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Abstract In this paper, equations for the approximate synthesis of symmetric four-
bar coupler curves are formulated. Our approach specifies a number of desired
trace points, and finds a number of four-bar linkages with a coupler trace that
approximately passes through these points. The computed linkages correspond to
all the minima of the posed objective. The objective posed simultaneously enforces
kinematic accuracy, loop closure, and leads to polynomial first order necessary
conditions with a monomial structure that remains the same for any number of
specified desired trace points. This last characteristic makes our result more general.
To simplify computations, ground pivot locations are set as chosen parameters, and
a root count analysis is conducted that shows our objective has a maximum of
73 critical points. The theoretical work is applied to the computational design of
straight line coupler paths. To perform this exercise, the choice of ground pivots was
varied, and a parameter homotopy for each choice (504 in total) was executed. These
computations found the expected linkages (Watt, Evans, Roberts, Chebyshev) and
other linkages resembling them but with sizable variations on their dimensions. The
t-SNE algorithm was employed to organize the computed straight line generators
into a visual atlas.
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1 Introduction

The synthesis of a point path by a four-bar linkage has been addressed in [1] for the
exact case, and in [2] for the approximate case. Here we address a subcase, that is the
synthesis of symmetric coupler curves. We are motivated to study symmetric curves
as we note that many of the special straight line generators found over time produce
symmetric curves, e.g. the Watt linkage, the Evans linkage, the Roberts linkage,
the Chebyshev linkage, and the Chebyshev lambda linkage [3]. In search of more
such interesting geometries, symmetry constraints are installed. This reduces thewell
known nine dimensional design space of four-bar linkages down to seven dimensions.
In addition, to aid in computational tractability, the positions of ground pivots were
set, reducing the design space to three dimensions. The relevant kinematic constraints
were formulated into an optimization problem which was solved completely for
all minima using polynomial homotopy continuation. The result is used to search
for straight line generators by systematically varying ground pivot locations and
computing several parameter homotopies. Our computational search found the well
known straight line generators as well as several variants of their geometries. The
resulting linkage designs are organized into an atlas using the t-SNE unsupervised
machine learning algorithm.

2 Mathematical Formulation of Four-bars
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Fig. 1: Schematic of a four-bar linkage in the complex plane

Consider a planar four-bar linkage as shown in Fig. 1 in the complex plane. Let 𝐴
and 𝐵 represent the two fixed pivots, respectively. For representing vector variables
such as the fixed pivots, isotropic coordinates [4] are used here. Hence, additional
variables 𝐴∗ and 𝐵∗ denoting the conjugate variables of 𝐴 and 𝐵, respectively, are
introduced. This is an alternative approach to the Cartesian framework in order to
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gain certain advantages [4] during the mathematical formulation stage as well as in
the implementation of numerical continuation solution technique that follows. Let 𝑙1,
𝑙2, and 𝑙3 denote the lengths of the three moving links as shown. The coupler trace
point (normalized by the coupler base length 𝑙2) is represented in the local frame of
the coupler as 𝑄 and its conjugate counterpart 𝑄∗. Thus, the design variables of the
four-bar linkage are summarized as 𝒅 = {𝐴, 𝐴∗, 𝐵, 𝐵∗, 𝑙1, 𝑙2, 𝑙3, 𝑄, 𝑄∗}. If 𝑋 and its
conjugate 𝑋∗ denote the locus of the trace point of interest in the global frame, then
it satisfies the equation 𝑓 (𝒅, 𝑋, 𝑋∗) = 0 given by:��������

𝑄∗ (𝐴 − 𝑋) 𝑔(𝑋, 𝑋∗) 𝑙2𝑄(𝐴∗ − 𝑋∗) 0
0 𝑙2𝑄

∗ (𝐴 − 𝑋) 𝑔(𝑋, 𝑋∗) 𝑄(𝐴∗ − 𝑋∗)
(−1 +𝑄∗) (𝐵 − 𝑋) ℎ(𝑋, 𝑋∗) 𝑙2 (−1 +𝑄) (𝐵∗ − 𝑋∗) 0

0 𝑙2 (−1 +𝑄∗) (𝐵 − 𝑋) ℎ(𝑋, 𝑋∗) (−1 +𝑄) (𝐵∗ − 𝑋∗)

�������� = 0, (1)
where

𝑔(𝑋, 𝑋∗) = −𝑙21 + 𝑙
2
2𝑄𝑄

∗ + (𝐴 − 𝑋) (𝐴∗ − 𝑋∗) and

ℎ(𝑋, 𝑋∗) = −𝑙23 + 𝑙
2
2 (−1 +𝑄) (−1 +𝑄

∗) + (𝐵 − 𝑋) (𝐵∗ − 𝑋∗).

As is well known for four-bar linkages, Eq. (1) is a sextic equation with circularity
3. It comprises of 16 distinct monomial terms in 𝑋, 𝑋∗, namely,{

𝑋3𝑋∗3, 𝑋3𝑋∗2, 𝑋3𝑋∗, 𝑋3, 𝑋2𝑋∗3, 𝑋2𝑋∗2,
𝑋2𝑋∗, 𝑋2, 𝑋𝑋∗3, 𝑋𝑋∗2, 𝑋𝑋∗, 𝑋, 𝑋∗3, 𝑋∗2, 𝑋∗, 1

}
in which the coefficient of the leading term 𝑋3𝑋∗3 is equal to 1. Four-bar linkages that
share an identical coupler locus occur as Roberts cognate triplets in the four-bar de-
sign space (see pp. 168-176 of [5]). For a design 𝒅1 = {𝐴, 𝐴∗, 𝐵, 𝐵∗, 𝑙1, 𝑙2, 𝑙3, 𝑄, 𝑄∗},
its other two cognates can be expressed as:

𝒅2 =
{
𝐵, 𝐵∗, 𝐴 +𝑄(𝐵 − 𝐴), 𝐴∗ +𝑄∗ (𝐵∗ − 𝐴∗), 𝑙2

√︁
(1 −𝑄) (1 −𝑄∗) ,

𝑙3
√︁
(1 −𝑄) (1 −𝑄∗), 𝑙1

√︁
(1 −𝑄) (1 −𝑄∗), 1

1 −𝑄 ,
1

1 −𝑄∗

}
,

𝒅3 =
{
𝐴 +𝑄(𝐵 − 𝐴), 𝐴∗ +𝑄∗ (𝐵∗ − 𝐴∗), 𝐴, 𝐴∗, 𝑙3

√︁
𝑄𝑄∗,

𝑙1
√︁
𝑄𝑄∗, 𝑙2

√︁
𝑄𝑄∗,

𝑄 − 1
𝑄

,
𝑄∗ − 1
𝑄∗

}
. (2)

In our experiment, we restrict the model to four-bars that generate symmetric
coupler curves. We do this for two reasons. First, much of the straight line linkages
reported in the literature [3] such as Watt, Evans, Roberts, and Chebyshev linkages
generate symmetric coupler curves about some axis of symmetry in the plane. And
second, the inclusion of additional conditions on the design variables to this effect
simplifies the model significantly and enables faster computations.
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2.1 Symmetric coupler curves

The following derives the necessary and sufficient conditions for a four-bar linkage to
generate symmetric coupler curves. While some of these conditions can be found in
the literature, we present a direct proof here via analytical geometry and subsequent
algebraic analysis.
Following the isotropic coordinates convention, points (𝑃, 𝑃∗) on a generic line

in the complex plane satisfy:

𝐿 (𝑃, 𝑃∗) = 𝐾∗𝑃 + 𝐾𝑃∗ + 𝑐 = 0, (3)

where 𝐾, 𝐾∗ (≠ 0) are isotropic parameters and 𝑐 is a real parameter. If (𝑋, 𝑋∗) is
any point in the plane, then its symmetric reflection about the axis given by Eq. (3) is

(𝑋𝑚, 𝑋∗
𝑚) =

(
−𝑐 + 𝐾𝑋

∗

𝐾∗ ,−𝑐 + 𝐾
∗𝑋

𝐾

)
. (4)

It follows that, for a four-bar coupler curve to be symmetric about an axis
𝐿 (𝑃, 𝑃∗) = 0, (𝑋𝑚, 𝑋∗

𝑚) given by Eq. (4) must also satisfy Eq. (1), that is,
𝑓 (𝒅, 𝑋𝑚, 𝑋∗

𝑚) = 0. Since the equation and its reflection must be identical, the coef-
ficients of the 16 monomial terms in 𝑋, 𝑋∗ can be equated element-wise to arrive
at 15 conditions (disregarding the unit leading term of the monomial 𝑋3𝑋∗3) on the
design variables 𝒅 and the axis parameters 𝐾, 𝐾∗, 𝑐. As the symmetric behavior is
unaffected by scaling, rotation, and translation, the fixed pivots can be plugged in
as 𝐴 = 𝐴∗ = 0 and 𝐵 = 𝐵∗ = 1 which further simplifies the conditions. Note that
this choice of fixed pivots is made only for enabling the derivation of the condi-
tions of symmetry and is not a global choice for the latter sections. The conditions
corresponding to the monomials 𝑋3𝑋∗2, 𝑋3𝑋∗, 𝑋3 are, respectively, as follows:

3𝑐 + 𝐾 + 𝐾∗ + 𝐾∗𝑄 + 𝐾𝑄∗ = 0, (5)

−3𝑐2 − 2𝑐𝐾∗ − 2𝑐𝐾∗𝑄 − 𝐾∗2𝑄 + 𝐾2𝑄∗ = 0, (6)
𝑐(𝑐 + 𝐾) (𝑐 + 𝐾𝑄∗) = 0. (7)

The conjugate of these conditions also occur for the monomials 𝑋2𝑋∗3, 𝑋𝑋∗3, 𝑋∗3.
Eq. (7) shows that either 𝑐 = 0, 𝑐 = −𝐾 , or 𝑐 = −𝐾𝑄∗. Each of these three

conditions can be analyzed separately in conjunction with Eqs. (5) and (6), and then
with the other 12 coefficient conditions (not all independent). The algebra is not
included for brevity and we present only the results:

Four-bar linkages with design variables 𝒅 = {𝐴, 𝐴∗, 𝐵, 𝐵∗, 𝑙1, 𝑙2, 𝑙3, 𝑄, 𝑄∗}
that generate coupler curves symmetric about an axis 𝐾∗𝑃 + 𝐾𝑃∗ + 𝑐 = 0 can
be of the following two classes:

Class A 𝑐 = 0, 𝐾 = −𝐾∗, 𝑄 = 𝑄∗. These correspond to four-bars whose trace
point lies along the line that connects the two floating pivots. For these, the
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reflection of the linkage about its ground link in any given configuration is
also part of its configuration space, thus enabling the occurrence of symmetric
coupler curves. The cognates of such four-bars also meet these conditions with
the ground-pivots of all three cognates lying along the axis of symmetry.

Class B This class can be split into three types which themselves form a
Roberts cognate triplet.

1. 𝑐 = 0, 𝑄 = − 𝐾
𝐾∗ = 1

𝑄∗ , 𝑙1 = 𝑙2
2. 𝑐 = −𝐾 = −𝐾∗, 𝑄 +𝑄∗ = 1, 𝑙1 = 𝑙3
3. 𝑐 = −𝐾𝑄∗ = −𝐾∗𝑄,𝑄∗ = 𝑄

𝑄−1 , 𝑙2 = 𝑙3

Cog. 2Cog. 1 Cog. 3

Coupler curve (1 circuit)

Axis of 
symmetry

(a) Class A

Axis of symmetry

Cog. 2Cog. 1 Cog. 3

Coupler curve (2 circuits)

(b) Class B

Fig. 2: Two classes of four-bar linkages which generate symmetric coupler curves

In Fig. 2, examples of the two classes of four-bars that generate symmetric
coupler curves are shown as cognate triplets. Arguably, four-bars of Class B are
more interesting because, unlike Class A, the symmetric curves generated by them
are not simply reflections about the ground link. The two classes of four-bars overlap
in the design space in some cases, notably the Chebyshev and Watt straight line
linkages. Another well-known symmetric straight line linkage, the Roberts linkage,
is of Class B. The axis of symmetry in the four-bars of Class B is the perpendicular
bisector of the fixed link corresponding to the cognate #2, while passing through the
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ground pivot shared between the cognates #1 and #3. For more geometric description
of the four-bars of Class B and their conditions, refer to [6].
In this work, we limit the following design procedure to the four-bars of Class B

based on the reasoning above. In particular, we solve for cognate #2 of Class B and
compute cognates #1 and #3 based on the transformations presented in Eq. (2).

3 Optimization Model For Approximating Straight Lines

For four-bar linkages of Class B and cognate #2, a generic design is represented
by 𝒅 = {𝐴, 𝐴∗, 𝐵, 𝐵∗, 𝑙, 𝑙2, 𝑙, 𝑄, 1 − 𝑄}. Note that 𝑙1 = 𝑙3 = 𝑙 and 𝑄∗ = 1 − 𝑄
based on the conditions derived earlier. This simplifies the coupler equation in
terms of {𝐴, 𝐴∗, 𝐵, 𝐵∗, 𝑙, 𝑙2, 𝑄}. As the variables 𝑙 and 𝑙2 occur only in the form
of squares, 𝑙2𝑠 = 𝑙22 and 𝑙𝑠 = 𝑙2 − 𝑙22𝑄(1 − 𝑄) are introduced to simplify the
equation further and to reduce the total degree. At this stage, a decision is made to
treat 𝐴, 𝐴∗, 𝐵, 𝐵∗ as specified design parameters instead of treating them as variables.
This brings down the number of variables to 3, namely, 𝑙𝑠 , 𝑙2𝑠 and 𝑄, as opposed to
being 7 which would be a much harder problem outside the scope of this work.
As mentioned earlier, the coupler curve of a four-bar linkage is degree six. Hence,

if the exact synthesis approach is taken, amaximumof only six design positions along
a straight line can be specified. Approximate synthesis process allows for as many
design specifications as desired. The optimization problem is one of minimizing the
error residue of the coupler equation over all the design positions. We chose the
𝑳2-norm to retain the polynomial nature of the objective function, thus allowing the
use of a numerical continuation approach to solve any resulting polynomial system.
The objective of the optimization problem is a sum of squares of the residue of

the coupler equation over all the design positions, 𝑗 = 1, 2, ..., 𝑁:

1
2

𝑁∑︁
𝑗=1
𝜂2𝑗 , (8)

where 𝜂 𝑗 = 𝑓 (𝐴, 𝐴∗, 𝐵, 𝐵∗, 𝑙𝑠 , 𝑙2𝑠 , 𝑄, 𝑋 𝑗 , 𝑋∗
𝑗
). The design variables are 𝑙𝑠 , 𝑙2𝑠 , 𝑄,

while 𝐴, 𝐴∗, 𝐵, 𝐵∗ are the design parameters and 𝑋 𝑗 , 𝑋∗
𝑗
are the design positions.

The first-order necessary conditions of optimality are then derived symbolically as:

𝑁∑︁
𝑗=1
𝜂 𝑗

©­­­­­«

𝜕𝜂𝑗

𝜕𝑙𝑠

𝜕𝜂𝑗

𝜕𝑙2𝑠
𝜕𝜂𝑗

𝜕𝑄

ª®®®®®¬
= 0. (9)

This system of 3 equations in 3 unknowns has a monomial structure that is invariant
to the number of design positions 𝑁 . This allows us to specify more design positions
without increasing the complexity of the system. In particular, the total degree of
this polynomial system is 648, which forms a trivial upper bound of the number
of critical points of the objective function. One can computer tighter bounds such
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as a 2-homogeneous Bézout bound [4] of 186 and the BKK bound [4] of 73. This
is confirmed by explicitly solving a randomly chosen ab initio system using the
numerical continuation solver Bertini [7, 8] via a 2-homogeneous homotopy of
186 startpoints. Solving this ab initio system yielded 73 solutions matching the BKK
bound. Thus, one can use a parameter homotopy [8] and track 73 solution paths to
solve any other system with the same monomial structure.

4 Design of Experiments

s

r

1

θ

A

B

x

iy

O

Fig. 3: Design specification for approximate straight line generating four-bar linkages

Parameter homotopy runs are carried out for the design of approximate straight
line generating four-bar linkages with cognate #2 symmetric four-bars of Class B
being the primary focus. The design specification is chosen to be discrete points of
equal step-length along the 𝑥-axis in the range [−0.5, 0.5]. Specifying a high number
of design positions (𝑁 = 100 in this work) reduces the possibility of undesirable
coupler curve behavior between the desired positions. The ground link is described
by four parameters, two for each fixed pivot. We add a constraint that restricts the
ground link such that the axis of symmetry passing through the mid-point of the
design specification as shown in Fig. 3 resulting in three parameters 𝑟 , 𝜃, and 𝑠 as
illustrated. The parameter 𝜃 can be restricted to bewithin [0◦, 90◦] as the other values
are topologically equivalent. We sample the space by employing a discretization
scheme as follows:

𝑟 ∈ {0.25𝑖}8𝑖=0 𝜃 ∈ {15◦ 𝑗}6𝑗=0 𝑠 ∈ {0.25𝑘}8𝑘=1, (10)

which yields a total of 9·7·8 = 504 distinct problems. The computation time required
for solving a single parameter homotopy run of 73 paths is about 15s and only the
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solutions that correspond to physical linkages are investigated. Moreover, since this
computation yields all critical points, only the local minima for each computation
are retained while all saddle points are rejected. This yields 2461 linkages which are
then further refined based on an allowable structural error tolerance of 1

100 of unity
in the 𝑦 direction of the desired segment and a maximum link length constraint of
2. This results in 59 linkages of which cognates #1 and #3 are computed based on
Eq. (2).
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Fig. 4: An atlas of four-bar linkages that generate an approximate straight line
segment visualized using t-SNE.

For exhibiting these 59 ·3 = 177 linkages, we used themachine learning technique
t-SNE [9], a nonlinear dimensional reduction tool to allow us to visualize data in
2D. Using the link dimensions to represent each four-bar linkage and setting the
hyper-parameter of t-SNE, namely, perplexity, at 5, Fig. 4 is produced. It shows
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bunches of linkages that qualitatively resemble classical straight line generators as
observed in the representative set of nine four-bar linkages displayed to scale. This
computational approach produced many that serve as a useful atlas for designers.

5 Conclusion

In this paper, the synthesis equations were formulated, characterized, and solved
for a four-bar linkage with ground pivots specified to produce a desired symmetric
coupler curve. The solution is applied to search for four-bar approximate straight line
generators. The validity of our approach is affirmed by rediscovering the classical
approximate straight line generators. In addition, we foundmore approximate straight
line generators, each of which seems to be a variant of the classical linkages, but
with substantially different dimensions. Using the t-SNE algorithm, our results are
organized into a 2D atlas, which could be a useful reference for mechanical designers
in need of more straight line options. A future direction related to this paper would
be to more thoroughly investigate what we term as Class A linkages.
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