
Max-convolution through numerics and

tropical geometry

Taylor Brysiewicz1, Jonathan D. Hauenstein2, Caroline Hills2*

1Department of Mathematics, Western University, Middlesex College,
London, N6A 5B7, Ontario, Canada.

2Department of Applied and Computational Mathematics, University of
Notre Dame, 102G Crowley Hall, Notre Dame, 46556, Indiana, USA.

*Corresponding author(s). E-mail(s): chills1@nd.edu;

Contributing authors: tbrysiew@uwo.ca; hauenstein@nd.edu;

Abstract

The maximum function, on vectors of real numbers, is not di�erentiable. Consequently,
several di�erentiable approximations of this function are popular substitutes. We sur-
vey three smooth functions which approximate the maximum function and analyze
their convergence rates. We interpret these functions through the lens of tropical geom-
etry, where their performance di�erences are geometrically salient. As an application,
we provide an algorithm which computes the max-convolution of two integer vectors in
quasi-linear time. We show this algorithm's power in computing adjacent sums within
a vector as well as computing service curves in a network analysis application.

Keywords Numerics, tropical geometry, amoebas, max-convolution, LogSumExp,
maximum approximation

1 Introduction

Given v = (v1, . . . , vn) ∈ Rn, although computing the maximum M = max1≤i≤n vi
is an elementary task, the function v 7→ max(v) is not di�erentiable. A common

1

technique used in optimization [1, 2] and machine learning [3, 4] is to replace the
precise computation of M with an approximate computation. This article investigates
three standard ways to smoothly approximate the maximum function. Equipped with

Fv(t) =

n∑
j=1

tvj , Lv(t) = logt(Fv(t)), Rv(t) =
tF ′

v(t)

Fv(t)
, and ||v||p =

(
n∑

j=1

|vj |p
) 1

p

,

we consider the approximations:

(LogSumExp) : M = lim
t→∞

Lv(t) and (Ratio) : M = lim
t→∞

Rv(t) (1)

and, if each entry of v is non-negative,

(p-norm) : M = lim
p→∞

||v||p = ||v||∞. (2)

We drop the subscript v when the vector of interest is clear from context.

Figure 1 Plots of the values of the smooth approximations L(t), ||v||p, and R(t) for the vectors
v1 = (1, 2, 3, 4, 5, 6, 7) and v2 = (1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7). These values are plotted against the
natural logarithm of the largest absolute value T of a �oating point number involved in the numerical
evalutation of each function.

When t > 0, the functions Lv(t) and Rv(t) are smooth as a function of v and ap-
proximate M as shown by the limits above. For p ∈ R>0, the function ||v||p smoothly
approximates M provided that each element of v is non-negative. Each of these
functions can be expressed in terms of

Lv(t) = log(Fv(t)). (3)

Proposition 1.1. For v = (v1, . . . , vn) ∈ Rn, t ∈ R with t > 1, we have
u = log(t) > 0, and

Lv(t) = Lv(e
u) =

1

u
Lv(e

u), (4)

2

Rv(t) = Rv(e
u) =

d

du
Lv(e

u), (5)

||v||log(t) = ||v||u = eLlog |v|(t) = e
1
uLlog |v|(e

u), (6)

where log | · | : Rn → Rn is the componentwise log-absolute value map.

Throughout, we omit the proofs of statements, like Proposition 1.1, which follow from
a direct calculation.

After providing some basic notation in Section 2, we derive convergence rates for each
of these functions in Section 3 by analyzing Lv(t). Namely, for δ > 0, we give bounds
on t for which the absolute error of these approximations is smaller than δ. As a
consequence, when the vector v is integral, one may use a rounding procedure, such
as the �oor or ceiling function, to provably compute M via a single evaluation of an
approximating function.

In practice, when the entries of v are selected from a discrete set, such as the integers Z,
the maximumM is often obtained more than once. The number of timesM is attained
is the multiplicity of M in v, namely

µM = #{i | vi = M}.

When the multiplicity of M is large, the ratio approximation (1) signi�cantly out-
performs the other approximations (see Section 5). In Section 3, we express µM as a
limit of the aforementioned functions and derive analogous convergence rates result
for computing µM .

In light of part (5) of Proposition 1.1, we generalize the approximation Rv(t) using
higher-order derivatives. In particular, for k ≥ 1, we de�ne

R(k)
v (t) = − (−t)k

(k − 1)!

dk

dtk
Lv(t). (7)

Observe that R
(1)
v (t) = R

(1)
v (eu) = d

duLv(e
u) = Rv(e

u) = Rv(t), and that R
(k)
v is

related, but not equal, to dk

dtk
Rv (see also Remark 3.13). We show, in Section 3, that

every R
(k)
v (t) for k ≥ 1 converges to M at the same rate. We discuss how to use these

higher-order derivatives to numerically approximate other information about v (see
Theorem 3.11).

In Section 4, we explore the geometry of Lv(t) and R
(k)
v (t) in terms of objects called

amoebas from the world of tropical geometry. We realize the graph of the function
u 7→ Lv(e

u) as the upper boundary of a certain amoeba and provide a geometric
interpretation of the performance di�erences of Rv(t) and Lv(t) when µM is large.

In Section 5, we conduct a series of experiments showcasing our theoretical results and
the performance di�erences of the approximation techniques discussed. In particular,
we provide empirical evidence showing the extent to which the bounds derived in
Section 3 are tight. We illustrate how the ratio approximations perform signi�cantly

3

better than the others when the maximum appears with non-trivial multiplicity and
that this feature persists in the presence of a noisy model.

In Section 6, we propose an algorithm for the max-convolution problem:

MAXCON: Given a = (a0, . . . , an) ∈ Zn+1 and b = (b0, . . . , bn) ∈ Zn+1,

compute c = (c0, . . . , c2n) ∈ Z2n+1 where (8)

ck = max
max{0,k−n}≤i≤min{k,n}

(ai + bk−i).

Since each ck is a maximum of the integer vector v(k) = (ai + bk−i)
min{k,n}
i=max{0,k−n} its

value may be determined by an (appropriately large) evaluation of an approximation
of that maximum. In particular, any algorithm which computes classical convolution
coe�cients may be used as an oracle for evaluating Lv(k)(t). The fast Fourier transform,
for example, performs such a computation using O(n log(n)) operations. By combining
this fact with our bounds from Section 3, we obtain a quasi-linear time algorithm, i.e.,
the number of operations is O(n log(n)), for the max-convolution problem (8). We end
by applying our numerical approach to the maximum consecutive subsums problem
and and the computation of service curve constraints.

A short conclusion is provided in Section 7.

2 Notation and Fundamental Results

We begin by �xing the following notation

v = (v1, . . . , vn) : an n-tuple of real numbers

M : max(v)

µc : multiplicity of a real number c in v, i.e., #{i | vi = c}
ℓ : number of distinct elements in v

w = (w1, . . . , wℓ) : decreasing list of unique elements in v i.e., M = w1 > · · · > wℓ

g = (g1, . . . , gℓ) : gi = M − wi with 0 = g1 < g2 < · · · < gℓ.

Additionally, t will denote a variable which takes on positive real values whereas
u = log(t) is its image under the natural logarithm.

Example 2.1. To illustrate notation, consider

v = (7, 7,−1, 0, 1, 1, 2.5, 2.5, 7, 7) ∈ R10.

Then we have,
M = 7, ℓ = 5,

µ7 = 4, µ2.5 = 2, µ1 = 2, µ0 = 1, µ−1 = 1,

w = (7, 2.5, 1, 0,−1), g = (0, 4.5, 6, 7, 8).

♢

4

In principle, the elements of v can be any real numbers, however, in practice, they are
usually some �oating point approximations. A �oating point number, mathematically,
may be interpretted as a rational number, even though it is not explicitly represented
this way on a computer. Hence, we may take v ∈ Qn. Moreover, we may assume for
our analyses that v ∈ Zn since evaluating Lv(t) at a power tk of t corresponds to
scaling v by k:

Lv(t
k) = Lv(e

ku) = Lkv(e
u) = Lkv(t). (9)

Remark 2.2. We note that Lv(t) = Luv(e). The function lse(v) = Lv(e) is a popular
activation function in the �eld of machine learning traditionally called the log-sum-exp
function [5]. Numerical methods for accurately evaluating it may be found in [6].

The following expansion of Lv(t) about t = ∞ is fundamental for our analysis.

Proposition 2.3. For v ∈ Zn, Lv(t) has the following expansion:

Lv(t) = log(t)M + log(µM) + log

(
ℓ∑

i=1

µwi

µM
t−gi

)
(10)

where the �rst term inside the logarithm is
µw1

µM
t−g1 = 1. In particular, by expanding

the logarithmic term, there exist nonnegative real numbers {αj}∞j=1 such that

Lv(t) = log(t)M + log(µM) +

∞∑
j=1

αjt
−j (11)

= uM + log(µM) +

∞∑
j=1

αje
−ju (12)

where α1 = · · · = αg2−1 = 0 and αg2 =
µw2

µM
.

We obtain similar expressions for Lv(t), Rv(t), and R
(k)
v (t) by combining Proposi-

tions 1.1 and 2.3.

Proposition 2.4. For v ∈ Zn, let {αj}∞j=1 be as in Proposition 2.3. Then,

Lv(t) = M + logt(µM) + logt

(
ℓ∑

i=1

µwi

µM
t−gi

)
(13)

= M +
1

log(t)

(
log(µM) +

∞∑
j=1

αjt
−j

)

= M +
1

u

(
log(µM) +

∞∑
j=1

αje
−ju

)
,

5

Rv(t) = M −
∞∑
j=1

jαjt
−j (14)

= M −
∞∑
j=1

jαje
−ju,

R(k)
v (t) = M −

∞∑
j=1

j

(
j + k − 1

k − 1

)
αjt

−j (15)

= M −
∞∑
j=1

j

(
j + k − 1

k − 1

)
αje

−ju.

In particular, Rv(t) and, more generally, R
(k)
v (t) are analytic at t = ∞. Additionally,

if each vi ≥ 0,

||v||log(t) = eLlog |v|(t) = M · eLlog |v|(t)−log(M). (16)

Clearly, Lv(t) ≥ M and the logt(µM) term from (13) is responsible for a slow con-
vergence rate of Lv(t) to M . This logarithmic term is eliminated in Rv(t) and, more

generally, in R
(k)
v (t). See Section 4 for a geometric explanation of this fact.

Remark 2.5. Since Rv(t) and, more generally, R
(k)
v (t) are analytic at t = ∞ when

v ∈ Zn, Cauchy's integral formula yields that for each k ≥ 1 there exists r > 0 such
that

1

2π
√
−1

∮
|t|=r

t−1 ·R(k)
v (t−1) · dt = M. (17)

Numerically, one can use the trapezoid rule [7] to approximate M from this integral.

Since Rv(t) depends on F ′
v(t) which may be di�cult to evaluate in practice (see

Section 6), we show below how to approximate Rv(t) from evaluations of Lv(t).

Proposition 2.6. For v ∈ Rn, t > 1, and α > 0 with α ̸= 1, de�ne

Dv(t, α) = logα

(
Fv(α · t)
Fv(t)

)
=

Lv(α · t)− Lv(t)

log(α)
. (18)

Then,
lim
α→1

Dv(t, α) = Rv(t).

Proof. Applying l'Hôpital's rule yields limα→1 Dv(t, α) = limα→1 Rv(α · t) = Rv(t).

6

3 Approximating quantities associated to v

Equipped with the expansions (13)�(16) and (18), the functions Lv(t), R
(k)
v (t),

Dv(t, α), and ||v||u may each be used to approximate certain information about v,
such as M , µM , and g2.

For each such approximation of M , we derive a lower bound on t so that the absolute
error is less than a given value δ > 0. For integer vectors, we pay particular attention
to the case where δ = 1, since one can use the �oor ⌊·⌋ and ceiling ⌈·⌉ functions to
provably compute these values from their approximations.

3.1 Computing the maximum

We derive bounds on the absolute errors of Lv(t), Rv(t), Dv(t, α), and ||v||u in
Theorems 3.1, 3.3, 3.6, and 3.7 respectively.

Theorem 3.1. Fix v ∈ Qn and δ > 0. Then 0 ≤ Lv(t)−M < δ whenever t > 1 and

tδ+g2 − tg2µM − (n− µM) > 0.

If v ∈ Zn and δ = 1, the above bound is obtained when

t >
µM +

√
µ2
M + 4(n− µM)

2
.

If additionally µM = 1 then this bound further simpli�es to t >
1

2
+
√
n.

Proof. Assume, after reindexing, that v1 = · · · = vµM
= M . Thus,

Lv(t)−M = logt

(
µM +

n∑
j=µM+1

tvj−M

)
.

Hence, Lv(t) − M < δ provided that the expression within the logarithm is smaller
than tδ. Since the function x 7→ tx is monotonic for t > 1,

µM +

n∑
j=µM+1

tvj−M ≤ µM + (n− µM)t−g2 ,

completing the proof of the �rst statement since this value is less than tδ when

tδ > µM + (n− µM)t−g2 .

For v ∈ Zn, we have that g2 ≥ 1 so that a su�cient condition when δ = 1 is

t2 − µM t− (n− µM) > 0

7

yielding the second statement. The third statement follows immediately.

When v consists of integers and µM is known, Theorem 3.1 suggests an algorithm
which provably computes M using one evaluation of Lv(t):

Return ⌊Lv(t)⌋ for t satisfying the inequality 2t > µM +
√

µ2
M + 4(n− µM).

The largest t value required is when µM = n for which one can take t = n + 1. In
particular, for any v ∈ Zn, one always has ⌊Lv(n+ 1)⌋ = M .

The following example illustrates Theorem 3.1 on qualitatively di�erent input.

Example 3.2. Consider the following integer vectors:

v1 = (1, 2, 3, 4, 5, 6, 7) and v2 = (1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7).

The maximum of both vectors is 7 which has multiplicity 1 and 5 in v1 and v2,
respectively. By Theorem 3.1, Lv1(t) ∈ [7, 8) when t > 3 and Lv2(t) ∈ [7, 8) when
t > 6. Figure 2 is consistent with these bounds and illustrates the reduced convergence
rate for v2 due to the increased multiplicity of the maximum. ♢

The worst-case scenario analysis for Rv(t) is qualitatively distinct from that of Lv(t).
The fact which distinguishes these cases is that for a �xed t > 1, the function x 7→ xt−x

is decreasing only after reaching its maximum on R>0 at x = log(t)−1.

Theorem 3.3. Fix v ∈ Qn and δ > 0. Then 0 ≤ M −Rv(t) < δ when t > e1/g2 and

t >

(
(n− µM)g2

δ · µM

) 1
g2

.

Figure 2 The graphs of Lv1 (t) and Lv2 (t) as in Example 3.2.

8

If v ∈ Zn and δ = 1, this bound is attained when

t > max

(
e,

n− µM

µM

)
.

Proof. From (14), a worst-case analysis with t > e
1
g2 shows that

M −Rv(t) =

∞∑
j=1

jαjt
−j <

n− µM

µM
g2t

−g2 .

Therefore, the main result follows from

M −Rv(t) < δ whenever tg2 >
(n− µM)g2

δ · µM
.

When v ∈ Zn and δ = 1, this simpli�es to tg2 > (n−µM)g2
µM

. Since t > e and g2 ≥ 1,
this holds if additionally

t >
n− µM

µM
.

Example 3.4. For v1 and v2 as in Example 3.2, Figure 3 compares the graphs of L(t)
and R(t). Note that Theorems 3.1 and 3.3 guarantee that Lv2(t) ∈ [7, 8) when t > 6
and Rv2

(t) ∈ (6, 7] when t > e ≈ 2.718.

♢

Figure 3 The graphs of L(t) and R(t) applied to v1 and v2 from Example 3.2.

Remark 3.5. For v ∈ Zn, one has

Lv(t)−M =

{
O(1/ log(t)) if µM > 1,
O(t−g2/ log(t)) if µM = 1,

and M −Rv(t) = O(t−g2).

9

When µM = 1, Thereom 3.1 requires t = O(
√
n) while Theorem 3.3 requires

t = O(n). However, the bound n−µM

µM
from Theorem 3.3 is smaller than the bound

µM+
√

µ2
M+4(n−µM)

2 from Theorem 3.1 whenever µM ≥ 1
4 (
√
8n+ 1− 1). For reference,

this means that

(n, µM) ∈ {(10, 2), (105, 7), (1081, 23), (10153, 71), (100576, 224), . . .}

are a�orded equal t-bounds for Lv(t) or Rv(t) via Theorems 3.1 and 3.3, respectively.
These bounds are derived from the worst-case scenarios where M − 1 appears with
multiplicity n−µM . However, on input vectors v sampled from the uniform distribution
on {0, . . . ,M} with varying multiplicities µM , Lv(t) consistently performs worse than
Rv(t). For more details, see the experiments in Section 5.

Based on the relationship between Dv(t, α) and Rv(t) summarized in Proposition 2.6,
the error is similar to Theorem 3.3. Here, the worst case analysis yields the function

x 7→ t−x(1− α−x)

log(α)
which is decreasing after reaching its maximum on R>0 at x =

log(log(αt))− log(log(t))

log(α)
which limits to log(t)−1 as α → 1.

Theorem 3.6. Fix v ∈ Qn, δ > 0, and α > 1. Then, 0 ≤ M − Dv(t, α) < δ when
t > e1/g2 ,

t > α

 α−g2

1− α−g2


α→1−−−→ e1/g2 , and

t >

(
n− µM

δ · µM
· 1− α−g2

log(α)

) 1
g2 α→1−−−→

(
(n− µM)g2

δ · µM

) 1
g2

.

If v ∈ Zn and δ = 1, this bound is obtained when α > 1 and

t > max

(
e,

n− µM

µM

)
.

Proof. The worst case analysis using the three assumptions on α and t that are
independent of δ show that

M −Dv(t, α) < δ whenever tg2 >
n− µM

δ · µM

1− α−g2

log(α)
.

When v ∈ Zn and δ = 1, this simpli�es to tg2 > n−µM

µM

1−α−g2

log(α) . Since t > e, α > 1, and

g2 ≥ 1, this holds if additionally t > n−µM

µM
.

To analyze the p-norm case, following [8, 9], we assume the vector v has undergone a
linear transformation so that each vj ∈ [0, 1].

10

Figure 4 The graphs of the p-norms of the vectors v1/7 and v2/7 with entries in [0, 1], where v1
and v2 are from Example 3.2.

Theorem 3.7. If v ∈ [0, 1]n and δ > 0, then 0 ≤ ||v||u −M < δ when u > 1 and

eu(∆+g2) − eug2µM − (n− µM) > 0 where ∆ = log

(
1 +

δ

M

)
.

Proof. By (16), ||v||u = M · eϵ(u) where ϵ(u) = Llog |v|(e
u)− log(M) which is the error

when using Llog |v|(e
u) to approximate log(M). Hence, ||v||u − M < δ if and only if

ϵ(u) < log
(
1 + δ

M

)
=: ∆. By Theorem 3.1, this occurs whenever t > 1 and

t∆+g2 − tg2µM − (n− µM) > 0.

Since u = log(t), changing coordinates gives the result.

Figure 5 Comparison of Dv(t, α) for v1 and v2 from Example 3.2 with various values of α.

Example 3.8. The following illustrates the di�erences between the approximations
L(t), R(t), D(t, α), and || · ||p of M on our running examples of v1 and v2 from Exam-
ple 3.2. First, similar to previous plots, Figure 4 shows the di�erence of convergence

11

Figure 6 A comparison of the smooth approximations Lv1 (t), Rv1 (t), ||v1||p, Dv1 (t, 2), and
Dv1 (t, 1.5) of the maximum of v1, plotted against the natural logarithm of T , the required absolute
value of �oating point numbers for evaluation.

Figure 7 A comparison of the smooth approximations Lv1 (t), Rv1 (t), ||v1||p, Dv1 (t, 2), and
Dv1 (t, 1.5) of the maximum of v2, plotted against the natural logarithm of T , the required absolute
value of �oating point numbers for evaluation.

rate for the p-norm approximation due to higher multiplicity. Next, Figure 5 compares
Rv(t) with Dv(t, 2) and Dv(t, 1.5) for v = v1 and v = v2 showing comparable conver-
gence rates. Finally, we compare the values of ||v||p, Lv(t), Rv(t), and Dv(t, α) when
they require comparably large (in absolute value) �oating point number for evaluation.
Setting T to be the largest �oating point number required, we plot these functions
against log(T) in Figures 6 and 7 for v = v1 and v = v2, respectively.

♢

12

3.2 Computing the multiplicity

Due to the simplistic nature of the expansion in (13) for Lv(t), we consider computing
the multiplicity µM for the maximum M . In particular, it is easy to see from (13) that

µM = lim
t→∞

tLv(t)−M (19)

Of course, using this expression requires a priori knowledge of M which can be
attained, for example, in the integer case by applying Theorem 3.1.

Theorem 3.9. Given v ∈ Zn, ⌊tLv(t)−⌊Lv(t)⌋⌋ = µM whenever

t > max

{
n− µM ,

µM +
√

µ2
M + 4(n− µM)

2

}

Proof. When t >
µM+

√
µ2
M+4(n−µM)

2 , Theorem 3.1 provides that ⌊L(t)⌋ = M . Using
a worst-case analysis, one has

0 ≤ tLv(t)−M − µM ≤ (n− µM)t−1

with the worst-case upper bound below 1 when t > n− µM .

Example 3.10. Continuing with v1 and v2 from Example 3.2, Theorem 3.9 provides
tLv1 (t)−⌊Lv1 (t)⌋ ∈ [1, 2) for t > 6 and tLv2 (t)−⌊Lv2 (t)⌋ ∈ [5, 6) for t > 6 with Figure 8
showing convergence in advance of such worst-case bounds. ♢

Figure 8 The graphs of tL(t)−M applied to v1 and v2 from Example 3.2.

13

3.3 Combining R(k)
v (t) to improve convergence and compute g2

Since all of the higher-order derivatives R
(k)
v (t) have the same convergence rate, one

can combine them in various ways to increase the convergence rate as well as extract
other information about v. The following demonstrates a higher-order approximation
of M along with approximating g2. The computation of g2 and M produces, as a
byproduct, the second largest element of v, namely w2 = M − g2.

Theorem 3.11. For v ∈ Zn, we have

2R
(1)
v (t)R

(3)
v (t)−R

(2)
v (t)

(
R

(1)
v (t) +R

(2)
v (t)

)
R

(1)
v (t)− 3R

(2)
v (t) + 2R

(3)
v (t)

= M +O(t−g2−1) (20)

and
R

(1)
v (t)− 3R

(2)
v (t) + 2R

(3)
v (t)

R
(2)
v (t)−R

(1)
v (t)

= g2 +O(t−1). (21)

Proof. From Proposition 2.3 and (15),

R
(1)
v (t) = M − g2

µw2

µM
t−g2 +O(t−g2−1),

R
(2)
v (t) = M − g2(g2 + 1)

µw2

µM
t−g2 +O(t−g2−1),

R
(3)
v (t) = M − g2(g2 + 1)(g2 + 2)

2

µw2

µM
t−g2 +O(t−g2−1)

and so the result follows by direct symbolic elimination.

Example 3.12. We illustrate Theorem 3.11 using v1 and v2 from Example 3.2.

Figure 9 compares the convergence of R
(1)
v (t), R

(2)
v (t), R

(3)
v (t), and the combined for-

mula in (20) for v = v1 and v = v2 to M = 7 for both. For both cases, one sees faster
convergence as expected from (20). Additionally, Figure 10 shows the convergence of
the combined formula in (21) for v1 and v2 to g2 = 1 for both.

♢

Remark 3.13. The functions R
(k)
v (t) are linear combinations of the derivatives

D(k)(t) = dk

dukLv(e
u), e.g.,

R(1)(t) = D(1)(t),

R(2)(t) = −D(1)(t) +D(2)(t),

R(3)(t) =
2D(1)(t)− 3D(2)(t) +D(3)(t)

2
,

R(4)(t) =
−6D(1)(t) + 11D(2)(t)− 6D(3)(t) +D(4)(t)

6
.

14

Figure 9 Comparison of various methods to approximate M for v1 and v2.

Figure 10 The graphs of (21) for v1 and v2 which converge to g2 = 1 for both cases.

In particular, the linear transformation that maps the �rst r values of D(k)(t) to the
�rst r values of R(k)(t) is represented by an r × r lower triangular matrix A(r). For
j ≤ i, the (i, j)-entry of A(r) is

(−1)i+1

(i− 1)!
Sij

where Sij is a Stirling number of the �rst kind. For example,

A(4) =


(−1)21 0 0 0
(−1)31 (−1)3(−1) 0 0(
(−1)4

2

)
2
(

(−1)4

2

)
(−3)

(
(−1)4

2

)
1 0(

(−1)5

6

)
6
(

(−1)5

6

)
(−11)

(
(−1)5

6

)
6
(

(−1)5

6

)
(−1)

 .

15

4 The tropical viewpoint

We interpret our previous results geometrically using tools from tropical geometry.
We stress that throughout this section, we consider speci�c families of tropical con-
structions which exist more generally. Namely, the varieties we consider are graphs
of univariate Laurent polynomials with positive coe�cients. Such varieties are quite
special and so the results of this section may not hold in the more general setting. For
an introduction to tropical geometry, we invite the interested reader to consult the
standard reference [10].

To utilize the tropical geometry framework, we assume throughout this section that
v ∈ Zn, de�ne C× = C\{0}, and consider the function

φ : C× → C2

t 7→ Fv(t).

Let Xv be the graph of φ intersected with (C×)2. We note that Xv is the set of zeros
of the polynomial Fv(t, y) = y − Fv(t):

Xv = {(t, y) ∈ (C×)2 | Fv(t, y) = 0} ⊂ (C×)2.

The Newton polygon of Fv(t, y) is the convex hull N (Fv(t, y)) of the exponent vectors
of Fv(t, y). In this case, N (Fv(t, y)) is simply the triangle ∆v with vertices (M, 0),
(min(v), 0), and (0, 1) as illustrated in Figure 11(a). The union of the outer normal
rays of ∆v along with the origin form a polyhedral fan called the tropicalization of Xv,
denoted trop(Xv) and illustrated in Figure 11(c). The fan trop(Xv) is a tropical curve
which encodes the asymptotic behavior of Xv near the coordinate axes C2\(C×)2.
Note that in our speci�c situation, the Newton polytope N (Fv(t, y)), and hence the
tropical curve trop(Xv), depends only on min(v) and max(v).

An alternative construction of trop(Xv), due to Bergman [11], involves the image
Aτ (Xv) of Xv under the log-absolute value map:

Logτ | · | : (C×)2 → R2
u,s

(t, y) 7→ (logτ (|t|), logτ (|y|)).

The set Aτ (Xv) is called the τ -amoeba of Xv. We remark that we use u and s for
coordinates of the codomain and that the overlap of the symbol u with previous
sections is intentional. Undecorated, the notation A(Xv) ⊆ R2

u,s refers to the e-amoeba

of Xv as illustrated in Figure 11(b). Since Aτ (Xv) = 1
log(τ)A(Xv), the set A(Xv)

contains all of the information about all of the amoebas of Xv. Since the absolute
values of coordinates of points in Xv may be arbitrarily large or small, the set A(Xv)
is unbounded. The portions which approach in�nity are loosely referred to as the
tentacles of the amoeba. As τ → ∞, these tentacles limit to the rays of trop(Xv).
In this sense, trop(Xv) contains asymptotic information about Xv and is sometimes
referred to as the logarithmic limit set of the amoeba of Xv.

16

Figure 11 (a) The Newton polygon of Fv1 (t, y) where v1 is as in Example 3.2 (b) The amoeba
A(Xv1) (c) The tropical variety trop(Xv1).

We call lines which intersect an amoeba A(Xv) in a ray tentacle lines. Up to transla-
tion, these rays are exactly those in trop(Xv). Note that many tentacle lines may be
associated to the same tropical ray (e.g. the two vertical lines of Figure 12 both corre-
spond to the ray (0,−1)). The following elementary facts relate the Newton polygon
N (Fv(t, y)), amoeba A(Xv), and tropical curve trop(Xv). We encourage the reader
to refer to Figure 12. These facts are specializations of a more general relationship
between these three objects (see [10] for more details).

(1) The tentacle lines of A(Xv) corresponding to the ray in trop(Xv) spanned by
(0,−1) correspond to distinct moduli of complex roots of Fv(t).

(2) When the lowest order term of the Laurent polynomial Fv(t) is a constant c,
trop(Xv) contains the ray spanned by (−1, 0). There is one tentacle line of A(Xv)
associated to that ray, which occurs at height log(c).

Additionally, the following facts relate A(Xv) and the function u 7→ Lv(e
u).

(3) The upper boundary U of A(Xv) is the graph of Lv(e
u).

(4) Lv(t) = Lv(e
u) = Lv(e

u)
u is the slope of the ray from the origin to the point

(u,Lv(e
u)) ∈ A(Xv).

(5) D(k)
v (eu) = dk

dukLv(e
u) is the kth derivative of the function u 7→ Lv(e

u).

(6) D(1)
v (eu) = R

(1)
v (eu) is the slope of the tangent line to the boundary of the amoeba

at (u,Lv(e
u)).

We point out that (3) follows from the fact that all of the coe�cients of Fv(t) are
non-negative. In general, describing the boundaries of amoebas is challenging [12].

17

Proposition 4.1. Let v ∈ Zn. The tentacle lines of A(Xv) are given by

(a) s = log(µM) +M · u

(b) s = log(µm) +m · u where m = min(v).

(c) u = log(|ξi|) where {ξi}di=1 ⊂ C are the roots of F (t).

Proof. As observed already, the tentacles in the (0,−1) direction correspond to roots
ξi of Fv(t) and they occur at u = log(|ξi|) which establishes (c). To see (a) and
(b), suppose m = min(v) = 0. Then, F (t) has a constant term of µm and hence
limt→0 log(F (t)) = log(µm). This limit indicates that A(Xv) has a horizontal tentacle
occurring at s = log(µm). However, translating v by a ∈ Z amounts to sheering the
Newton polygon space by (α, β) 7→ (α, aα + β) and the amoeba space by (u, s) 7→
(u − as, s). In particular, this transformation does not change the s-intercepts of the
tentacle lines. Hence, the tentacle line associated to the minimum of v has the equation
s = log(µm) +m · u whereas the line associated to the maximum M has the equation
s = log(µM) +M · u.

Figure 12 The amoeba A(Xv) of the graph Xv where v is as in Example 4.2 along with its tentacle
lines.

Proposition 4.1 gives a geometric interpretation of how the multiplicity of M in v
contributes to a slower convergence rate of Lv(t) but not for Rv(t): multiplicity cor-
responds to a translation of the tentacle line of A(Xv) associated to the tropical ray
spanned by (1,M). This is geometrically displayed in Figure 13.

18

Figure 13 The amoeba A(Xv) of the graph Xv for v as in Example 4.2 along with the ray from

the (0, 0) to (u, Lv(eu)) and the ray from (u, Lv(eu)) with slope R
(1)
v (eu) = D(1)

v (eu).

Example 4.2. Let v = [08, 15, 240, 35, 440], where a subscript indicates multiplicity.
The amoeba A(Xv) is shown in Figure 12. The polynomial

Fv(t) = 8 + 5t+ 40t2 + 5t3 + 40t4

has two pairs ξ1, ξ̄1 and ξ2, ξ̄2 of conjugate roots. Hence, there are two vertical tentacle
lines of A(Xv). The tentacle line corresponding to the minimum multiplicity µm =
µ0 = 8 is horizontal at height log(8) and the equation of the remaining tentacle line
is s = log(40) + 4u. The upper boundary of the amoeba is the image of the positive
part of Xv under the log-absolute value map.

Figure 12 illustrates a geometric interpretation of the values of Lv(e
u) and R

(1)
v (eu)

as slopes of rays.

♢

One may also interpret the Cauchy integral in Remark 2.5:

1

2π
√
−1

∮
|t|=r

t−1 ·R(k)
v (t−1) · dt = M,

in terms of tropical geometry when k = 1. This is done via the order map:

ord : R2 → R2

19

(u, s) 7→

(
1

(2π
√
−1)2

∫
Log|t|=u
Log|y|=s

tF ′
v(t)

y − Fv(t)
· dtdy

ty
,

1

(2π
√
−1)2

∫
Log|t|=u
Log|y|=s

y

y − Fv(t)
· dtdy

ty

)
.

The function ord is constant and Z2-valued on connected components of the comple-
ment R2\A(Xv) of the amoeba [13]. In fact, ord maps these components to distinct
integer points in the Newton polygon ∆v. In particular, for any point (u, s) in the
bottom right complement component, the �rst integral

1

(2π
√
−1)2

∫
Log|t|=u
Log|y|=s

tF ′
v(t)

y − Fv(t)
· dtdy

ty

degenerates as |y| → 0 (or s → −∞) to the integral

1

2π
√
−1

∮
Log|t|=u

tF ′
v(t)

Fv(t)
· dt
t

=
1

2π
√
−1

∮
Log|t|=u

t−1R(1)
v (t) · dt = M

for su�ciently large u as in (17). The second integral, on the other hand, evaluates
to zero. Since this value of ord on (u, s) is constant on connected components of the
complement of the amoeba, this shows that ord(u, s) evaluates to the vertex (M, 0)
of ∆v when (u, s) is in the bottom-right component of R2\A(Xv), in agreement with
Remark 2.5.

5 Experiments

We compare each of the approximations discussed on a gallery of qualitatively di�erent
inputs v. In each of the following sections, we sample vectors v from some prescribed
distribution. We then compare the approximations of M on these samples on average.

5.1 Integer numbers

We compared Lv(t) and Rv(t) in the integer case by de�ning a maximum M with
multiplicity µ for an integer-valued vector v ∈ [1,M]n. That is, we de�ned v of varying
length n = 1, . . . , 100 with M appearing µ times, where µ ≤ n and the remaining
n−µ values of v were random integers sampled from [1,M−1]. Figure 14 displays the
four experiments comparing the performance of Lv(t) and Rv(t) for approximating
a given maximum M , namely M = 10, 50, 100, and 500, respectively. Performance is
measured by t∗, the �rst value of t to approximate M up to an absolute error of 1, so
that the maximum is obtained from Lv(t

∗) or Rv(t
∗) through use of the �oor or ceiling

function, respectively. Each experiment consists of 100 subexperiments averaged over
log(1+t∗Lv

−t∗Rv
). The plotted values are logarithmic and o�set by 1 since, if t∗Lv

= t∗Rv
,

then log(1 + t∗Lv
− t∗Rv

) = log(1) = 0.

20

20

40

60

80

10

0

n

100 80 60 40 20

m
u

M=10

0

1

2

3

4

NaN

20

40

60

80

10

0

n

100 80 60 40 20

m
u

M=50

0

1

2

3

4

NaN

20

40

60

80

10

0

n

100 80 60 40 20

m
u

M=100

0

1

2

3

4

NaN

20

40

60

80

10
0

n

100 80 60 40 20

m
u

M=500

0

1

2

3

4

NaN

Figure 14 Average results of the integer-valued vector v experiments. The x-axis and y-axis corre-
spond to n = 1, . . . , 100 and µ = 1, . . . , n respectively. Each pixel is the average of 100 subexperiments
measuring log(1 + t∗Lv

− t∗Rv
) where t∗Lv

and t∗Rv
are the t-values such that the absolute error of the

corresponding function is less than 1. The maximum, M , are: (a) 10 (b) 50 (c) 100 (d) 500. Black
pixels above the diagonal are when µ > n.

5.2 Uniformly distributed �oating point numbers

We repeat the experiments of the above section with �oating point vectors v ∈ [0, 1]n

with M = 1. Figure 15 displays the results of comparing Lv(t) and Rv(t) on vec-
tors whose elements are sampled from the uniform distribution on [0, 1]. As with
the previous experiments, each pixel at coordinates (n, µ) represents the value of
log(α + t∗Lv

− t∗Rv
) − log(α), where t∗ is the �rst value of t to approximate M up to

a given absolute error. To model a signi�cant g2 gap, we constructed these vectors by
choosing n − µ vectors uniformly from [0, 1], multiplying them by (n − 1)/n and ap-
pending them to a vector of length µ with coordinates all equal to 1. The �gures di�er
only in the absolute tolerance used to de�ne t∗. The value α = min(t∗Lv

− t∗Rv
) + 1

o�sets the results so that when the results are averaged and plotted logarithmically,
the minimum di�erence remains log(1) = 0. The subtraction of the log(α) term then
better illustrates the subexperiments where Lv(t) outperforms Rv(t). This adjustment
is accounted for in the uniform distribution examples as there are select instances in
which Lv(t) performs better than Rv(t) by converging at a lesser t value, thus the dif-
ference is non-positive and less than −1. This occurs most notably in the experiments
with tolerance 1/n and 1/100 of Figure 15.

21

20

40

60

80

10

0

n

100 80 60 40 20

m
u

Tol=exp(1)

0.8

1

1.2

1.4

1.6

NaN

20

40

60

80

10

0

n

100 80 60 40 20

m
u

Tol=1

1

1.5

2

2.5

3

3.5

NaN

20

40

60

80

10

0

n

100 80 60 40 20

m
u

Tol=1/n

0

0.2

0.4

0.6

0.8

1

1.2

NaN

20

40

60

80

10

0

n

100 80 60 40 20
m

u

Tol=1/100

0

0.2

0.4

0.6

0.8

1

1.2

NaN

Figure 15 Average results of the �oating point-valued vector v experiments. Each pixel at position
(n, µ) represents the value of log(α + t∗Lv

− t∗Rv
) − log(α) averaged over 100 subexperiments. The

x-axis and y-axis correspond to n = 1, . . . , 100 and µ = 1, . . . , n respectively. The tolerance used
to de�ne t∗ are absolute error less than: (a) exp(1) (b) 1 (c) 1/n (d) 1/100. Black pixels above the
diagonal are when µ > n.

5.3 Clustering �oating point numbers

We repeat a similar experiment with �oating point numbers in the presence of noise.
Our goal is to identify the scenarios where it is appropriate to apply Theorem 3.3
heuristically. Our setup is as follows. Suppose that 5 measurements, with values in
[0, 1], are to be taken, but the measuring device incurs some error ±ϵ. To rectify
this, each measurement is performed 20 times. Heuristically, one may choose to apply
Theorem 3.3 with the interpretation that v consists of 5 numbers, each occurring
with multiplicity 20, with the goal of obtaining max(v) up to error ϵ. In this case,

Theorem 3.3 specializes to t >
(
4·g
ϵ

) 1
g where g is the gap between the top two true

measurements.

After �xing ϵ and g, we model such a situation by the following procedure.

1. Pick 5 true measurements w1, . . . , w5 ∈ [0, 1] by setting w5 = 1, w4 = 1 − g and
w1, w2 and w3, sampled uniformly at random from [0, 1− g].

2. For each wi, sample 20 numbers uniformly from [wi − ϵ, wi + ϵ]. Collect all 100
numbers in v.

22

3. Evaluate Rv(t
∗) for t∗ =

(
4g
ϵ

) 1
g to obtain the absolute error errv = |1−R(t∗)|

For each pair (g, ϵ), where g = 0.01, . . . , 1 and ϵ = 0, . . . , 1, we repeat the above
procedure 500 times and average the error obtained in step 3. Additionally, we deem
an approximation a success if the error is smaller than ϵ. The two �gures in Figure 16
display, for each pair (g, ϵ), the average error and number of successes.

20

40

60

80

10

0

Epsilon

100 80 60 40 20

g

Average Error

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

20

40

60

80

10

0

Epsilon

100 80 60 40 20

g

Successes

0

100

200

300

400

500

Figure 16 For each (g, ϵ) and for 500 tries, (left) average error of Rv(t∗) for t∗ from Theorem 3.3
(right) number of approximations Rv(t∗) within ϵ for t∗ from Theorem 3.3.

As indicated by the experiments summarized in Figure 16, a small gap g and large ϵ
produces the largest errors with the fewest numbers of successes, as expected. Interest-
ingly, a large gap and small ϵ, corresponding to the upper left corner of the �gures also
impacts the e�ectiveness of the heuristic. The large gap size means that w2, . . . , w5

are all chosen within a small interval [0, 1 − g], and we suspect that this cluster be-
haves like the value 1−g

2 appearing with high multiplicity. Additionally, the small ϵ
value means it is di�cult to achieve a �success� by having absolute error less than ϵ.

For these noisy experiments, there are two natural interpretations of what should be
considered N and µ. The �rst is that N should be 5, the number of true measurements,
whereas µ should be 1. The second interpretation is that N should be 20 · 5 = 100,
the true length of v while µ should be 20, the size of the top cluster. In the Rv(t)
case, these distinctions cancel out in the bound provided by Theorem 3.3. In the Lv(t)
case, however, these interpretations give drastically di�erent bounds when applying
Theorem 3.1. The later interpretation often yields such enormous t bounds that an
application of that result is not useful. In Figure 17, we display the results of an exper-
iment using the former interpretation. It did not happen that the Lv(t) approximation
with the interpreted bound from Theorem 3.1 achieved the expected accuracy. This
suggests that the later interpretation, despite its lack of utility, is likely more appropri-
ate. Our experiments also showcase the advantage of using the Rv(t) approximation
over Lv(t), especially in noisy situations with high (approximate) multiplicity.

23

20

40

60

80

10

0

Epsilon

100 80 60 40 20

g

Average Error

0.5

1

1.5

2

2.5

3

3.5

4

Figure 17 For each (g, ϵ), over 500 tries, the average error of Lv(t∗) from Theorem 3.1.

6 Max-convolution and applications

One way to use smooth approximations of the maximum function is to approximate
the max-convolution of two vectors [9]. To that end, consider two integer vectors a =
(a0, . . . , an) and b = (b0, . . . , bn). The classical convolution problem asks to determine
the vector of convolution coe�cients a ⋆ b where

(a ⋆ b)k =

k∑
i=0

ai · bk−i =

min(k,n)∑
i=max(0,k−n)

ai · bk−i. (22)

We remark that the middle description is su�cient if one takes ai = 0 and bi = 0
whenever they are unde�ned. With the same input, the problem of max-convolution,
MAXCON, asks for the vector c of max-convolution coe�cients, where

ck = max
max(0,k−n)≤i≤min(k,n)

(ai + bk−i). (23)

These coe�cients can be obtained via (22) by replacing the operations (·,+) with
(+,max), respectively. The form ck = max0≤i≤n(ai+bk−i) may be used if one replaces
unde�ned ai and bi with −∞. Equivalently, through constructing

At(x) =

n∑
i=0

taixi, Bt(x) =

n∑
i=0

tbixi ∈ Q(t)[x],

24

the problem of MAXCON asks for the largest exponents in t appearing in the
coe�cients of

At(x) ·Bt(x) =

2n∑
k=0

k∑
i=0

tai+bk−ixk.

Setting v(k) = ((ai + bk−i) | max(0, k − n) ≤ i ≤ min(k, n)), we rewrite this as

At(x) ·Bt(x) =

2n∑
k=0

Fv(k)(t)xk.

For �xed t, the values of Fv(k)(t) are classical convolution coe�cients

((ta0 , . . . , tan) ⋆ (tb0 , . . . , tbn))k

which can be computed by a quasi-linear time algorithm, e.g., using the fast Fourier
transform (FFT) [14] requires O(n log(n)) operations. Applying logt provides an
O(n log(n)) routine for evaluating Lv(k)(t), whereby with Theorem 3.1, this process
computes max(v(k)) = ck when evaluated at a su�ciently large value of t, e.g.,
t = n + 1. If Ma = maxi ai and Mb = maxi bi, then the largest value arising has bit-
size at most O((Ma +Mb + 1) log2(n)) when t = n + 1. The following algorithm is a
summary this discussion.

Algorithm 1: MaxCon

Input: Two integer vectors a = (a0, . . . , an) and b = (b0, . . . , bm).
Output: The max-convolution coe�cients c = (c0, . . . , cn+m)

1 Choose t∗ satisfying the bounds of Theorem 3.1 (e.g., t∗ ≥ max(n,m)+1)

2 Compute η = ((t∗)a0 , . . . , (t∗)an) and λ = ((t∗)b0 , . . . , (t∗)bm)
3 Compute ℓ(t∗) = η ⋆ λ
4 Apply ⌊logt∗(·)⌋ component-wise to ℓ(t∗) to obtain c = ⌊logt∗(ℓ(t∗))⌋
5 return c

Example 6.1. Consider applying Algorithm 1 to compute the max-convolution
coe�cients of the vectors

a = (3, 1, 2, 4, 1, 2), b = (5, 3, 0, 4).

Taking t∗ = 6, we obtain

η = (216, 6, 36, 1296, 6, 36), λ = (7776, 216, 1, 1296)

The classical convolution of η and λ is

ℓ(6) = η ⋆ λ = (1679620, 93312, 281448, 10365400, 334404, 329184, 1687400, 7812, 46656)

which under log6 evaluates to

log6(ℓ(6)) = (8, 6.38685, 7.00301, 9.01571, 7.09923, 7.09045, 8.00258, 5.00258, 6).

25

Finally, by applying ⌊·⌋, we obtain the max-convolution coe�cents

c = (8, 6, 7, 9, 7, 7, 8, 5, 6).

For completeness and interpretation of c, we provide At(x), Bt(x) ∈ Z[t][x] below along
with their product:

At(x) = t3x0+ t1x1+ t2x2+ t3x3+ t1x4+ t2x5, Bt(x) = t5x0+ t3x1+ t0x2+ t4x3,

At(x) ·Bt(x) = t8x0 + 2t6x1 + (t7 + t4 + t3)x2 + (t9 + t7 + t5 + t)x3

+ (t7 + t6 + t5 + t2)x4 + (t7 + t6 + 2t4)x5 + (t8 + t5 + t)x6+(t5 + t2)x7 + t6x8.

♢

The key to Algorithm 1 lies in the ability to evaluate Fv(k)(t) via the fast Fourier
transform in O(n log(n)) by interpreting these values as classical convolution coe�-
cients. A subsequent application of logt turns this into an evaluation of Lv(k)(t) =
logt(Fv(k)(t)) whereby one may apply Theorem 3.1. Similarly, with the aim to apply
Theorem 3.6, one may use the approximation of Proposition 2.6 to wrap the ability
to evaluate Fv(k)(t) into an algorithm which may require a smaller t evaluation.

Algorithm 2: MaxCon - using Dv(k)(t∗, α∗)

Input: Two integer vectors a = (a0, . . . , an) and b = (b0, . . . , bm).
Output: The max-convolution coe�cients c = (c0, . . . , cn+m)

1 Choose t∗ and α∗ satisfying the bounds of Theorem 3.6 (e.g., α∗ > 1 and
t∗ > max(e, n− 1,m− 1))

2 Compute η = ((t∗)a0 , . . . , (t∗)an) and λ = ((t∗)b0 , . . . , (t∗)bm)

3 Compute η′ = ((α∗t∗)a0 , . . . , (α∗t∗)an) and λ′ = ((α∗t∗)b0 , . . . , (α∗t∗)bm)
4 Compute ℓ(t∗) = η ⋆ λ
5 Compute ℓ′(t∗) = η′ ⋆ λ′ using FFT
6 Apply logα∗ (ℓ′(t∗)/ℓ(t∗)) component-wise to obtain c = ⌈logα∗ (ℓ′(t∗)/ℓ(t∗))⌉
7 return c

Remark 6.2. Algorithms 1 and 2, paired with their corresponding bounds from
Section 3, give algorithms whose output constitute mathematical proofs provided that
the convolution coe�cients computed via FFT, as well as the ceiling of the logarithm,
are computed exactly. Otherwise, the error introduced by the ⋆ operation must be
bounded by 1/2, δ should be taken to be at most 1/2 in the relevant theorems, and
a two-sided rounding procedure should be applied rather than the ceiling or �oor
function.

Example 6.3. We apply Algorithm 2 to the vectors in Example 6.1 using t∗ = 6 and
α∗ = e. The values of ℓ(6) and ℓ′(6) = ℓ(e · 6) are

ℓ(6) = (1679620, 93312, 281448, 10365400, 334404, 329184, 1687400, 7812, 46656),

26

ℓ
′
(6) = (5006864730.36308, 37644747.57839, 307062197.51625, 81968557661.46344,

326963800.35823, 325950992.03191, 5008018807.39795, 1154326.73120, 18822373.78920)

so that c = ⌈log(ℓ′(6)/ℓ(6))⌉ gives
c = ⌈(8.0, 6.0, 6.99486, 8.97562, 6.88525, 6.89789, 7.99561, 4.99561, 6.0)⌉ = (8, 6, 7, 9, 7, 7, 8, 5, 6).

We remark that if we use t∗ = 2 and α∗ = 1.05, which do not necessarily meet the
bounds of Theorem 3.6, we obtain the following results:

ℓ(2) = (256, 128, 152, 674, 228, 224, 290, 36, 64),

ℓ
′
(2) = (378.22859, 171.53224, 208.81795, 1017.32991, 311.12599, 304.77118, 421.16960, 45.25101, 85.76612),

c = ⌈(8.0, 6.0, 6.50915, 8.43831, 6.37121, 6.31101, 7.64815, 4.68754, 6.0)⌉ = (8, 6, 7, 9, 7, 7, 8, 5, 6).

Hence, the correct max-convolution coe�cients are recovered despite not satisfying
the bounds of Theorem 3.6. ♢

We conclude with two applications of max-convolution.

6.1 Maximum Consecutive Subsums Problem

Given a single vector v = (v1, . . . , vn) ∈ Rn, the problem of determining the largest

consecutive sum
∑k

i=1 vjk+i for each k = 1, . . . , n is known as the Maximum Consec-
utive Subsums Problem (MCSP). As outlined in [15, � 7.1], MCSP directly reduces

to an instance of MAXCON as follows. Taking a, b ∈ Rn to be ak = −
∑k

i=1 vi and

bn−k+1 =
∑k

i=1 vi, the max-convolution coe�cient cn−k describes the largest sum of
k consecutive entries of v.

Example 6.4. For v = (1, 4, 2, 3, 8, 1, 1, 5, 6, 7, 5) ∈ Z11, we have

a = (−1,−5,−7,−10,−18,−19,−20,−25,−31,−38,−43),

b = (43, 38, 31, 25, 20, 19, 18, 10, 7, 5, 1).

The max-convolution of a and b is

c = (42, 38, 36, 33, 28, 24, 23, 18, 13, 8, 0,−1,−2, . . .).

For example, this shows that the largest sum of 2 and 5 consecutive entries of v is 13
and 24 obtained by 6 + 7 and 1 + 5 + 6 + 7 + 5, respectively. By convention, one may
choose to prepend c0 =

∑n
i=1 vi to c so as to include the subsum of n consecutive

integers in the output as well. ♢

We remark that even though Algorithms 1 and 2 are written for integer input, the
algorithms work for �oating point input as well, subject to di�erent bounds (see Theo-
rems 3.1 and 3.6). When using Algorithm 1, the output is an upper bound for the true
max-convolution coe�cients, subject to any error introduced by the FFT subroutine.
Figure 18 shows the magnitude of error on the 100 outputs of a random MCSP prob-
lem on a vector v ∈ [0, 1]n for n = 100 and n = 1000 with each coordinate selected
uniformly at random.

27

Figure 18 Heatmap of the absolute errors of the numerical computation of MCSP. The numerical
computations were performed on a vector of length 100 (top) and 1000 (bottom) with �oating-point
entries uniformly chosen in [0, 1]. The vertical axis indicates the output error on subsums of length k
after evaluating at exp(t) (horizontal axis).

6.2 Service Curve Constraints

Convolution algorithms are integral in network calculus where systems model the data
�ow between networks [16]. The equation describing the incoming data is a monotonic
input function R(T), given in bits per second. The equation describing the outgoing
data (after a time delay) is an output function, R∗(T), also in bits per second. The
function R∗(T) is constrained by service constraints that state for any window of time,
additional data outputted is bounded. The curves formed by these constraints are the
result of a min-convolution between the service curve and input function R(T) [16].
That is, a system with an input function R(T) has an output function R∗(T) that
will lie in the area bounded below by a service curve β(T) and above by a maximum

28

service curve γ(T) such that

inf
s≤T

{R(T) + β(T − s)} ≤ R∗(T) ≤ R(s) + γ(T − s), s ≤ T (24)

Note that the input and output functions admit no subscript to avoid confusion with
the ratio function Rv(t). Additionally, we de�ne the time variable for the service curve
to be T rather than t which is the variable base used for the MAXCON algorithms.

Although the prior focus was on the maximum, it is very simple to reformulate every-
thing to instead compute the minimum. That is, we take t → ∞ when converging to
the maximum while one can take t → 0+ to converge to the minimum.

As an example, we sought to recreate [16, Fig. 5.1] using Algorithm 2 to compute
the discrete min-convolution of the input function and service curves. To obtain the
numerical data points for this example, we �rst �t a polynomial curve to R(T) from
the �gure. In particular, we used the �tted septic polynomial

R(T) = 1.6738T−0.7492T 2−0.08694T 3+0.1085T 4−0.01101T 5−0.001579T 6+0.0002085T 7.

The service curves are de�ned as β(T) = T and γ(T) =

{
0 if T ≤ 3

T − 3 if T > 3,
which

corresponds with a 3 second time delay. To create a discrete problem, we evaluated
these functions at equally spaced points.

We apply Algorithm 2 in the �oating-point case, i.e., without rounding, for the com-

putations with α = 1.01 and t =
(

1
(n−1)

) 1
0.04

. Figure 19 shows the results of our

min-convolution using 10 and 100 discretized points to compute the corresponding
bounds on R∗(T) given in (24).

One can see that even with numerical discretization, the resulting curves in Figure 19
exhibit satisfactory behavior in recreating the bounds of [16, Fig. 5.1]. Even for 10
discretization points, the computation captures the essential behavior of the convolu-
tion. Furthermore, using 100 discretization points better captures sharp transitions as
well as �atter regions of the service curve bounds.

Note that this experiment employs two separate convolutions. We compared our es-
timated values to the actual minima computed via brute force, i.e., we computed the
exact minima by computing the bounds given in Equation 24 for each Ti, i = 1, . . . , N
where N is the number of discretized points. Figures 20 and 21 display the error
between the computed points via Algorithm 2 and the actual points for the min-
convolution between R(T) and β(T), and R(T) and γ(T), respectively. When using
a time delay of 3 seconds, non-zero values �rst occur when T > 3 resulting in nearly
zero error before then. Both discretizations have errors on the order of 10−3 or smaller.
Additionally, the errors are nonnegative which highlights that our method slightly
overestimates the values.

29

0 2 4 6 8

1

2

3

4

5

β

R

R
β

R γ
γ

10
T

D
at

a

8640

2

1

3

4

5

β
R
R
β
R γ
γ

2 10T

D
at

a

Figure 19 Discretized service curves computed using Algorithm 2. The curve R(T) and service
constraints γ(T) and β(T) are discretized into 10 (top) and 100 (bottom) equally spaced points.

Number of Discrete Points Dv(t, α) Brute Force
10 0.0003841 0.002666
50 0.0003392 0.006488

100 0.0005358 0.01067
500 0.001053 0.04643

1000 0.001647 0.1114
5000 0.01183 1.3957

10000 0.02939 10.5240
100000 1.1738 1546.2364

Table 1 Time, in seconds, to calculate the min-convolution
between R(T) and β(T).

30

ε

Est Min - True Min

1 2 3 4 5 6 7
T

0

1

2

3

4

5

6 10-3 Discrete Service Curve Error, R β

0

1

2

3

4

5
10-3 Discrete Service Curve Error, R β

Est Min - True Min

1 2 3 4 5 6 7T

ε

Figure 20 Plots error of the computed points minus the actual points of the minimum convolution
between the lines R(T) and β(T) for (left) 10 and (right) 100 discretized points.

2 4 6 8 10
T

0

1

2

3

4

5

6 10-3 Discrete Service Curve Error, R γ

Est Min - True Min

ε

0

1

2

3

4

5

6

7

8

9 10-3 Discrete Service Curve Error, R γ

Est Min - True Min

ε

102 4 6 8
T

Figure 21 Plots error of the computed points minus the actual points of the minimum convolution
between the lines R(T) and γ(T) for (left) 10 and (right) 100 discretized points.

Number of Discrete Points Dv(t, α) Brute Force
10 0.0001468 0.002490
50 0.0001085 0.005987

100 0.0001927 0.007235
500 0.0007843 0.03623

1000 0.001421 0.1315
5000 0.006734 1.5642

10000 0.01953 5.2610
100000 0.7965 1239.4949

Table 2 Time, in seconds, to calculate the min-convolution
between R(T) and γ(T).

Tables 1 and 2 compare the time in seconds for one application of Algorithm 2 and
a brute force computation between R(T) and β(T), and R(T) and γ(T), respectively,
using a single processor. The di�erence between quasi-linear and quadratic time algo-
rithms becomes apparent as n grows. Note that utilizing Algorithm 1 produced similar
error and computational time.

31

7 Conclusion

Smooth approximations of the non-di�erentiable maximum function on vectors of real
numbers are often used in optimization and machine learning. By using the lens of
tropical geometry, one is able to see the di�erences between various smooth approx-
imations. For example, Figure 13 geometrically shows what slope is computed by a
LogSumExp approximation and by a ratio approximation. In particular, when the
maximum has multiplicity greater than 1, i.e., the maximum is repeated more than
once in the vector, the LogSumExp function has a logarithmic term associated with
the multiplicity that slows down convergence. A ratio approximation removes this
logarithmic term associated with the multiplicity and thus converges faster when the
multiplicity is greater than 1. Since ratio approximations may be di�cult to evaluate
in practice, we propose a discretized approximation in (18) computed using two Log-
SumExp evaluations that maintains the faster convergence of the ratio approximation
when the multiplicity is greater than 1. In a noisy model where the values may not
be exact, an exact high multiplicity maximum is perturbed into a cluster of points
around the maximum. Experiments show that these results persist even with noise.

By reducing max-convolution (and min-convolution) to classical convolution, Al-
gorithms 1 and 2 compute the max-convolution in quasi-linear time using the
LogSumExp and discretized approximation, respectively. Tables 1 and 2 clearly show
the advantage of using a quasi-linear time, O(n log(n)), algorithm over the brute force
quadratic time, O(n2), algorithm as n increases when computing service curves.

Declarations

Ethical approval Not applicable.

Availability of supporting data All data is described in the text.

Author's contributions Not applicable.

Acknowledgments Not applicable.

Funding This material is based upon work supported by the National Science Foun-
dation under grants CCF-1812746 and CMMI-2041789. The �rst author is partially
supported by an NSERC Discovery Grant (Canada).

Con�ict of interest / Competing interests The authors declare no competing inter-
ests.

References

[1] Zang, I.: A smoothing-out technique for min-max optimization. Math. Program-
ming 19(1), 61�77 (1980)

[2] Zhao, G., Wang, Z., Mou, H.: Uniform approximation of min/max functions
by smooth splines. Journal of Computational and Applied Mathematics 236(5),

32

699�703 (2011). The 7th International Conference on Scienti�c Computing and
Applications, June 13�16, 2010, Dalian, China

[3] Asadi, K., Littman, M.L.: An alternative softmax operator for reinforcement
learning. In: Proceedings of the 34th International Conference on Machine
Learning, Vol 70. ICML'17, pp. 243�252. JMLR.org, (Online) (2017)

[4] Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional
neural networks. In: Balcan, M., Weinberger, K. (eds.) International Conference
on Machine Learning, Vol 48. Proceedings of Machine Learning Research, vol. 48
(2016). 33rd International Conference on Machine Learning, New York, NY, JUN
20-22, 2016

[5] Nielsen, F., Sun, K.: Guaranteed bounds on information-theoretic measures of
univariate mixtures using piecewise log-sum-exp inequalities. Entropy 18(12)
(2016) https://doi.org/10.3390/e18120442

[6] Blanchard, P., Higham, D.J., Higham, N.J.: Accurately com-
puting the log-sum-exp and softmax functions. IMA Journal of
Numerical Analysis 41(4), 2311�2330 (2020) https://doi.org/10.
1093/imanum/draa038 https://academic.oup.com/imajna/article-
pdf/41/4/2311/40758053/draa038.pdf

[7] Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal
rule. SIAM Review 56(3), 385�458 (2014)

[8] Pfeu�er, J., Serang, O.: A bounded p-norm approximation of max-convolution
for sub-quadratic bayesian inference on additive factors. J. Mach. Learn. Res. 17,
36�13639 (2016)

[9] Serang, O.: A fast numerical method for max-convolution and the application to
e�cient max-product inference in bayesian networks. Journal of computational
biology : a journal of computational molecular cell biology 22 (2015) https://doi.
org/10.1089/cmb.2015.0013

[10] Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. Graduate Stud-
ies in Mathematics, vol. 161. American Mathematical Society, Providence, Rhode
Island (2015)

[11] Bergman, G.M.: The logarithmic limit-set of an algebraic variety. Trans. Am.
Math. Soc. 157, 459�469 (1971)

[12] DeWol�, T., Schroeter, F.: The boundary of amoebas. arXiv Preprint: 1310.7363
(2013)

[13] Forsberg, M., Passare, M., Tsikh, A.: Laurent determinants and arrangements of
hyperplane amoebas. Adv. Math 151, 45�70 (2000)

33

https://doi.org/10.3390/e18120442
https://doi.org/10.1093/imanum/draa038
https://doi.org/10.1093/imanum/draa038
https://arxiv.org/abs/https://academic.oup.com/imajna/article-pdf/41/4/2311/40758053/draa038.pdf
https://arxiv.org/abs/https://academic.oup.com/imajna/article-pdf/41/4/2311/40758053/draa038.pdf
https://doi.org/10.1089/cmb.2015.0013
https://doi.org/10.1089/cmb.2015.0013

[14] Moenck, R.T.: Practical fast polynomial multiplication. In: Proceedings of the
Third ACM Symposium on Symbolic and Algebraic Computation. SYMSAC '76,
pp. 136�148. Association for Computing Machinery, New York, NY, USA (1976)

[15] Cygan, M., Mucha, M., Wunde�nedgrzycki, K., Wªodarczyk, M.: On problems
equivalent to (min,+)-convolution. ACM Trans. Algorithms 15(1) (2019)

[16] Van Bemten, A., Kellerer, W.: Network Calculus: A Comprehensive Guide (2016).
https://doi.org/10.13140/RG.2.2.32305.89448

34

https://doi.org/10.13140/RG.2.2.32305.89448

	Introduction
	Notation and Fundamental Results
	Approximating quantities associated to v
	Computing the maximum
	Computing the multiplicity
	Combining Rkv(t) to improve convergence and compute g2

	The tropical viewpoint
	Experiments
	Integer numbers
	Uniformly distributed floating point numbers
	Clustering floating point numbers

	Max-convolution and applications
	Maximum Consecutive Subsums Problem
	Service Curve Constraints

	Conclusion

