p is invertible on Ā. Note that p−1(u) : C2 → CN is the
entire linear space in the pre-image of u for the map p : CN → C2, while the restriction
pZ of p to Z, pZ : Z → C2, has a possibly multi-sheeted inverse, and p−1

∗ (u) : Ā→ Z is
an inverse of p∗, being p restricted locally to a single sheet of Z.
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In the case at hand, where S is Z ∩ RN for Z an irreducible algebraic set, then p
is invertible on a set A that is homeomorphic to a closed disk if p is full rank on the
interior of A and p−1

∗ (u) as defined by continuation does not diverge to infinity anywhere
on A. Thus, to build a cell decomposition of S, we need to carve S into such pieces.
If S is not compact, it is not possible to cover it with a finite number of closed faces,
making a full cell decomposition not feasible in RN . As discussed above, in this case
two remedies are available: we can decompose only a finite piece of S, for example,
decompose the intersection of S with a box, or we can compactify S into projective
space and decompose it there. In the case that we choose to decompose the intersection
of S with a box, some edges of the cells may be the intersection of S with faces of the
box.

The following lemmas allow us to construct cells Ai with valid maps ψi taken as
local inverses of a projection.

Definition 4.2 For a k-dimensional irreducible algebraic set Z ⊂ CN , we say that Z
is in general position with respect to a linear projection p : CN → Ck if p is generically
full rank on Z and p−1

Z (u) does not diverge to infinity for any u ∈ C2.

Lemma 4.3 For a k-dimensional irreducible and generically reduced algebraic set Z ⊂
V (f) ⊂ CN , there is a dense Zariski-open subset U of Rk×N such that for any M ∈ U ,
Z is in general position with respect to projection p : x 7→M · x.

Proof. The assumption that Z is generically reduced means that Jf is generically
rank N − k on Z, and hence J(f, p) is generically full rank for (x,M) in Z × Rk×N .
The non-divergence condition can be seen to hold by considering the homogenization
F of f and the irreducible component Z ′ ⊂ PN of V (F ) that corresponds to Z. By
assumption, Z is an irreducible component in CN so Z ′ is not entirely in the hyperplane
at infinity. This implies that Z ′ ∩ V (X0) is (k − 1)-dimensional; call it Z∞. Divergence
of p−1

Z (u) for u ∈ Ck occurs where

M ·
[
X1, . . . , XN

]T
= 0

for [0, X1, . . . , XN ] ∈ Z ′. But k generic hyperplanes will not meet a (k− 1)-dimensional
algebraic set, so for generic M divergence does not happen for any u ∈ Ck. 2

Remark 4.4 Note that Lemma 4.3 also holds when restricting M to have orthonormal
rows, because orthonormalizing the rows of a matrix M does not change the linear
subspace defined by M · x = 0

Corollary 4.5 For a k-dimensional irreducible and generically reduced component Z
of V (f) and a projection p that is the natural projection of CN onto k of its coordinates,
there is a dense Zariski-open subset U ⊂ OR(N) (where O(N) is the set of orthogonal
matrices of size N) such that for any R ∈ U , the algebraic set Y = R · Z is in general
position with respect to p.

12



Proof. Since Y and Z are related by a nonsingular change of coordinates, Y is in
general position with respect to p if Z is in general position with respect to a projection
formed from the k rows of R corresponding to the k coordinates picked out by p. Thus,
Remark 4.4 applies. 2

Lemma 4.6 Let Z be a 2-dimensional irreducible and almost smooth component of
V (f), and for R an orthogonal matrix of size N , let Y = R · Z be a rotation of Z. let
p be the natural projection of CN onto 2 of its coordinates, and let pj j = 1, 2 be the
natural projections of CN onto, respectively, one of the two coordinates in the range of
p. Let C1

i ⊂ Y i = 1, . . . ,m1 be a finite number of cross-sectional curves of Y of the
form Y ∩ p−1

1 (c1,i) and similarly let C2
i ⊂ Y i = 1, . . . ,m2 be Y ∩ p−1

2 (c2,i) for any
constants c1,i, c2,i ∈ R. Then there is a dense Zariski-open subset U ⊂ OR(N) (where
O(N) is the set of orthogonal matrices of size N) such that for any R ∈ U , the algebraic
set Y = R · Z is in general position with respect to p and the algebraic set K(Y, p) is in
general position with respect to p1 and p2, C

1
i , i = 1, . . . ,m1 are all in general position

with respect to p2, and C
2
i , i = 1, . . . ,m2 are all in general position with respect to p1

Proof. Y is in general position by Corollary 4.5. This implies that K(Y, p) is a curve,
and by the almost smoothness of Z, it has at most a finite number of singularities.
Since the rotation R can be decomposed into an initial rotation that fixes K(Y, p) as a
subset of Y followed by a rotation in the subspace of the first two coordinates, K(Y, p)
is in general position with respect to these first two coordinates. Similarly, after an
initial rotation fixes the cross-sectional curves C1

i , they are placed in general position
with respect to p2 by rotations that leave p1(x) fixed, and mutatis mutandis, the same
holds for C2

i . Each of these claims holds for R on a Zariski-open set of OR(N), and the
intersection of a finite number of Zariski-open sets is still a Zariski-open set. 2

The system of which Y = R(Z) is an irreducible component is simply g(y) =
f(R−1y). A cell decomposition of Y can be mapped to the original coordinates as
z = R−1y to get the decomposition we seek. The matrix R could be chosen from the
nonsingular N ×N matrices, but we take it as a random orthogonal matrix for the sake
of good numerical conditioning.

In working with polynomials symbolically, a random change of coordinates can be
an expensive operation, as it transforms a sparse polynomial system into a dense one.
This may make subsequent operations on the polynomial system exorbitantly expensive.
However, in a numerical setting, where we work with straight-line programs, g(y) is
simply evaluated in a two-step process as x = R−1y, g(y) = f(x). Similarly, by the
chain rule, Jg := ∂g/∂y = Jf · R−1. With a random change of coordinates, we only
need the natural linear projections onto individual coordinates:

πi(z1, . . . , zN ) = zi, i = 1, . . . , N. (7)

The following lemma, which says that critical points of a slice of a surface are critical
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points of the surface, is useful in piecing together boundaries in the cell decomposition
of a surface.

Lemma 4.7 Let Z ⊂ CN be a two-dimensional irreducible component of the solution
set of f as in (1), and let p1, p2 : CN → C be linear projections. Let z∗ be a point of
Z, and let C be the component in Z ∩ p−1

1 (p1(z
∗)) that contains z∗. Assume that Z is

in general enough position so that C is one dimensional. If z∗ is a critical point of C
with respect to p2, then z

∗ is also a critical point of Z with respect to p = (p1, p2).

Proof. By assumption, C is a component of g−1(0), where g = {f(z), p1(z)− p1(z
∗)}.

Let Jf and Jg be the Jacobian matrices of f and g, resp., and let Mi be the 1 × N

matrix such that pi : (z) 7→Mi · z, i = 1, 2. Recognizing that Jg =

[
Jf
M1

]
, then

J(f, p) ≡ J(g, p2) =

JfM1

M2

 ,
so the lemma follows immediately. 2

5 The one-dimensional case

The two dimensional cell decomposition algorithm relies on the one dimensional version
that we recall here. The problem statement below includes some features that make
surface decomposition easier, even though these features are strictly not needed for
curve decomposition. We first present the algorithm for decomposing a curve, with the
option of restricting the decomposition to an assigned interval. To fully decompose a
curve, this version of the algorithm is called either once or twice, depending on whether
the curve is known a priori to be compact. The use of this algorithm to compute the
complete decomposition of a curve is discussed at the end of this section.

The assumption that a curve is irreducible is not restrictive in view of (Problem 3).

5.1 Curve cell decomposition (over assigned intervals I1 and I2)

Some notes on the problem statement are necessary. For brevity, let ZR = Z ∩ RN

be the set of real points of Z. If Z is not self-conjugate, then ZR is finite and can be
found via intersection of Z with its complex conjugate. Hence, we may assume that
Z is self-conjugate. Furthermore, the assumption in the problem statement that Z is
generically reduced means that Jf is generically rank N − 1 and by randomization (see
Section 2), we may assume that f consists of N −1 polynomials. By “general position,”
it is meant that Z is in general position with respect to p1, and if present, also with
respect to p2. The optional argument I1 can be omitted only if it is known that ZR
is compact. Finally, the role of the input argument merge, which is specified as either
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Problem 7: Curve Cell Decomposition (over assigned intervals I1 and I2)

Input : A witness set Zw = {f, L,W} for 1-dimensional irreducible and reduced
algebraic set Z ⊂ CN , where f has real coefficients, Z in general
position (see notes); independent real linear projections
p1, p2 : CN → C; real intervals I1 = [a1, b1], I2 = [a2, b2]; a finite subset
T ⊂ I1, and logical value merge. Inputs p2, I1, I2, and T are optional.

Output: A cell decomposition, D1(Zw, p1, I1, p2, I2, T,merge) of Z ∩ RN or, as
appropriate, Z ∩ RN ∩ p−1

1 (I1) ∩ p−1
2 (I2).

“true” or “false,” will become clear in step 5 of the algorithm below. Later, the merge
option is used in the two-dimensional algorithm to simplify certain cross-sectional curves
of a real surface. The values of T are used to specify required breakpoints in the cell
decomposition. If T is present, then merge must be false, because otherwise the merging
procedure may eliminate the breakpoints added by T .

The output, that is, the cell decomposition D1, is a structure that contains the
following:

• a list of vertices, V = {v1, . . . , vn0}, vi ∈ ZR; and

• a list of edges, E = {e1, . . . , en1}.

Furthermore, each edge, ei, i = 1, . . . , n1 is a structure that contains:

• the polynomial system f ;

• the projection p1;

• the indices ℓ and r of the edge’s left and right endpoints in V,

• a general point w ∈ ZR of the edge.

The precise meaning of w is described below. For an edge ei, the data (f, p1, ℓ, r, w)
suffice to determine the homeomorphic map ϕi : [0, 1] → ZR that describes the edge, as
required by the specification of a cell decomposition in Section 3. One could question
the inclusion of f and p1 as edge-related data, given that they are common to all edges
of the curve. This choice is motivated by the fact that in the surface decomposition we
will have edges from several different curves, hence the edges need to store information
about which curve they come from. Of course, rather than storing a representation of
f in many different edges, it would be more efficient to build a database of systems and
have the edges link to these. Nothing essential changes in the algorithm if one thinks
of f as a pointer to the relevant system instead of as a copy of the system itself.

To solve the problem, we follow [27] with a few minor changes. First, the method in
[27] uses a random rotation of coordinates to ensure that Z is in general position. Here,
general position is assumed, attained by a random rotation before calling the algorithm.
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Second, we introduce the option of decomposing only that part of ZR that projects to
the intervals I1 and I2. This comes into play when decomposing a surface and also plays
a role in performing a complete cell decomposition of a noncompact curve. Finally, the
arguments T and merge affect the details of how finely the curve is decomposed.

The set of real points ZR = Z∩RN of Z breaks up into a finite number of connected
components such that

1. a finite set ZR,0 ⊂ ZR of the components are isolated singular points of Z; and

2. a finite set ZR,1 ⊂ ZR of the components are one-dimensional sets, which are
smooth outside the singular set of Z.

The goal is to find ZR,0 and to break ZR,1 into 1-cells. In the output described above,
the points ZR,0 will be contained in the list of vertices, V. They are distinguishable as
the points in V which are not the endpoints of any edges in E.

We give ϕi for each 1-cell implicitly in terms of a homotopy function as follows. Let
vℓ and vr be the left and right endpoints of the 1-cell, and let cℓ = p1(vℓ) and cr = p1(vr).
Define the homotopy

H(x, t) =

[
f(x)

p1(x)− ((1− t)cℓ + tcr)

]
(8)

to start from (x, t) = (w, t0), where w ∈ ZR with cℓ < p(w) < cr and

t0 = (p1(w)− cℓ)/(cr − cℓ).

Using a path tracker (see Problem 1: Path tracking), we can evaluate x for any value
of t ∈ [cℓ, cr], and thus define ϕ(t) := x(t) on that interval.

The homotopy function must be such that Hx := ∂H/∂x remains full rank as t
ranges over (0, 1). Since Hx = J(f, p1), the assumption that Z is in general position
implies that Hx is full rank on a Zariski-open set of Z. Hence, the key step in finding a
cell decomposition of ZR is to find the critical points of p1 on ZR and set the boundaries
of the 1-cells to match. When p2 and I2 are given, we additionally truncate any edges
that go beyond p−1

2 (I2).
Accordingly, an algorithm to compute a cell decomposition of ZR is as follows.

1. Find critical points: Find the set of critical points B on ZR with respect to p1,
that is, find the solutions in Z of the system

fcrit0(x) =

[
f(x)

det J(f, p1)(x)

]
= 0. (9)

As we have a witness set for Z, this is a case of Problem 6: Extension. Because Z
is one-dimensional and p1 is generically full rank on Z, V (fcrit0) is a set of isolated
points.
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As an alternative, one may solve

fcrit1(x, ξ) =

[
f(x)

J(f, p)(x) · ξ

]
= 0, x ∈ Z ⊂ CN , ξ ∈ PN−1, (10)

which is another variation of the Extension Problem. This might be preferred
over fcrit0 for avoiding the determinant, but that comes at the cost of introducing
new variables and more polynomials. Moreover, as discussed in [27], the solution
of V (fcrit1) must be done with a method that finds solutions at all dimensions,
since singular points of Z may have higher-dimensional tangent spaces satisfy-
ing (10). Let p̄ : CN ×PN−1 → CN be the natural projection (z, ξ) 7→ (z). By the
assumption that Z is a multiplicity one curve, for any solution component V of
Z ∩ V (fcrit1), p̄(V ) must consist of isolated points.

Regardless of whether one uses (9) or (10), B is the set of real solution points
obtained. Record the results, respecting the limits imposed by I1 and I2 as
follows:

(a) If I1 is given, replace B by B ∩ p−1
1 (I1).

(b) If I2 is given, replace B by B ∩ p−1
2 (I2).

(c) Initialize V = B, and insert p1(V) into T .

(d) If I1 is given, append a1 and b1 to T .

2. Apply I2 limits: If I2 = [a2, b2] is given,

(a) Solve for C− := ZR ∩ p−1
2 (a2) and C+ := ZR ∩ p−1

2 (b2). These are cases of
Sampling (Problem 4) applied to Z with linear system L′ being p2(x) = a2
or p2(x) = b2 and keeping only the real points found. The assumption that
Z is in general position with respect to p2 implies that C− and C+ are finite
sets of isolated points.

(b) For every point x ∈ C− ∪ C+, if p1(x) ∈ I1, then append x to V and p1(x)
to T .

3. Cut at ti:

(a) Sort the entries of T = {t1, . . . , tm} into ascending order.

(b) Let
Ei = {p−1

1 (ti) ∩ ZR} \ B, i = 1, . . . ,m.

Since p1(x) = ti is a linear system, this is another case of Sampling (Prob-
lem 4), keeping only the real solutions found and dropping any that are
already in B.

(c) For j = {1,m}, if p−1
1 (tj)∩ ZR = ∅, delete tj from T . This can only happen

if a1 or b1 is beyond the limits of p1(ZR). If necessary, renumber the elements
of T to once again run from 1 to m.
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p p

Figure 3: A decomposition of a curve before and after merging edges that meet outside
of B. Filled dots are edge endpoints, the centers of the open circles mark general points
on the edges.

(d) Append all the points Ei, i = 1, . . . ,m to V.

4. Find edges: For i = 1, . . . ,m− 1, do the following.

(a) Find general points: For i = 1, . . . ,m − 1, let t∗i be a generic number
in (ti, ti+1) and solve to find W ∗

i = p−1
1 (t∗i ) ∩ ZR. Again, this is a case of

Sampling (Problem 4), this time with the linear system p1(x) = t∗i . Since t
∗
i

is between, not at, critical values, any value in the interval suffices. We set
the convention of using the midpoint, t∗i = (ti + ti+1)/2.

(b) Find endpoints: For i = 1, . . . ,m− 1 and each w ∈W ∗
i ,

i. track w to the left from t = t∗i to t = ti to find a point α ∈ (B ∪ Ei), and
ii. track w to the right from t = t∗i to t = ti+1 to find a point β ∈ (B∪Ei+1).

iii. Record a new edge in E having left index ℓ such that α = vℓ ∈ V, right
index r such that β = vr ∈ V, and general point w.

The homotopy for these steps is H(x, t) := {f(x), π(x)− t} = 0, and tracking
the path is a case of the Problem 1. Any path that ends at a point in B
has a singular endpoint, but the singular endgame of the tracker algorithm
accommodates this possibility.

5. Merge: If merge is “true,” then replace any two edges that meet at a point
in E = ∪m

i=1Ei with a single edge. That is, if edge e = (ℓ, r, w) meets edge
e′ = (ℓ′, r′, w′) at vertex v = vr = vℓ′ ∈ E , these are merged to form a single
edge e′′ = (ℓ, r′, v). Then e and e′ are deleted from E, e′′ is inserted into E, and
vertex v is deleted from V.

The effect of merging edges is illustrated in Figure 3. The points in the set E
are not critical points of the projection, so edges can cross them while keeping a
nonsingular homotopy function.
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It may happen that a curve has no real critical points at Step 1. However, this
implies that the curve is noncompact, so I1 must be present and T cannot be empty at
Step 3. In this way, the algorithm finds the portion of the curve that crosses through
p−1
1 (I1).

5.2 Compact curve cell decomposition

If a curve is known to be compact, then the above algorithm can be called with p1 being
a random real projection and no limits.

5.3 Noncompact curve cell decomposition

If a curve is noncompact or its compactness is unknown, we can still perform a complete
cell decomposition by first projectivizing the curve and then performing decomposition
on two cells of P1

R. While this is not needed for the main surface decomposition problem,
we include it for completeness.

Assume that Z ⊂ CN is an irreducible and reduced curve in V (f), and let F be
the homogenization of f . Under the mapping η : z 7→ (1, z), Z maps to a Zariski-
open subset of some irreducible component of F−1(0), say Z ′ ⊂ PN . Given a witness
set Zw = {f, L,W} for Z, a witness set for Z ′ is Z ′

w = {F,L′,W ′}, where L′ is the
homogenization of L and W ′ = η(W ). Once we compute a cell decomposition for
Z ′, any finite part of it can be mapped back to the corresponding part of Z using
the map µ0 : (Z0, Z1, . . . , ZN ) 7→ (Z1/Z0, . . . , ZN/Z0). Consequently, we consider the
noncompact case to be solved if we can compute a cell decomposition of Z ′. To aid
readability in the algorithm to follow, we rename Z ′, L′,W ′ as simply Z,L,W .

Problem 8: Projective Curve Cell Decomposition

Input : A witness set {F,L,W} for 1-dimensional irreducible and generically
reduced algebraic set Z ⊂ PN , where F is a system of homogeneous
polynomials with real coefficients.

Output: A cell decomposition, D1(Z).

In the following, and throughout this article, we use “[ ]” to denote an argument
that is omitted.

1. Change coordinates: Choose a random real rotation matrix R ∈ O(R, N + 1)
and set F ′(y) = F (R−1y). Modify L and W to match to get L′ and W ′. Define
Y = R · Z.

2. Decompose YR on patch 0: Let f0 := {F ′, y0 − 1} and let W0 = µ0(W
′),

where µ0 : (y0, y1, . . . , yN ) 7→ (1, y1/y0, . . . , yN/y0). Then compute a curve cell
decomposition with limits as

D0 = D1({f0, L′,W0}, π1, [−1, 1], [ ], [ ], [ ], true).
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3. Decompose YR on patch 1: Let f1 := {F ′, y1− 1} and let W1 = µ1(W
′), where

µ1 : (y0, y1, . . . , yN ) 7→ (y0/y1, 1, y2/y1, . . . , yN/y1). Then compute a curve cell
decomposition with limits as

D1 = D1({f1, L′,W1}, π0, [−1, 1], [ ], [ ], [ ], true).

4. Paste cells: As illustrated in Figure 1, the two cells of P1
R meet at their left

and right ends. The cells are pasted together by recognizing equivalences between
points in projective space. This means the vertex lists in D0 and D1 are merged
in PN

R and the indices in the two edge lists are updated to match.

5. Restore coordinates: All the data is restored to the original coordinate system
using the R−1 map.

6 Two dimensional case

The following algorithm for decomposing a surface over a box is analogous to the curve
cell composition over intervals. One can use it directly to decompose a compact surface
in one fell swoop, or one can decompose the projectivization of a noncompact surface
by three applications of the algorithm over the cells of P2

R illustrated in Figure 2.

Problem 9: Surface Cell Decomposition over a box

Input : A witness set Zw = {f, L,W}, where f has real coefficients, for a
self-conjugate 2-dimensional irreducible and almost smooth algebraic set
Z ⊂ CN in general position with respect to linear projection
p := (p1, p2) for independent real linear projections p1, p2 : CN → C;
(optional) real intervals I1 = [a1, b1] and I2 = [a2, b2].

Output: A cell decomposition, S = D2(Zw, p1, I1, p2, I2) of ZR or, as
appropriate, ZR ∩ p−1

1 (I1) ∩ p−1
2 (I2).

As in the curve case, the intervals I1 and I2 are optional only if it is known that ZR
is compact.

Remark 6.1 The assumptions on self-conjugacy and almost smoothness of Z are easily
checked. To check self-conjugacy, take a witness point w of Z and check if the conjugate
of w lies on Z (see Problem 5: Membership). Since w is a generic point of Z, this test
decides the matter. The almost smoothness condition requires that the witness points
of Z be nonsingular, implying that Z is singular on at most a curve. This is easily
assessed by testing the rank of the system Jacobian matrix at a single witness point.
Further testing to evaluate the almost smoothness of Z occurs at Step 2 below.

Remark 6.2 The algorithm we give for decomposing a surface will still work properly
for some exceptions to the almost smoothness condition. For example, any singularity
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Figure 4: A two cell: generic point s∗; simple edges γ0 and γ2; and compound edges γ1
and γ3.

sets that do not meet the real surface ZR in more than a finite number of points will
not cause trouble. However, checking almost smoothness over R is more difficult than
checking it over C. We leave it for future work to remove the almost smoothness
condition entirely.

When Z is self-conjugate and almost smooth, as we assume, the set of real points
ZR of Z is a union of a finite set of isolated points ZR,0 (all of which are in the singular
locus of the reduction of Z) with a two dimensional set ZR,2 whose intersection with
the smooth points of Z is smooth.

Similar to the one-dimensional case, the output, that is, the cell decomposition S,
is a structure that contains the following:

• a list of vertices, V = {v1, . . . , vn0}, vi ∈ ZR;

• a list of edges, E = {e1, . . . , en1}; and

• a list of faces, F = {f1, . . . , fn2}.

The isolated points ZR,0 are those points of V that have no edges connected to them,
while the faces form ZR,2.

The 2-cells we will construct for ZR,2 have a particular form, illustrated in Figure 4.
Each face, fi, i = 1, . . . , n2, has an associated map ψi : [0, 1]× [0, 1] → ZR that is defined
implicitly by a homotopy (see below) that initializes at an interior point. Accordingly,
a face is a structure consisting of:

• the polynomial system f ;

• a general point s∗ in the interior of the face,

• a list γ0 ⊂ N of indices for the edges forming ψi([0, 1], 0), the “down” boundary,

• a list γ1 ⊂ N of indices for the edges forming ψi(1, [0, 1]), the “right” boundary,
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• a list γ2 ⊂ N of indices for the edges forming ψi([0, 1], 1), the “up” boundary, and

• a list γ3 ⊂ N of indices for the edges forming ψi(0, [0, 1]), the “left” boundary.

As illustrated, the up and down boundaries are single edges, while the left and right
boundaries can be a single edge or multiple edges connected end-to-end, or they can
degenerate to a single point. In the case of degeneration to a point, γ1 or γ3 is simply
an empty set.

The map ψi for each face fi will be given implicitly in terms of a homotopy function as
follows. The cell will be constructed such that the entire left boundary, γ3, is mapped
to the same value by p1, say cℓ = p1(γ3). Similarly, the entire right boundary γ1 is
mapped to a constant, say cr = p1(γ1). Meanwhile, the general point s∗ is mapped to
p1(s

∗) lying between cℓ and cr. Moreover, the general point, say w0, of the down edge
γ0 and the general point, say w2, of the up edge γ2 are such that p1(w0) = p1(w2) =
p1(s

∗) = (cℓ + cr)/2. Also, edges γ0 and γ2 have associated polynomial systems f0 and
f2, respectively. Then, the homotopy for computing ψ(u, v) for any (u, v) ∈ [0, 1]× [0, 1]
is

H(x, y0, y2, u, v) =



f(x)
p1(x)− [(1− u)cℓ + ucr]

f0(y0)
p1(y0)− [(1− u)cℓ + ucr]

f2(y2)
p1(y2)− [(1− u)cℓ + ucr]

p2(x)− [(1− v)p2(y0) + vp2(y2)]/[p2(y2)− p2(y0)]


(11)

initialized at (x, y0, y2, u, v) = (s∗, w0, w2, 1/2, 1/2). By abuse of language, we refer
to H(x, y0, y2, u, v) as a homotopy, because whenever it is used to do continuation, a
path (u(t), v(t)) is specified. After tracking from (u, v) = (1/2, 1/2) to any other (u, v)
following a continuous path in [0, 1]×[0, 1], never touching the boundary except possibly
at the end of the path, the evaluation of ψ(u, v) is the corresponding x. The idea behind
this homotopy is that y0 and y2 move left-right on edges γ0 and γ2 while x tracks with
them in the p1 direction and interpolates between them in the p2 direction. The point x
only reaches the boundaries of the face at the limits of (u, v) on the box [0, 1]×[0, 1], and
the cell is constructed so that no other segments of the critical curve for Z with respect
to p cross into the face. The homotopy may become singular at any of the boundaries,
but if so, a singular endgame in the path tracker finds the limit of the end of the path,
thereby extending ψ to the boundaries of the cell.

The construction of the cell decomposition is best described by illustrating the action
of the algorithm step by step on a simple example. To that end, we use a surface in R3

defined by the equation

((x+ 0.35)2(1− x2)− y2)2 + z2 − 0.00531441 = 0. (12)

This is a compact surface with one hole and a pinch-point singularity at (x, y, z) =
(−0.8, 0, 0). Because of its special form, we can solve for z in terms of (x, y). Sampling
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Figure 5: The running example drawn by meshing a grid of samples.

(x, y) on a fine grid in the box [−1.1, 1.1]× [−1.1, 1.1], one can make a mesh plot of the
surface in Matlab as appears in Figure 5. The mesh is two disconnected pieces, jagged
around the boundary, because this crude approach does not solve for the boundary
curve.

The algorithm is illustrated with the compact surface rotated to make sure it is
in general position with respect to π = (π1, π2). It is easier to visualize these natural
projections than if we were to decompose the surface in its original coordinates but
using random projections, even though the two approaches are equivalent. Figure 6
illustrates the example surface as a rotated point cloud, which we will decompose in the
algorithm below. In this particular case, the rotation is unnecessary, but we apply it
anyway to illustrate the general procedure.

The algorithm for the two-dimensional case is as follows. Because the algorithm in-
volves cell decompositions of several different curves, we use the dot notation to indicate
fields in a structure. For example, for a cell decomposition C, the symbol C.V indicates
the set of vertices in C. The algorithm builds S, the cell decomposition of ZR.

For clarity, we note that at several steps we construct cell decompositions for slices of
ZR in the vertical direction, meaning we decompose ZR ∩ p−1

1 (c) for some c ∈ R. When
we do these decompositions, we use p2 as the projection. Then, “left” and “right” of the
1-cell decomposition of the slice with respect to p2 are “down” and “up” in the 2-cell
decomposition of the surface.

1. Initialize: Instantiate S with S.V, S.E and S.F all empty.

2. Find witness set for critical curve K(Z, p): Let G(z) = {f, det J(f, p)} and
find a numerical irreducible decomposition of K(Z, p) = Z ∩ V (G). This is a case
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Figure 6: Point cloud on the surface after general rotation.

of the Extension Problem 6, beginning from the witness set Zw for Z. If K(Z, p)
is two-dimensional, then Z is not in general position with respect to p, and the
algorithm stops. Else, if the witness points of K(Z, p) are singular, Z is not almost
smooth, and again, the algorithm stops. Otherwise, Z is in general position and
almost smooth, and the algorithm proceeds with Kw being the witness set for
K(Z, p).

3. Decompose the critical curve:

(a) Use the curve algorithm to compute a cell decomposition of KR:

C = D1(Kw, p1, I1, p2, I2, false).

(b) Let T be as developed in the curve algorithm; that is, T = p1(C.V) sorted
in ascending order.

(c) Set S.V = C.V and S.E = C.E.

Figure 7 shows the critical curve and its decomposition for the illustrative example.

4. Add up and down limit curves: These are the curves where ZR intersects the
limits imposed by I2. Recall that Zw = {f, (L1, L2),W} where L1 and L2 are
generic linear polynomials. To slice the surface with a hyperplane given by linear
equation P , we may move L1 to P using Sampling (Problem 4), getting witness
point set W ′. Then, a witness set for Z ∩ V (P ) is simply {(f, P ), L2,W

′}.
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Figure 7: Decomposition of the critical curve at Step 3. Red dots are critical points,
black dots are endpoints from slicing at the critical points, green dots are the generic
points of the 1-cells. There are ten 1-cells, and the isolated pinch point.

(a) Find a witness set, say U−
w , for the lower limit curve Z ∩ V (p2(z)− a2).

(b) Compute
U− = D1(U

−
w , p1, I1, [ ], [ ], T, false),

a cell decomposition for the real part of the lower limit curve, with break-
points T that agree with those of C. Note that by Lemma 4.7, any vertex in
C where the critical curve K crosses the lower limit p−1

2 (a2) is also a critical
point of Z ∩ V (p2(z)− a2) with respect to projection p1.

(c) Similarly, for the upper limit curve Z ∩ V (p2(z)− b2), compute a witness set
U+
w and then its cell decomposition U+ = D1(U

+
w , p1, I1, [ ], [ ], T, false).

(d) Append the vertices and edges in U− and U+ to S.V and S.E, and for any
new point x appended to S.V also append p1(x) to T .

5. Slice ZR vertically at critical values: Let the elements of T be t1, . . . , tm.
Then, for i = 1, . . . ,m do:

(a) Using Sampling, find a witness set for Z ∩ p−1
1 (ti). Let Ki

w be the witness
set for this vertical slice of Z.

(b) Find the curve decomposition

Ki = D1(K
i
w, p2, I2, [ ], [ ], [ ], true).
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Figure 8: Slice ZR vertically at critical values, Step 5. There are five slices: three look
like figure eights, two on the far ends are just single points. Magenta balls mark the
generic points of the 1-cells of the decompositions Ki of these curves.

(c) Append the vertices and edges in Ki to those of S.

At this stage, as illustrated in Figure 8, all the vertices and edges of S are complete.
It remains to place a general point in each face and connect it to the edges that
form the face’s boundary.

6. Slice ZR vertically at generic values: This step will find a general point in
each face and connect it to the down and up edges, γ0 and γ2. For i = 1, . . . ,m−1,
let t∗i be the same point in (ti, ti+1) that appears in the decomposition C of K
from Step 3. By convention, we use t∗i = (ti + ti+1)/2. Then for i = 1, . . . ,m− 1,
do:

(a) Find a witness set Ki∗
w for Z∩p−1

1 (t∗i ), another case of Sampling (Problem 4).

(b) Compute the cell decomposition

Ki∗ = D1(K
i∗
w , p2, I2, [ ], [ ], [ ], true).

Figure 9 is an illustration of the running example with all the Ki∗ shown.

(c) Each edge in Ki∗ corresponds to a face of S. By Lemma 4.7, each edge in Ki∗

either ends on an arc of the critical curve K or else meets a limit of p−1
2 (I2).

Either way, these edges are already in the data stored in S. We complete the
face as follows. For each edge e ∈ Ki∗.E do:
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Figure 9: Slice ZR vertically at generic values, Step 6. Blue points are the generic
points of the curve decompositions, K∗

i . These points become the generic points of the
2-cells. The critical points for these curves coincide with the green generic points of the
decomposition of the critical curve, see Step 6c.

i. Instantiate a new face, f.

ii. Set the general point of f to the general point of e: f.s∗ = e.w

iii. The left endpoint of e is the general point of some edge in S. That edge
is the down boundary, γ0, of the face. Accordingly, search through S.E
until that edge is found. Then set f.γ0 to the index of that edge.

iv. Similarly, search through S.E to find the edge whose general point is the
right endpoint of e, and set f.γ2 to its index.

v. Find the left boundary, γ3 of face f. The left boundary connects the left
endpoints of f.γ0 and f.γ2. Let w0 and w2 be these endpoints. Initialize
f.γ3 = ∅. If w0 = w2, then leave f.γ3 empty to indicate a degenerate left
edge. Otherwise, the left edge of the face consists of one or more edges
from the vertical slice Ki. To find these, we work from w0 going up,
connecting edges that border f end-to-end until we reach w2, as follows:

A. Find all edges in Ki whose left endpoint is w0. (These edges were
already added to S.E in Step 5.) One of these must be part of γ3.
To determine which it is, we test them sequentially as follows:

• Let e be the edge to be tested, so e.w is its general point. Let

vw = [p2(e.w)− p2(w0)]/[p2(w2)− p2(w0)].
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Figure 10: Find the left and right edges by connecting the generic point (blue) of each
2-cell to generic points (magenta) of the neighboring curves Ki and Ki+1 (Step 6(c)v).

• Use the homotopy H(x, y0, y2, u, v) = 0 from (11) to move along a
continuous path in [0, 1]× [0, 1] from (u, v) = (1/2, 1/2) to (u, v) =
(0, vw). A straight line path suffices. Note that the starting point
for (x, y0, y2) in the homotopy is already known: x = f.s∗, y0 =
S.E(γ0).w, y2 = S.E(γ2).w.

• If the endpoint of this homotopy is e.w, then we have found the
next edge in γ3. Otherwise, loop back to Step 6(c)vA to test
the next edge that starts at w0. Note that because of the inner
workings of the one-dimensional algorithm, several of the edges to
be tested may have the same value of p2(e.w), in which case the
homotopy does not have to be recomputed.

B. Append e to f.γ3.

C. Set w0 to be the right endpoint of e.

D. If w0 = w2, the left boundary f.γ3 is complete. Otherwise, we loop
back to Step 6c to add another edge.

vi. Find the right boundary, γ1 of face f. This follows the identical procedure
as finding the left boundary except now the edges will come from Ki+1

and consequently the homotopy tests end at u = 1.

vii. Append f to the list of faces, S.F.

The cell decomposition of ZR over the patch p−1
1 (I1)× p−1

2 (I2) is complete.
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Theorem 6.3 Let Y ⊂ CN be an almost smooth, irreducible algebraic set. For R
in a nonempty Zariski-open algebraic subset of OR(N), the above algorithm applied to
Z := R · Y produces a cell decomposition of ZR ∩ p−1

1 (I1) ∩ p−1
2 (I2).

Proof. Lemma 4.6 implies that all of the curves decomposed in the course of the
algorithm are all in general position and so the required the curve decompositions will
succeed with probability one. This implies that all edges in the decomposition can be
tracked from their general points to their endpoints, and in particular, the upper and
lower edges of a two cell can be so tracked. For the same reason, for any face, the arc of
the curve Z∩p−1

1 (1/2) that passes through its generic point s∗ can be tracked vertically
to the generic points of the lower and upper edges without encountering a singularity,
except possibly when reaching the edge. By continuity, this situation persists for u in
some open subset of 1/2, and so if any singularity were to be encountered for u ∈ (0, 1)
there must be a smallest value in (1/2, 1) or largest value in (0, 1/2) where this occurs.
But such a value would be a critical point of K(Z, p) with respect to p1. Since by
construction the 2-cells only extend between neighboring critical points, there can be
no real critical points of K(Z, p) until the left or right boundary of the cell is reached.
Hence, the homotopy (11) is nonsingular for any path in (0, 1) × (0, 1), and so the
construction meets all the requirements of a cell decomposition. 2

In the running example, as shown in Figure 10, there are ten 2-cells. At this point,
the homology of the surface is fully revealed by the way the 2-cells glue together across
their 1-cell boundaries.

6.1 Compact surfaces

If the surface ZR is known to be compact, then the above algorithm can be called with
p1 and p2 being random real linear projections and omitting the intervals I1 and I2.

6.2 Noncompact Surfaces

Similar to the curve case treated in Section 5.3, if a surface is noncompact or its compact-
ness is unknown, we can still perform a complete cell decomposition by first projectiviz-
ing the surface and then performing decomposition on cells of P2

R. The projectivization
process is identical to the curve case, so we do not repeat it here. So let us assume that
Z ⊂ PN is an irreducible, almost smooth, two-dimensional component of V (F ), and we
have a witness set for it. Furthermore, let us assume that Z has already been placed
into general position by applying, if necessary, a random rotation from O(R, N + 1).

We construct the cell decomposition by working over projections onto three rectan-
gular patches that cover all of P2

R. These patches are illustrated in Figure 2. To work
on these patches, we dehomogenize F (X0, . . . , XN ) by appending a linear polynomial.
For i = 0, 1, 2, let fi = {F,Xi − 1}, let Li be similar dehomogenizations of L, and let
Wi be compatible mappings of the witness set W . So {fi, Li,Wi} is a witness set for
working on patch i.
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Problem 10: Projective Surface Cell Decomposition

Input : A witness set Zw = {F,L,W} for 2-dimensional irreducible, almost
smooth, algebraic set Z ⊂ PN , where F has real coefficients. Z in
general position.

Output: A cell decomposition of Z, S = D2(Zw).

1. Decompose on patch 0: Compute

S0 = D2({f0, L0,W0}, π1, [−1, 1], π2, [−1, 1]).

2. Decompose on patch 1: Compute

S1 = D2({f1, L1,W1}, π2, [−1, 1], π0, [−1, 1]).

3. Decompose on patch 2: Compute

S2 = D2({f2, L2,W2}, π0, [−1, 1], π1, [−1, 1]).

4. Paste cells at boundaries: This is mainly a bookkeeping exercise, taking into
account the equivalence of a point and its negative in homogeneous coordinates.
The right boundary at ui = 1 on patch i is the upper boundary at vi+1 = 1 on
patch (i + 1) (using modulus 3 arithmetic). Also, the left boundary at ui = −1
on patch i is the lower boundary at vi+1 = −1 on patch (i+ 1). In each case, the
upper and lower boundary decompositions may subdivide some edges more finely
than the corresponding right and left boundary of the neighboring patch. This is
because a right boundary has breakpoints only where that (locally) vertical slice
has critical points, but an upper boundary has breakpoints wherever the critical
curve for that patch has critical points or where it crosses the boundary. Thus,
the vertices in the upper boundary include all of those for the corresponding right
boundary of its neighbor plus possibly some extra ones. These extra ones need to
be inserted as breakpoints in the edges for that right boundary. Each such vertex
belongs to the interior of a single edge on the right boundary, which edge can be
discovered by homotopy membership testing. Once the edge is found, it is split
into two edges, with the inserted vertex as edge endpoints. After splitting the
edge, the boundary data for the adjoining face must also be updated. A similar
process pastes left boundaries to lower boundaries.

7 Discussion and Conclusions

We have described an algorithm to decompose a real surface contained in an irreducible,
almost smooth, two-dimensional complex algebraic set. The decomposition consists of
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2-cells, each homeomorphic to [0, 1] × [0, 1], bounded by edges homeomorphic to [0, 1].
We treat the case of compact surfaces directly in RN , while noncompact surfaces are
projectivized and treated in PN

R .
Although the algorithm has been illustrated on a surface in R3, the technique also

applies to surfaces in any higher dimensional space.
We have restricted the algorithm to complex algebraic sets that have at most a finite

number of singularities, and the algorithm verifies whether a given surface satisfies this
assumption. The algorithm as written already works for a somewhat wider class of
algebraic sets. In particular, it is enough for there to be a finite number of real singular
points, but we do not provide a test to verify that condition. Rather, we leave it to
future work to remove entirely the almost smoothness condition, which we believe is
feasible.
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