
Excess intersections and

numerical irreducible decompositions

Daniel J. Bates∗ David Eklund† Jonathan D. Hauenstein‡

Chris Peterson§

May 6, 2019

Abstract

A fundamental problem in algebraic geometry is to decompose the solution set of a given
polynomial system. A numerical description of this solution set is called a numerical irre-
ducible decomposition and currently all standard algorithms use a sequence of homotopies
forming a dimension-by-dimension approach. In this article, we pair a classical result to
compute a smooth point on every irreducible component in every dimension using a single
homotopy together with the theory of isosingular sets. Examples are presented to compare
this approach with current algorithms for computing a numerical irreducible decomposition.
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1 Introduction

For a polynomial system f : CN → Cn, the solution set of f is V(f) = {x ∈ CN | f(x) = 0}. The
solution set V(f) has a unique decomposition, called the irreducible decomposition of V(f), into
a finite number of inclusion maximal irreducible algebraic sets. This geometric decomposition
of V(f) corresponds to the prime decomposition of the radical of the ideal generated by the poly-
nomials of f . A third means of describing this decomposition is afforded by numerical methods.
A numerical irreducible decomposition of V(f) consists of a set of numerical approximations of
points on each irreducible component of V(f), along with various auxiliary data. There are
several techniques for computing numerical irreducible decompositions, each of which requires
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a sequence of several homotopies, typically one or more for each dimension in which V(f) might
have an irreducible component.

Given a polynomial system f , our proposed algorithm computes a numerical irreducible
decomposition of V(f) by using one homotopy to compute points on V(f) and then applies some
post-processing to form the decomposition. First, a finite set of points S ⊂ V(f) is computed
with a single homotopy such that S is theoretically guaranteed to contain at least one smooth
point on every irreducible component of V(f). This guarantee comes from intersection theory,
which we summarize in Appendix A. As is typically the case with numerical computation, one
should view the algorithm as a probability one method based on selecting random numbers.

After computing S, the proposed algorithm computes a numerical irreducible decomposition
by computing the isosingular set [10] associated with each point in S with respect to f . In
short, for x ∈ V(f), the isosingular set of x with respect to f is an irreducible algebraic subset
of V(f) containing x such that every general point in the isosingular set has the same singularity
structure, which is described by its deflation sequence, at x. The irreducible components of V(f)
are the inclusion maximal elements of the set of isosingular sets for each s ∈ S.

This article is structured as follows. The remainder of this section introduces necessary
concepts from algebraic geometry and numerical algebraic geometry with, for example, the
books [4, 22] providing more details. Section 2 provides a homotopy to compute at least one
smooth point on each irreducible component. Section 3 describes using isosingular theory to
complete a numerical irreducible decomposition. After examples are presented in Section 4,
Appendix A provides an exposition of the related concepts and results from intersection theory.

1.1 Irreducible decomposition and local dimension

A set V ⊂ CN is called an algebraic set if there exists a polynomial system g : CN → Cn such
that V = V(g). An algebraic set V is called irreducible if, for any algebraic sets W1,W2 ⊂ CN
such that V = W1 ∪W2, then either V = W1 or V = W2. For an irreducible algebraic set V ,
the set of manifold points in V is connected and its dimension as a complex manifold is defined
to be the dimension of V , denoted dimV .

Every algebraic set V ⊂ CN can be written uniquely as the union of finitely many irreducible
algebraic sets, no one of which is contained in the union of the others. That is, there exist
irreducible algebraic sets Z1, . . . , Zm ⊂ CN , unique up to reordering, such that

Zi 6⊂
⋃
j 6=i

Zj and V =
m⋃
i=1

Zi.

The irreducible algebraic sets Z1, . . . , Zm are called the irreducible components of V with

dimV = max
i=1,...,m

dimZi.

Another useful presentation of an algebraic set is to first group by dimension. Let V be an
algebraic set of dimension ` with irreducible components Z1, . . . , Zm. For i = 0, 1, . . . , `, let

Vi =
⋃

dimZj=i

Zj

and suppose that Vi,1, . . . , Vi,ki are the ki irreducible components of Vi. Then,

V =
⋃̀
i=0

Vi =
⋃̀
i=0

ki⋃
j=1

Vi,j . (1)
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The set Vi is called the pure i-dimensional component of V . Moreover, given a point x ∈ V , the
local dimension of x with respect to f is

dimf (x) = max{i | x ∈ Vi}.

Example 1.1 For f =

[
xy
xz

]
, the pure-dimensional components of V = V(f) ⊂ C3 are

V2 = {(0, y, z) | y, z ∈ C} and V1 = {(x, 0, 0) | x ∈ C},

each of which is irreducible. Thus, dimV = 2 with dimf ((0, 0, 0)) = 2 and dimf ((3, 0, 0)) = 1.

1.2 Numerical irreducible decomposition and witness sets

A numerical irreducible decomposition provides a representation of algebraic sets similar to (1)
using witness sets. This section summarizes these two concepts with more details in [21, 22].

Let f : CN → Cn be a polynomial system, V ⊂ V(f) be a pure i-dimensional algebraic set of
degree d, and L : CN → Ci be a system of i general linear polynomials. Then, W = V ∩V(L) is a
set of d points, called a witness point set for V . A witness set for V is the triple W = {f,L,W}.
A finite set Ŵ ⊂ CN is called a witness point superset for V if V ∩ V(L) ⊂ Ŵ ⊂ V(f) ∩ V(L).

If Z1, . . . , Zk are the irreducible components of the pure i-dimensional algebraic set V , then
the witness point set W for V is the disjoint union of the finite sets Wi = Zi ∩ V(L). In
particular, Wi is a witness point set for Zi, called an irreducible witness point set, and {f,L,Wi}
is a witness set for Zi, called an irreducible witness set.

Finally, a numerical irreducible decomposition of V(f) has the form

dimV(f)⋃
i=0

ki⋃
j=1

Wi,j (2)

where Wi,j is an irreducible witness set for a distinct i-dimensional irreducible component
of V(f). We note that the union of witness sets in (2) should be considered as a formal union.

Example 1.2 Continuing with the setup from Ex. 1.1, consider the linear systems

L1 = 2x+ 3y − 4z − 1 and L2 =

[
L2

3x− 2y + z − 2

]
.

Then, W2 = V2 ∩ V(L2) = {(0,−9/5,−8/5)} and W1 = V1 ∩ V(L1) = {(1/2, 0, 0)} are witness
point sets for V2 and V1, respectively. Moreover, W2 = {f,L2,W2} and W1 = {f,L1,W1}
are witness sets for V2 and V1, respectively, with the formal union W2 ∪W1 being a numerical
irreducible decomposition for V(f).

A common approach for computing a numerical irreducible decomposition for V(f), given a
polynomial system system f : CN → Cn, consists of three steps. The first step is to compute a
witness point superset for each pure i-dimensional algebraic set Vi of V(f), say Ŵi. Standard
algorithms for this step, listed in chronological order, include the dimension-by-dimension slicing
approach [21], the cascade algorithm [16], and the regenerative cascade algorithm [9]. The second

step is to compute a witness point set Wi from each witness point superset Ŵi. Standard
algorithms for this step are the homotopy membership test [18] and the local dimension test [2].
The third step is to decompose each witness point set Wi into irreducible witness point sets.
The standard technique for this step includes the application of monodromy loops [20] with
a stopping criterion given by the trace test [19]. We discuss the homotopy membership test,
monodromy loops, and the trace test in more detail in the next section.
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1.3 Membership, monodromy, and traces

Let f : CN → Cn be a polynomial system and V ⊂ V(f) be an irreducible component with
witness set {f,L,W}. The multiplicity of V with respect to f is the multiplicity of any w ∈W

with respect to

[
f
L

]
. If V has multiplicity one with respect to f , then V is said to be generically

reduced with respect to f . Otherwise, V is said to be generically nonreduced with respect to f .
In particular, V is generically reduced with respect to f if and only if dimV = dim null Jf(x) for
a general x ∈ V where Jf is the Jacobian matrix of f , i.e., the matrix of first partial derivatives
of the polynomials of f . In this case, a point z ∈ V is called a singular point of V with respect
to f if dim null Jf(z) > dimV ; otherwise, z is called a manifold point or smooth point.

Suppose that V is a generically reduced and irreducible component of V(f) of dimension
d > 0. To determine whether some given z ∈ V(f) lies on the particular component V , the
homotopy membership test [18] makes use of the witness setW together with linear slice moving.
More specifically, let Lz : CN → Cd be a system of general linear polynomials with z ∈ V(Lz).
Consider the homotopy H : CN × C→ CN which deforms L to Lz along V(f), namely

H(x, t) =

[
f(x)

Lz(x) · (1− t) + L(x) · t

]
.

Let E ⊂ V(f)∩V(Lz) be the set of endpoints of the homotopy paths defined by H = 0 starting
at the points in W = V ∩ V(L) at t = 1. Then, z ∈ V if and only if z ∈ E.

Suppose that z ∈ V(f) is a smooth point on some generically reduced d-dimensional irre-
ducible component so that dimf (z) = dim null Jf(z) = d. Let Lz : CN → Cd be a system
of d general linear polynomials with z ∈ V(Lz). Suppose that Φ(t), for 0 ≤ t ≤ 1, defines a
general continuous, closed path in the space of d-tuples of linear polynomials in N variables
which starts and ends at Lz. That is, for each t ∈ [0, 1], Φ(t) : CN → Cd is a general linear
polynomial system with Φ(0) = Φ(1) = Lz. The homotopy path starting at z at t = 1 for the
homotopy H : CN × C→ CN defined by

H(x, t) =

[
f(x)

Φ(t)(x)

]
defines a monodromy loop. Let ẑ be the endpoint of the path defined by H = 0 starting at z at
t = 1. By connectedness of the set of smooth points of an irreducible algebraic set, z and ẑ must
lie on the same irreducible component. Therefore, monodromy loops can be used to determine
which witness points must lie on the same irreducible component as described in [20].

Example 1.3 For f = y − x2, consider the parabola V(f) ⊂ C2 with z = (1, 1) and linear

Lz = 2x−3y+1. Consider the loop Φ(t)(x, y) = 2x−3y+e2π
√
−1(1−t) so that Φ(0) = Φ(1) = Lz.

The resulting monodromy loop yields ẑ = (−1/3, 1/9).

As a complement to the necessary condition obtained by monodromy loops, the trace test [19]
was developed to provide a stopping criterion, that is, to determine if a given set of witness
points forms a witness point set. More specifically, suppose that W ⊂ V(f) ∩ V(L) is a finite
set consisting of smooth points on the union of generically reduced d-dimensional irreducible
components of V(f). Let v ∈ Cd and λ : CN → C be general. For each w ∈ W , let w(t) be the
homotopy path defined by V(f)∩V(L+ t · v), with w(0) = w. Then, W is a union of irreducible
witness point sets if and only if the following is linear in t:

φW (t) =
∑
w∈W

λ(w(t)).
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Example 1.4 Continuing with the setup from Ex. 1.3 with L = 2x − 3y + 1, the following
applies the trace test to W1 = {(1, 1)} and W2 = {(1, 1), (−1/3, 1/9)} where v = 1 +

√
−1 and

λ(x, y) = 5x+ 2y. In particular,

φW1
(t) =

25 + 6tv + 19
√

4 + 3tv

9

is not linear in t while

φW2
(t) =

50 + 12tv

9

is linear in t. Hence, combining with Ex. 1.3 shows that W2 is an irreducible witness point set.

In practice, linearity of φW (t) is tested by evaluation of the function at three distinct points
and even testings its first and second derivatives [5].

1.4 Deflation sequences and smooth points

For generically reduced irreducible components V ⊂ V(f), we have already described the smooth
points with respect to f , namely z ∈ V such that dimf (z) = dim null Jf(z) = dimV where
Jf(z) is the Jacobian matrix of f evaluated at z. The following extends the notion of smooth
points to generically nonreduced irreducible components via deflation sequences from [10].

Let f : CN → Cn be a polynomial system, y ∈ V(f), and define dnull(f, y) = dim null Jf(y).
Consider the deflation operator D which, to a pair consisting of a polynomial system f and a
point y ∈ V(f), assigns a polynomial system F and the point y, that is (F , y) = D(f, y). The
polynomial system F is the union of f and all (N − d + 1) × (N − d + 1) minors of Jf where
d = dnull(f, y). By construction, y ∈ V(F) and thus we can iterate the deflation operator D to
generate a sequence

(Fk, y) = Dk(f, y) for k = 1, 2, . . . (3)

beginning with D0(f, y) = (f, y). The deflation sequence of y with respect to f is the sequence
of integers {dk(f, y)}∞k=0 such that

dk(f, y) = dnull(Dk(f, y)).

Every deflation sequence is a monotonically decreasing sequence of nonnegative integers and thus
has a limit, called the isosingular local dimension of y with respect to f , denoted isodimf (y). The
isosingular local dimension is a lower bound on the local dimension, i.e., isodimf (x) ≤ dimf (x).

Example 1.5 [10, Ex. 5.3] For f = x21 − x22x3 defining the Whitney umbrella, consider the
points y1 = (1, 1, 1), y2 = (0, 0, 1), and y3 = (0, 0, 0). Clearly, dimf (yi) = 2 for i = 1, 2, 3. The
deflation sequences are:

y1 : {2, 2, 2, 2, . . . }, y2 : {3, 1, 1, 1, . . . }, y3 : {3, 2, 0, 0, . . . }

yielding isodimf (y1) = 2, isodimf (y2) = 1, and isodimf (y3) = 0.

One can extend the definition of deflation sequences to nonempty irreducible algebraic sets
V ⊂ V(f). In particular, there is a nonempty Zariski open set Z ⊂ V such that every point in Z
has the same deflation sequence with respect to f . Hence, the deflation sequence of V , denoted
{dk(f, V )}∞k=0, is defined to be the deflation sequence at any point in Z.
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Example 1.6 [10, Ex. 5.3] Continuing with f in Ex. 1.5, consider the following two nonempty
positive-dimensional irreducible algebraic subsets of V(f): X1 = V(f) and X2 = V(x1, x2). The
deflation sequence for Xi is the same as for yi in Ex. 1.5 for i = 1, 2.

Let V ⊂ V(f) be an irreducible component. A point y ∈ V is called a singular point of V
with respect to f if the deflation sequence for V and y are different. Hence, the smooth points
of V with respect to f consist of the points y ∈ V which have the same deflation sequence as V .
These definitions agree with the classical notion of smooth and singular points for generically
reduced algebraic sets. In particular, if Singf (V ) is the set of singular points of V with respect
to f , then Singf (V ) is an algebraic set with dim Singf (V ) < dimV [10, Lemma 5.7].

2 A smooth point on every irreducible component

The first step of our approach is to utilize a single homotopy to compute a finite set of points
which contains at least one smooth point on every irreducible component. In Appendix A, we
provide an exposition of some classical results in intersection theory for projective space, such
as Corollary A.17. In this section, we present the theory for affine algebraic sets by reducing
down to the homogeneous case.

Suppose that f : CN → Cn is a polynomial system and let r be the rank of f [22, § 13.4].

That is, r = dim f(CN ) ≤ n where f(CN ) ⊂ Cn is the Euclidean closure of f(CN ) in Cn. In
particular, r is equal to the rank of the Jacobian of f at a general point in CN . Since every
irreducible component of V(f) has codimension at most r, we aim to construct h : Cr → Cr
from f as follows.

First, we employ randomization to reduce from n polynomials to r polynomials. In particular,
by Bertini’s Theorem [22, Thm. 13.5.1], there is a nonempty Zariski open set A ⊂ Cr×n such
that, for all A ∈ A, if V ⊂ V(f) is an irreducible component, then V is also an irreducible
component of V(A · f). One may reorder f so that the degrees of the entries of f are decreasing
and select A ∈ A to be of the form [Ir A

′] where Ir is the r×r identity matrix and A′ ∈ Cr×(n−r).
Then, the degree of the jth polynomial of f and A · f are the same.

Next, we employ intrinsic slicing to reduce from solving A · f on CN to solving on Cr. There
is a nonempty Zariski open set BA ⊂ CN×r × CN such that, for every (B, b) ∈ BA, the linear
space {By + b | y ∈ Cr} ⊂ CN intersects each irreducible component of V(A · f) transversely.
In particular, fix (B, b) ∈ BA and define

h(y) = A · f(By + b) and write h(y) =

 h1(y)
...

hr(y)

 .
The following is derived from Appendix A.

Theorem 2.1 Let f : CN → Cn be a polynomial system of rank r and h : Cr → Cr be
constructed from f as above. Suppose that g : Cr → Cr is a general polynomial system such that
di = deg gi = deg hi and p : Cr → Cr is defined by pi(y) = ydii − 1. Let Eh ⊂ V(h) ⊂ Cr be the
set of finite endpoints of the homotopy

H(y, t) = (1− t)h(y) + t(1− t)g(y) + tp(y) (4)

starting at t = 1 with the d1 · · · dr solutions of p = 0 and define

Ef =
{
By + b ∈ CN

∣∣ y ∈ Eh and f(By + b) = 0
}
. (5)
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Then, Ef is a finite set containing at least one smooth point on each irreducible component of V(f).

Proof. Consider the homogenization of the homotopy H, which is defined by

Hi([z0 : z1 : · · · : zr], t) = zdi0 ·Hi

((
z1
z0
, . . . ,

zr
z0

)
, t

)
and the homogenization of the polynomial system h, which is defined by

Fi([z0 : z1 : · · · : zr]) = zdi0 · hi
(
z1
z0
, . . . ,

zr
z0

)
for i = 1, . . . , r. Hence, H = {H1, . . . ,Hr} is a first order general homotopy for F = {F1, . . . , Fr}
so that Theorem A.16 applies to H with, say, endpoints EF ⊂ Pr where we construct the proper
closed subsets as follows.

For an algebraic set Y ⊂ Cr, define

Y = {[1 : y] | y ∈ Y } ⊂ Pr

which is an algebraic set. Let L : CN → CN−r be a linear system with V(L) = {By+b | y ∈ Cr}.
For an algebraic set V ⊂ V(f), define

YV = {y ∈ Cr | By +B ∈ V ∩ V(L)}.

Suppose that V ⊂ V(f) ⊂ Cn is an irreducible component. If dimV = N−r, then YV consists
of finitely many points, say YV = {y1, . . . , ydeg V } where V ∩ V(L) = {By1 + b, . . . , Bydeg V + b}
consists of smooth points of V . In particular, each {yi} is an irreducible component of V(h)
so that {[1 : yi]} is an irreducible component of V(F ). Hence, each [1 : yi] ∈ EF so that
V ∩ V(L) ⊂ Ef , i.e., Ef contains deg V smooth points on V .

If dimV > N − r, then YV is an irreducible component of V(h) so that YV is an irreducible
component of V(F ). Define SV =

(
YV ∩ V(z0)

)
∪YSingf (V ) which is a proper closed subset of YV .

Hence, EF contains at least one point in YV \ SV , say z. Since z0 6= 0, we know that

y =

(
z1
z0
, . . . ,

zr
z0

)
⊂ Eh ∩ YV

so that By + b ∈ V \ Singf (V ) ⊂ V(f). Hence, By + b ∈ Ef showing that Ef contains at least
one smooth point on V . 2

Example 2.2 Let f , V2, and V1 be as in Ex. 1.1. Since f has rank 2, for ease of presentation,
we simply take A = I2, the 2× 2 identity matrix,

B =

[
I2[

2 −3
] ] , and b =

 0
0
−1

 yielding h(y) =

[
y1y2

y1(2y1 − 3y2 − 1)

]
.

With this setup, Eh from Theorem 2.1 consists of 4 points: (1/2, 0) and three distinct points of
the form (0, ?). Hence, Ef consists of 4 points: (1/2, 0, 0), which is a smooth point on V1, and
three distinct points of the form (0, ?, ?), each of which is a smooth point on V2.

Theorem 2.1 provides a theoretical method for generating a finite set of solutions containing
at least one smooth point on each irreducible component. When performing this computation
in practice, one uses a random number generator to select complex numbers that satisfy the
genericity conditions with probability one.
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3 Forming a numerical irreducible decomposition

Given a polynomial system f : CN → Cn, Theorem 2.1 provides a method to compute a finite
set Ef ⊂ V(f) containing at least one smooth point on each irreducible component. This section
describes using isosingular sets to form a numerical irreducible decomposition of V(f) from Ef .

3.1 Isosingular sets

Deflation sequences introduced in Section 1.4 gives rise to isosingular sets [10] of f , which provide
a stratification of the singularity structure of V(f), as follows. For an irreducible algebraic set
V ⊂ V(f) with deflation sequence {dk(f, V )}∞k=0, one has dimV ≤ limk→∞ dk(f, V ). One
aims to identify irreducible algebraic subsets of V(f) which are as large as possible so that this
inequality becomes an equality, which are called isosingular sets with respect to f [10, Cor. 5.5].
In fact, every irreducible component of V(f) is an isosingular set with respect to f [10, Thm. 5.2].

Example 3.1 [10, Ex. 5.3] With f in Ex. 1.5, the isosingular sets are the umbrella V(f), the
handle {(0, 0, z) | z ∈ C}, and the pinch point {(0, 0, 0)}.

For each y ∈ V(f), one can associate to y a unique isosingular set, denoted Isof (y), such
that y is a smooth point of Isof (y) [10, Lemma 5.14]. That is, y ∈ Isof (y) such that y and Isof (y)
have the same deflation sequence. In particular, we immediately have isodimf (y) = dim Isof (y).
An algorithm for computing a witness set for Isog(y) given f and y is presented in [10] and
described in Section 3.2. This algorithm only needs a numerical approximation of y to be
accurate enough to compute finitely many terms in the deflation sequence of y with respect
to f , each of which is a nonnegative integer.

The following lemma provides a means to recognize the irreducible components of V(f)
given Ef , a set containing a smooth point on each irreducible component.

Lemma 3.2 Let f : CN → Cn be a polynomial system and Ef ⊂ V(f) be a finite set containing
at least one smooth point on each irreducible component of V(f). Then, the set of irreducible
components of V(f) is the set of inclusion maximal elements of {Isof (y) | y ∈ Ef}.

Proof. Let V1, . . . , Vk be the irreducible components of V(f).
For each i = 1, . . . , k, let yi ∈ Ef be a smooth point of Vi. That is, yi ∈ Vi such that yi and Vi

have the same deflation sequence. Since Vi is an irreducible component, Vi is an isosingular set
with respect to f . By uniqueness, we must have Vi = Isof (yi). Inclusion maximality follows
since Vi is an irreducible component.

Conversely, suppose that y ∈ Ef such that Isof (y) is inclusion maximal. Since Isof (y) is an
irreducible algebraic subset of V(f), there exists j ∈ {1, . . . , k} with Isof (y) ⊂ Vj = Isof (yj).
By inclusion maximality, Isof (y) = Vj , i.e., Isof (y) ⊂ V(f) is an irreducible component. 2

3.2 Computing isosingular sets

The effectiveness of Lemma 3.2 to compute a numerical irreducible decomposition of V(f) for
a polynomial system f depends upon the ability to compute a witness set for Isof (y) given
y ∈ V(f). The approach presented in [10] uses two stages. The first stage determines when the
deflation sequence {dk(f, y)}∞k=0 has terminated, that is, compute ` ≥ 0 such that

dk(f, y) = d`(f, y) for all k ≥ ` yielding isodimf (y) = lim
k→∞

dk(f, y) = d`(f, y).
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The second stage uses monodromy loops to compute additional points in the witness point set
and the trace test to validate that a witness point set for Isof (y) has been computed.

The deflation operator D defined in (3) uses determinants to construct the polynomial sys-
tem F . We note that an equivalent deflation operator, i.e., they yield the same deflation se-
quence, based on [1] was presented in [10], which is often more amenable to numerical compu-
tations. The following can be easily adapted regardless of the deflation operator used.

A deflation sequence has terminates at ` ≥ 0 if and only if for (F`, y) = D`(f, y), we have
d`(f, y) = dim null JF`(y) = dimF`

(y). Suppose that F` : CM → Cm and d = d`(f, y). For a
general R ∈ C(M−d)×m, consider G` : CM → CM−d defined by G` = R ·F`. Hence, y ∈ V(G`) is a
smooth point on a generically reduced irreducible component V ⊂ V(G`). Therefore, termination
at ` is equivalent to V ⊂ V(F`). This can be checked by sampling a general point z ∈ V
and determining if F`(z) = 0. One approach to sample a general point is to select systems
L,Ly : CM → Cd of general linear polynomials with Ly(y) = 0 and consider the homotopy
H : CM × C→ CM defined by

H(x, t) =

[
G`(x)

(1− t)L(x) + tLy(x)

]
.

Starting with y at t = 1, the endpoint z ∈ V ∩ V(L) is a general point on V . If F`(z) = 0,
then V ⊂ V(F`) with IsoF`

(y) = V . Since this test is often computationally inexpensive, we can
reliably perform this test by using various L.

After determining that a deflation sequence has terminated at index `, one has computed a
polynomial system F` and a smooth point y ∈ IsoF`

(y). Hence, one can use random monodromy
loops until the trace test determines that a complete witness point set for IsoF`

(y) has been
computed. For efficiency improvements to using monodromy loops in this context, see [11].

3.3 Completing the decomposition

By combining Theorem 2.1 and Lemma 3.2, we obtain Algorithm 1 for computing a numerical
irreducible decomposition and the following statement of correctness.

Theorem 3.3 With probability one, Algorithm 1 computes a numerical irreducible decomposi-
tion for V(f).

This statement is merely a recognition of the value in pairing together of isosingular theory
(Lemma 3.2) and first order general homotopies (Theorem 2.1), along with several standard
tools of numerical algebraic geometry.

Example 3.4 From f as in Ex. 1.1, it was shown in Ex. 2.2 that Ef consists of 4 points. The
three points of the form (0, ?, ?) have deflation sequence {2, 2, . . . }, isosingular local dimension 2,
and correspond to the same isosingular set, namely V2 in Ex. 1.1. Thus, using Algorithm 1,
one of these points will be used to compute a witness set for V2 and the other 2 points will be
discarded using via the membership test. Since the fourth point in Ef , namely (1/2, 0, 0) has
deflation sequence {1, 1, . . . }, isosingular local dimension 1, and does not lie on V2, Algorithm 1
identifies this as forming the witness point set for V1 and returns.

4 Examples

We describe using Algorithm 1 via Bertini [3] on several other examples. See https://dx.

doi.org/10.7274/r0-4rm8-x958 for additional data regarding these examples.
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Algorithm 1 Numerical irreducible decomposition

Input: Polynomial system f : CN → Cn.
Output: Numerical irreducible decomposition W of V(f) ⊂ Cn.

1: Select random numbers to construct a general first order homotopy H(y, t) as in (4) and
track all solution paths to compute corresponding finite set Ef ⊂ V(f) as in (5).

2: for each point x ∈ Ef do
3: Compute the deflation sequence for x yielding isodimf (x), the isosingular local dimension

of f at x.
4: end for
5: Compute m = min{isodimf (x) | x ∈ Ef} and M = max{isodimf (x) | x ∈ Ef}.
6: Compute Ej = {x ∈ Ef | isodimf (x) = j} for j = m, . . . ,M .
7: Initialize W = ∅.
8: for j = M,M − 1, . . . ,m do
9: for each W ∈ W do

10: Use component membership test with witness set W to remove from Ej any points
which lie on the irreducible component corresponding to W .

11: end for
12: if j > rank f then
13: for each x ∈ Ej do
14: Use monodromy and trace tests to produce a witness set W for Isof (x).
15: Append W to W.
16: Use component membership test with witness set W to remove from Ej any points

which lie on Isof (x).
17: end for
18: else
19: Use monodromy and trace tests to partition Ej into witness point sets. Append all

corresponding witness sets to W.
20: end if
21: end for

4.1 Line with an embedded point

The polynomial system f(x, y) =

[
x2

xy

]
algebraically describes the line V(x) and an embedded

point at (0, 0) This system is considered in Ex. A.19 as a demonstration of what can happen
when the homotopy is not general enough. When applying Algorithm 1, one tracks 4 paths
which end at 2 distinct points of the form (0, ?), which depend on the random choices, and the
other 2 end at (0, 0). Thus, Ef consists of 3 distinct points

Since the Jacobian of f is

Jf(x, y) =

[
2x 0
y x

]
,

it is easy to verify that the deflation sequence for the points of the form (0, ?) is {1, 1, . . . } while
the deflation sequence for (0, 0) is {2, 0, 0, . . . }.

Starting at dimension 1, Algorithm 1 computes a witness set for the isosingular set associated
to one of the points of the form (0, ?), namely V(x), and uses this witness set to verify that all
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other points in Ef lie on V(x). Thus, Algorithm 1 simply returns a witness set for V(x) = V(f).
However, we note that Algorithm 1 could be easily modified to compute some finer information
such as the equivalence of the irreducible components (namely, 2 for this system) and the
existence of distinguished components which are not irreducible components (namely, {(0, 0)}).

See Ex. A.9-A.11 for additional examples of lines with a point of interest.

4.2 Nested distinguished components

Consider the polynomial system

f(x, y, z) =

 (xy − z)(x− y)(x+ y − z)
(xy − z)(xy − z + (x− y)(x+ 2y − 3z))
(xy − z)(xy − z + (x− y)(2x− 3y + z))


which is a particular instance of those considered in Example A.20. The irreducible components
of V(f) are the quadric surface Q = V(xy − z) and the point P = {(2/11, 10/11, 12/11)}.
There are nested distinguished components inside of the quadric surface, namely the conic
curve C = V(x− y, xy − z) ⊂ Q and the point O = {(0, 0, 0)} ⊂ C ⊂ Q.

Since each of the three polynomials in f has degree 4, the first order general homotopy tracks
43 = 64 paths. The endpoints of those 64 paths decompose as:

• 1 point at P with deflation sequence {0, 0, . . . },

• 41 points on Q, but not on C, with deflation sequence {2, 2, . . . },

• 9 points (each reached twice) on C, but not on O, with deflation sequence {3, 1, 1, . . . },
and

• 1 point (reach four times) at O with deflation sequence {3, 2, 0, 0, . . . }.

A full accounting of the paths is 64 = 1 · 1 + 41 · 1 + 9 · 2 + 1 · 4.

4.3 “Illustrative example”

The polynomial system

f(x, y, z) =

 (y − x2)(x2 + y2 + z2 − 1)(x− 1/2)
(z − x3)(x2 + y2 + z2 − 1)(y − 1/2)

(y − x2)(z − x3)(x2 + y2 + z2 − 1)(z − 1/2)


is called an illustrative example in [17, §3]. The irreducible components of V(f) are a quadric
surfaceQ = V(x2+y2+2−1), a cubic curve C = V(y−x2, z−x3), three lines L1 = V(2x−1, 8z−1),
L2 = V(

√
2x− 1, 2y − 1), and L3 = V(

√
2x+ 1, 2y − 1), and the point P = {(1/2, 1/2, 1/2)}.

Algorithm 1 tracks 5 · 6 · 8 = 240 paths yielding 196 finite endpoints that decompose as:

• 146 points on Q with deflation sequence {2, 2 . . . },

• 24 points on C with deflation sequence {1, 1, . . . },

• 9 points on L1 with deflation sequence {1, 1, . . . }, and

• 8 points on each L2 and L3 with deflation sequence {1, 1, . . . }, and

• 1 point at P with deflation sequence {0, 0, . . . }.
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4.4 Cyclic-4 system

The solution set of the polynomial system

f(x) =


x1 + x2 + x3 + x4

x1x2 + x2x3 + x3x4 + x4x1
x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2

x1x2x3x4 − 1


consists of two irreducible curves:

C1 = V(x1 + x3, x2 + x4, x3x4 − 1) and C2 = V(x1 + x3, x2 + x4, x3x4 + 1)

together with 8 distinguished points that are also embedded:

P1 = (1, 1,−1,−1), P2 = (1,−1,−1, 1), P3 = (−1, 1, 1,−1), P4 = (−1,−1, 1, 1),
P5 = (i, i,−i,−i), P6 = (i,−i,−i, i), P7 = (−i, i, i,−i), P8 = (−i,−i, i, i)

where i =
√
−1. Tracking 4! = 24 paths yields 24 finite endpoints that decompose as:

• 4 points each on C1 and C2 with deflation sequence {1, 1, . . . } and

• 1 point (each reached twice) to P1, . . . , P8 with deflation sequence {2, 0, 0, . . . }.

with 24 = 2 · 4 + 8 · 1 · 2.

4.5 Adjacent minors

One place where using the methods behind Algorithm 1 will have an advantage over other
numerical irreducible decomposition methods, e.g., [9, 16, 21], is when f consists of r polynomials
of degree d1, . . . , dr such that r = rank f = codim V(f) and degV(f) is approximately d1 · · · dr.
This is due to the fact that one is targeting the bottom dimension components directly with
little wasted effort. Conversely, the approaches of [9, 16, 21] check in all possible dimensions with
significant wasted effort. In fact, when rank f = codim V(f), the set Ef obtained in the first
line of Algorithm 1 consists of the union of witness points sets for the irreducible components
of V(f). Thus, we can have a direct comparison simply on the number of paths to track and
time to compute a witness point set for V(f) using a first order general homotopy in the first
line of Algorithm 1 and the three methods in [9, 16, 21].

To demonstrate, for n ≥ 3, we consider the system fn consisting of the 3 × 3 adjacent
minors of a 3× n matrix A(n) of indeterminants, e.g., see [12]. Thus, fn consists of n− 2 cubic
polynomials in 3n variables. For example, when n = 5,

A(5) =

 a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35

 and f5 =

 detA
(5)
1:3

detA
(5)
2:4

detA
(5)
3:5


where A

(n)
j:j+2 is the 3 × 3 submatrix of A(n) consisting of columns j, j + 1, and j + 2. As

mentioned above, we have a direct comparison using Algorithm 1 and all of [9, 16, 21] for simply
computing a witness point set for V(fn) in this case. In fact, since we are solving intrinsically
on a nontrivial general linear space {By + b | y ∈ Cr} as in Section 2, we can compare taking g
to consist of general cubics and g = 0 in (4) following the observation in Ex. A.19. The results
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Algorithm 1 Regen. cascade [9] Cascade [16] Dim-by-dim [21]
n # paths time (0) time (general) # paths time # paths time # paths time
5 27 0.44 0.50 63 1.28 81 1.09 39 0.82
6 81 0.93 1.73 198 3.29 324 4.46 120 2.88
7 243 3.65 14.20 603 16.57 1,215 22.38 363 13.81
8 729 18.90 45.11 1,818 57.09 4,374 105.80 1,092 60.33
9 2,187 71.99 249.96 5,463 234.25 15,309 486.11 3,279 247.41
10 6,561 303.34 1210.26 16,398 999.94 52,488 2093.95 9,840 1124.28

Table 1: Summary for computing a witness point set for the adjacent minor system fn using
various methods with serial computation and time measured in seconds. Algorithm 1 compares
timings when g = 0 and when g is general.

Algorithm 1 Regen. cascade [9] Cascade [16] Dim-by-dim [21]
n # paths time (0) time (general) # paths time # paths time # paths time
10 6,561 11.02 24.68 16,398 28.40 52,488 43.50 9,840 31.04
11 19,683 24.15 74.11 49,203 63.94 177,147 202.78 29,523 140.34
12 59,049 63.94 299.40 147,618 202.66 590,490 1363.36 88,572 1055.02

Table 2: Summary for computing a witness point set for the adjacent minor system fn using
various methods with parallel computation and time measured in seconds. Algorithm 1 compares
timings when g = 0 and when g is general.

are summarized in Table 1 and Table 2 where the timings reported utilized Bertini running in
serial and parallel, respectively, on four 2.4 GHz Opteron 6378 processors, for a total of 64 cores,
with 64-bit Linux and 128 GB of memory. These show a comparison between the additional
evaluation cost of using a first order general approach with general g in Algorithm 1 as well
as the cost of checking all possible dimensions independently [21] or via a cascade [9, 16] when
codim V(fn) = rank fn = n− 2 and degV(fn) = 3n−2.
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A Dynamic intersections and limits of homotopy paths

The following describes some concepts from intersection theory and present a few results that
relate to numerical homotopy methods with [6] providing for more details. The software
Macaulay2 [8] and the ReesAlgebra package can be used to compute distinguished components
and other objects related to this topic, which are utilized in the examples appearing below.

A.1 Notation

All schemes appearing in this appendix are, by convention, algebraic schemes over C. For an
n-dimensional scheme X, we use Ak(X) to denote the Chow group of k-cycles on X modulo
rational equivalence. We define A∗(X) =

⊕n
k=0Ak(X) to be the Chow group. A cycle class

α ∈ Ak(X) is said to be a well-defined k-cycle on X in the case where there is only one k-cycle
on X that represents α. For a subscheme Y ⊆ X, there is an associated cycle [Y ] on X
which takes the geometric multiplicities of the irreducible components of Y into account. The
corresponding cycle class in A∗(X) will also be denoted by [Y ]. In the situation where Y is a
subscheme of X and α ∈ A∗(Y ), we will sometimes consider α an element of A∗(X) without
further comment. Let R ⊆ X be a closed subset and let α =

∑q
i=1 aiVi be a cycle on X where

a1, . . . , aq ∈ Z and V1, . . . , Vq ⊆ X are irreducible subvarieties. The part of α supported on R is
the cycle on R defined by

αR =
∑
Vi⊆R

aiVi,

where the sum is over all i such that Vi is contained in R.
Given a scheme X, a vector bundle π : E → X of rank d, and an integer k ≥ d, there is an

induced homomorphism π∗ : Ak−d(X)→ Ak(E) known as the flat pullback (see [6, § 1.7]). The
map π∗ is given by π∗([Y ]) = [π−1(Y )] for any pure (k − d)-dimensional subscheme Y of X. It
is shown in [6, Thm 3.3 (a)] that π∗ is an isomorphism. Let s : X → E be the zero-section. The
Gysin homomorphism is s∗ : Ak(E)→ Ak−d(X) and, by definition, is the inverse of π∗.

A proper morphism of schemes f : X → Y induces a homomorphism f∗ : Ak(X)→ Ak(Y )
(see [6, § 1.4]). Let X be a scheme which is proper over Spec(C) with structure morphism
η : X → Spec(C). Then, the degree of a 0-cycle class α ∈ A0(X) is defined by degα = η∗(α),
where A0(Spec(C)) is identified with Z.

Let E be a vector bundle on a scheme X and let Γ be a finite-dimensional space of global
sections of E. Then, Γ is said to generate E if the induced map X × Γ→ E is surjective.

In this appendix, all varieties are, by definition, reduced and irreducible. An irreducible
component of a scheme will be considered as a variety with the induced reduced structure.
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Let d ≥ 0 be an integer. A closed embedding X → Y of schemes is called a regular embedding
of codimension d, if for every x ∈ X, there is an affine neighborhood U of x in Y such that the
ideal defining U ∩X in the coordinate ring of U is generated by a regular sequence of length d.

A.2 Intersection products and distinguished varieties

The following defines intersection products in a general setting. In a manner similar to Bézout’s
theorem, intersection products decompose as a sum of contributions from distinguished varieties.

Let i : X → Y be a codimension d regular embedding of schemes and let NXY denote the
normal bundle of X in Y . Further, for k ≥ d, let V denote a pure k-dimensional scheme and
suppose that we are given a morphism f : V → Y . Then, the inverse image scheme W = f−1(X)
is the fiber product of X and V over Y , yielding the following:

W
j //

g

��

V

f

��
X

i
// Y

where j is the embedding of W in V and g is the induced map to X. Let N denote the
pullback of NXY via g, that is N = g∗NXY , and let π : N → W be the projection. There
is a substitute for a normal bundle of W in V , denoted CWV and called the normal cone of
W in V (see [6, App. B.6]). Since V has pure dimension k, CWV is either empty or has pure
dimension k by [6, App. B.6.6]. For C = CWV , as is explained in [6, § 6.1], C embeds in N
as a subcone which yields a class [C] ∈ Ak(N). Let s : W → N denote the zero-section. The
intersection product X · V of V by X on Y is an element of Ak−d(W ) defined as

X · V = s∗([C]).

The class [C] ∈ A∗(N) may be represented by a sum
∑r
i=1miCi where C1, . . . , Cr are the irre-

ducible components of C and m1, . . . ,mr ∈ Z are the geometric multiplicities of the components
of C. Put Zi = π(Ci), a closed subvariety of W called the support of Ci (see [6, App. B.5.3]).
The varieties Z1, . . . , Zr are called the distinguished varieties of the intersection. Thus, a dis-
tinguished variety is by definition reduced and irreducible. Note that we might very well have
that Zi = Zj even though i 6= j. Let Ni be the restriction of N to Zi and let si : Zi → Ni be
the zero-section. Importantly, we have the so-called canonical decomposition of X · V ,

X · V =

r∑
i=1

miαi,

where αi = s∗i ([Ci]). The equivalence of a distinguished variety Z is a class in Ak−d(Z) denoted
by i(Z) and given by the sum of the terms mjαj such that Zj = Z, that is,

i(Z) =
∑
Zj=Z

mjαj .

Due to the canonical decomposition, the equivalence of Z is also called the contribution of Z
to X · V . For any closed subset R ⊆ V , the part of X · V supported on R is a class in Ak−d(R),
denoted (X · V )R, and defined by

(X · V )R =
∑
Zj⊆R

mjαj ,
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the sum being over all j such that Zj ⊆ R. Note that

(X · V )R =
∑
Z⊆R

i(Z),

where the sum is over all distinguished varieties Z contained in R, but without repetition.
The following is Lemma 7.1 (a) in [6].

Lemma A.1 Every irreducible component of W is a distinguished variety.

Proof. The projection π : CWV →W is onto with π(Ci) ⊆W being closed and irreducible for
any irreducible component Ci ⊆ CWV . Hence, for every irreducible component Z of W , there
is an irreducible component Ci of CWV such that π(Ci) = Z. 2

A.3 Dynamic intersections

The following is a dynamic interpretation of the construction above developed in [6, 13, 15].
Lazarsfeld [13] extends and corrects Severi’s dynamical approach to intersections from [15].
For simplicity, we will follow the treatment given in [6] with special attention to Prop. 11.3,
Remark 11.3, and Ex. 11.3.1 of [6].

Let T be a smooth irreducible curve. Fix a point t0 ∈ T and consider T ∗ = T \ {t0}. For
t ∈ T and a scheme S over T with π : S → T , the fiber π−1(t) is denoted by St. We will use
the notation S∗ = S \ St0 .

Let Y be a scheme and let X → Y × T be a regular embedding of codimension d, such that
the induced embeddings Xt → Y × {t} are also regular of codimension d, for all t ∈ T . We call
X → Y ×T a family of regular embeddings of codimension d. Let V → Y be a closed subscheme
of pure dimension k where k ≥ d. In this situation, we will use V to denote the trivial family
over T with fiber V , that is V = V × T . Identify V with V × {t0}, set X = Xt0 , and identify Y
with Y × {t0}. Then, X is called a deformation of the embedding of X in Y .

Let W = X ∩ V and set W = Wt0 = X ∩ V . Remove W from W by letting W∗ = W \W
and then take the closure, say W ′, of W∗ in W.

Definition A.2 The limit set of the deformation X is W ′t0 .

We will consider the limit set as a variety (the induced scheme structure on the limit set will not
play any direct role here). Consider the regular embedding X ∗ → Y × T ∗ and the embedding
V∗ ⊆ Y × T ∗. The intersection product X ∗ · V∗ is an element of Ak+1−d(W∗). Let

∑
i aiDi be

a representative of X ∗ · V∗, where ai ∈ Z and Di ⊆ W∗ are irreducible subvarieties of dimension
k + 1− d, and let D′i be the closure of Di in W ′.

Definition A.3 The limit intersection class is an element of Ak−d(W ′t0), defined by

lim
t→t0

(Xt · Vt) =
∑
i

ai[(D′i)t0 ].

Lemma A.4 The push forward of the limit intersection class from the limit set to W is equal
to the intersection product X · V .

For a proof, see [6, Cor. 11.1].
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Remark A.5 Suppose that Y is a smooth variety and that Wt = Xt ∩ Vt has pure dimension
k − d for all t ∈ T ∗, that is the intersection is proper for all t 6= t0. In this case, the limit
intersection class is either 0 or a well defined positive (k − d)-cycle on the limit set. To see
this, note first that since Y × T ∗ is smooth, every component of X ∗ ∩V∗ has dimension at least
dimV∗ + dimX ∗ − dim (Y × T ∗) = k + 1 − d. Since Xt ∩ Vt has pure dimension k − d for all
t ∈ T ∗, it follows that every component of X ∗ ∩ V∗ dominates T and has dimension k + 1− d.
Hence, the intersection X ∗∩V∗ is proper, and consequently X ∗ ·V∗ is represented by the positive
cycle

∑q
i=1 aiDi, where D1, . . . ,Dq ⊆ W∗ are the irreducible components of W∗ = X ∗ ∩ V∗ and

ai > 0 is the intersection multiplicity of Di in X ∗ · V∗. The limit intersection class is represented
by the (k − d)-cycle

∑q
i=1 ai[(D′i)t0 ] where D′i is the closure of Di in W ′. Note that (D′i)t0 is

either empty or of pure dimension k − d for all i. Thus, the limit set is either empty or of
pure dimension k − d since every irreducible component of W ′ is the closure of an irreducible
component of W∗ where all components of W∗ are of dimension k + 1− d and dominate T . It
follows that the limit intersection class is either 0 or a well defined (k−d)-cycle on the limit set.

Definition A.6 If the limit intersection class is a well defined (k − d)-cycle on the limit set,
then we call it the limit cycle.

As is explained in [6, § 11.2], the normal bundle NX(Y ×T ) is isomorphic to NXY ⊕NXX . The
inclusions X ⊆ X ⊆ Y × T induce an inclusion NXX → NX(Y × T ), which in turn induces a
map of vector bundles ρ : NXX → NXY . Now, NXX is the trivial bundle and can be identified
with X ×Nt0T in a natural way (see [6, App. B.6.1]). Fix a basis of the 1-dimensional vector
space Nt0T and let e : X → NXX be the corresponding constant section.

Definition A.7 The section ρ ◦ e of NXY is the characteristic section of the deformation X .

The characteristic section depends on the choice of basis of Nt0T and is well defined only up
to rescaling by λ ∈ C \ {0}. The following is [6, Prop. 11.3 (ii)].

Proposition A.8 Let X → Y be a regular codimension d embedding of schemes and let V ⊆ Y
be a closed subscheme of pure dimension k where k ≥ d. Assume that NXY is generated by a
finite-dimensional space of global sections Γ. Let R ⊆ X ∩ V be a closed subset. Then, there is
a nonempty open subset Γ(R) ⊆ Γ which is invariant under multiplication by λ ∈ C \ {0} and
is such that the following holds. For any deformation X of X → Y with characteristic section
in Γ(R), the limit intersection class is a well defined (k − d)-cycle, and(

lim
t→t0

(Xt · Vt)
)R

= (X · V )R.

That is, the part of the limit cycle supported on R represents (X · V )R in Ak−d(R).

A.4 Projective space, distinguished varieties and positivity

Consider hypersurfaces X1, . . . , Xk ⊂ Pk. For the construction of Section A.2, we take

X = X1 × · · · ×Xk and Y = Pk × · · · × Pk︸ ︷︷ ︸
k factors

with i : X → Y being the natural inclusion and V = Pk with f : V → Y the diagonal morphism.
Note that d = k in this setting, where (as in Section A.2) d is the codimension of X in Y . Let
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W = f−1(X). Then, W ⊆ Pk is the scheme theoretic intersection of X1, . . . , Xk, that is

W =

k⋂
i=1

Xi.

The fiber product diagram in this instance is thus

W
j //

g

��

Pk

f

��
X1 × · · · ×Xk

i
// Pk × · · · × Pk

(6)

where g is the diagonal map and j is the inclusion.
Lemma A.1 provides that the irreducible components of W are distinguished varieties. As we

shall see in the examples below, embedded components of W may or may not be distinguished
varieties. In the examples, an embedded point or embedded component of a subscheme W of Pk
is considered as a variety with the induced reduced structure.

Example A.9 Consider the ideal I = (x2y, xy2) ⊂ C[x, y, z]. Let X1 = {x2y = 0} and
X2 = {xy2 = 0}. The curve W in P2 defined by I is supported on the two lines L1 = {x = 0}
and L2 = {y = 0}, but W has an embedded point at their intersection, namely p = [0 : 0 : 1].
The normal cone CV P2 has three components and their respective supports are L1, L2 and p.
Thus, these three are the distinguished varieties of the intersection of P2 by X1×X2 on P2×P2.
This is an example where every embedded component is a distinguished variety.

Example A.10 Let W be the subscheme of P3 defined by I = (x2, xyz, y2) ⊂ C[x, y, z, w].
The only distinguished variety in this case is the line defined by x = y = 0. Since W has an
embedded point at [0 : 0 : 0 : 1], embedded components need not be distinguished varieties.

Example A.11 The ideal I = (x2z, xy3, y3z2) ⊂ C[x, y, z, w] defines a subscheme W of P3

that has distinguished varieties that are not irreducible components nor embedded components.
The irreducible components are the three lines L1 = {x = y = 0}, L2 = {x = z = 0}, and
L3 = {y = z = 0} with no embedded components. In addition to the irreducible components,
there is one additional distinguished variety corresponding to the point [0 : 0 : 0 : 1].

Consider the canonical decomposition of the intersection product

X · Pk =

r∑
j=1

mjαj .

For any distinguished variety Zj , αj is a 0-cycle class on W of positive degree. By [6, Thm. 12.3],
degαj ≥ degZj . Since mj > 0 for all j, we have the following.

Lemma A.12 For any distinguished variety Z,

deg i(Z) ≥ degZ > 0.

Remark A.13 The inequality degαj ≥ degZj can be tightened, e.g., degαj ≥ ab degZj where
a = min{degX1, . . . ,degXk} and b = dimZj as in [6, Ex 12.3.3].
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A.5 Homotopies

The following specializes the situation in Section A.3 to certain families X over C related to
homotopy methods. Suppose that X1, . . . , Xk ⊂ Pk are hypersurfaces, let

X = X1 × · · · ×Xk, Y = Pk × · · · × Pk︸ ︷︷ ︸
k factors

, and W =

k⋂
j=1

Xj .

From the fiber product diagram (6), we obtain the intersection product X · Pk in A0(W ). The
curve T from Section A.3 will be an open subset of C and t0 = 0. For polynomials P1, . . . , Pk,
define P = (P1, . . . , Pk). Let F = (F1, . . . , Fk) ⊆ C[x0, . . . , xk] be homogeneous polynomials
such that Fi defines the hypersurface Xi ⊆ Pk and let ni = degFi. Suppose that G1, . . . , Gk ∈
C[x0, . . . , xk] are homogeneous polynomials with degGi = ni and H1, . . . ,Hk ∈ C[x0, . . . , xk, t]
such that, in x0, . . . , xk, Hi is homogeneous of degree ni. Let

X = X (F,G,H) = {(y1, . . . , yk, t) ∈ Y ×C : Fi(yi) + tGi(yi) + t2Hi(yi, t) = 0 for all i} ⊆ Y ×C.

Consider the intersection of X (F,G,H) with V = Pk × C, where V is embedded in Y × C via
the diagonal embedding Pk → Y . This is a family W = X ∩ V ⊆ Pk × C over C of subschemes
of Pk such that the fiber over 0 is W =

⋂
iXi. Let n = Πk

i=1ni be the Bézout number. If Wt

is finite with cardinality |Wt| = n for general t ∈ C, then we call X a total degree homotopy, or
simply a homotopy.

Definition A.14 Given F , we say that a property holds for a first order general homotopy if,
for a general G, the property holds for any homotopy X (F,G,H).

Fix G and H such that Wt is finite and |Wt| = n for general t ∈ C. Let Θ ⊆ C be the
set of t ∈ C such that Wt is finite and |Wt| = n and consider the restriction of X (F,G,H) to
T = Θ ∪ {0}. We use the same notation X , W, and V to denote the restrictions (Y × T ) ∩ X ,
(Y × T ) ∩ W, and (Y × T ) ∩ V. Note that X → Y × T is a family of regular embeddings of
codimension k.

Let ε > 0 be such that the closed disc in C of radius ε centered at 0 is contained in T .
In other words, Wt is finite and consists of exactly n points if 0 < |t| ≤ ε. Thus, there are
n continuous paths

ψi : [0, ε]→ Pk

such that {ψ1(t), . . . , ψn(t)} =Wt for t ∈ (0, ε] and {ψ1(0), . . . , ψn(0)} ⊆ W0 (see [22]). Hence,
all the paths converge to points on W as t→ 0. The points {ψi(0)}ni=1 are called the end points
of the homotopy and we will call the associated 0-cycle

∑
i ψi(0) on W the cycle of endpoints

(counted with multiplicity). The multiplicity of an endpoint in this cycle is equal to the number
of paths that converge to that point.

Remark A.15 By Lemma A.4, the limit intersection class limt→0(Xt ·Vt) pushed forward to W
is X · Pk which, by Bézout’s theorem, has degree n > 0. By Remark A.5, the limit intersection
class is a well defined 0-cycle on the limit set. The cycle of endpoints is equal to the limit
cycle. To see this, we will use the notation of Section A.3. Let D1, . . . ,Dq be the irreducible
components of W∗ (these are all curves and they dominate T ) and let D′i be the closure of Di
in W ′. By Remark A.5, the limit cycle is equal to

∑q
i=1 ai(D′i)0 for some positive integers ai.

By above, the limit cycle has degree n. Also, the projections D′i → T are flat and therefore
n =

∑q
i=1 ai deg (D′i)t for all t ∈ T . Using the fact that Wt consists of n points of multiplicity 1
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for all t ∈ T \ {0}, we get that n =
∑q
i=1 deg (D′i)t for all t ∈ T \ {0}. It follows that ai = 1 for

all i and n =
∑q
i=1 deg (D′i)t for all t ∈ T . Note that any endpoint of the homotopy is contained

in some D′i. Let p ∈ (D′i)0. Then, there is an analytic neighborhood U of p in D′i such that U
does not contain any other point of (D′i)0 and the map U → T is a flat map of complex spaces.
In particular, U does not contain any endpoint of the homotopy distinct from p. Using flatness
and the corollary to [7, Prop. 3.13], it follows that the geometric multiplicity of p in (D′i)0 is
equal to the number of paths contained in D′i that converge to p. Hence, the cycle of endpoints
is equal to the limit cycle.

Let R ⊆ W be a closed subset. Then, the cycle of endpoints contained in R (counted with
multiplicity), which by the previous remark, is equal to the part of the limit cycle supported on R.

Next, we will consider the characteristic section of the deformation X . Fix a basis for the nor-
mal space N0T . The normal bundle NXY is isomorphic to

⊕k
i=1 µ

∗
i (OPk(ni)) where µi : X → Pk

is the ith projection, see [6, App. B.7.4]. A tuple of homogeneous polynomials P = (P1, . . . , Pk)
with degPi = ni induces a global section σ(P ) of NXY which is the sum of corresponding
sections of the line bundles µ∗i (OPk(ni)). The space of such sections σ(P ) generates NXY .
Moreover, by [13] and [6, Ex. 11.3.1], the characteristic section of the deformation X (F,G,H)
is equal to σ(G) up to multiplication by a scalar which depends on the choice of basis of N0T .
Proposition A.8 yields that, given a closed subset R ⊆W , a first order general homotopy is such
that the cycle of endpoints contained in R represents the class (X · Pk)R in A0(R).

Theorem A.16 Let X and W be as above. Let Z be a distinguished variety and fix a proper
closed subset S ⊂ Z. Then, a first order general homotopy has at least one endpoint which lies
on Z but not on S.

Proof. Note that
(X · Pk)Z = i(Z) +

∑
Z′∈D(Z)

i(Z ′)

where D(Z) is the set of all distinguished varieties properly contained in Z. Consider the set
DS(Z) = {Z ′ ∈ D(Z) : Z ′ * S}. Then,

(X · Pk)Z − (X · Pk)S = i(Z) +
∑

Z′∈DS(Z)

i(Z ′).

Applying Prop. A.8 twice, once with R = S and once with R = Z yields that a first order
general homotopy will be such that the number of paths (counted with multiplicity) converging
to Z but not S is deg (X · Pk)Z − deg (X · Pk)S . But

deg (X · Pk)Z − deg (X · Pk)S = deg ((X · Pk)Z − (X · Pk)S) ≥ deg i(Z) > 0,

by Lemma A.12 2

Lemma A.1 yields the following.

Corollary A.17 Let W1, . . . ,Ws be the irreducible components of W . The endpoints of a first
order general homotopy include s points p1, . . . , ps such that, for all i = 1, . . . , s, pi is a smooth
point on Wi, pi /∈Wj for j 6= i, and pi is not on any embedded component of W .
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Remark A.18 For nonconstant homogeneous polynomials F1, . . . , Fk ∈ C[x0, . . . , xk], define
ni = degFi. Homotopies of the following form are useful in practice:

(1− t)F + t(1− t)A+ tB = 0 (7)

where A1, . . . , Ak are general homogeneous polynomials with degAi = ni and Bi = xni
i − x

ni
0 .

At t = 1, the system of equations (7) has exactly the Bézout number n = Πk
i=1ni solutions

and, consequently, this is also true for general t ∈ C. Moreover, the solutions at t = 1 are easy
to compute. Sine A1, . . . , Ak are general and the coefficient of the linear term in t in (7) is
A− F +B, (7) is a first order general homotopy.

A.6 Examples

We close this appendix with some examples of homotopies associated to subschemes of affine
space Cn. If W ⊆ V = Cn is a subscheme, we have the normal cone π : CWV → V and,
as in Section A.2, the distinguished varieties Zi = π(Ci) where C1, . . . , Cr are the irreducible
components of CWV .

Example A.19 Consider the subscheme W ⊂ C2 defined by the ideal I = (x2, xy) ⊂ C[x, y].
The solution set of I is the line {x = 0}, but there is an embedded point at the origin. In fact,
the distinguished components are the irreducible component {x = 0} and the point {(0, 0)}.

Suppose that q1, q2 ∈ C[x, y] are degree 2 polynomials such that q1 = q2 = 0 has 4 distinct
solutions. Consider the homotopy [

(1− t)x2 + tq1
(1− t)xy + tq2

]
= 0

which defines 4 solution paths whose endpoints depend upon q1 and q2.

1. If q1 and q2 are general, two paths end at the origin and two paths end at distinct points
on the line x = 0 away from the origin whose y-coordinates depend on q1 and q2.

2. If, for general γ ∈ C, one takes q1 = γ(x2 − 1) and q2 = γ(y2 − 1) which is a standard
start system for a total degree homotopy (e.g., see [22, Eq. 8.4.2]), then two paths end at
the origin and the other two paths diverge to infinity.

3. If, for general γ ∈ C, one takes q1 = γ(y2 − 1) and q2 = γ(x2 − 1), then one obtains the
general behavior in Item 1.

Consider replacing x and y with general linear forms `1, `2 in x and y. That is, for general
linear forms `1, `2, consider the ideal I = (`21, `1`2) ⊂ C[x, y]. The distinguished components are
the line {l1 = 0} and the origin. In this case, a standard total degree homotopy yields the generic
behavior, namely one endpoint at the origin (of multiplicity 2) and two distinct endpoints on
the line l1 = 0 away from the origin.

The following example illustrates a case of nested distinguished components.

Example A.20 Let q0 = xy−z ∈ C[x, y, z] and Q ⊂ C3 be the quadric surface Q ⊂ C3 defined
by q0 = 0. Let `0 = x − y and C ⊂ Q be the conice defined by q0 = l0 = 0. Let `1 and `2 be
general linear forms and `3 = x+ y − z. Define q1 = q0 + `0`1 and q2 = q0 + `0`2. Consider the
ideal I = (q0`0`3, q0q1, q0q2) which is generated by 3 quartics. The distinguished components
are Q, C, O = {(0, 0, 0}, and {P} where P ∈ C3 \ Q. Since O ⊂ C ⊂ Q, the irreducible
components are Q and {P}. Using a first order general homotopy, the endpoints of the 64 paths
are distributed as follows:
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1. 41 distinct points on the quadric Q not on C,

2. 9 points of multiplicity 2 on the conic C not on O,

3. 1 point of multiplicity 4 at the origin, and

4. 1 point at P

with 64 = 41 + 9 · 2 + 1 · 4 + 1.
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