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Abstract

Changes in environmental or system parameters often drive major biological transi-
tions, including ecosystem collapse, disease outbreaks, and tumor development. An-
alyzing the stability of steady states in dynamical systems provides critical insight
into these transitions. This paper introduces an algebraic framework for analyzing the
stability landscapes of ecological models defined by systems of first-order autonomous
ordinary differential equations with polynomial or rational rate functions. Using tools
from real algebraic geometry, we characterize parameter regions associated with steady-
state feasibility and stability via three key boundaries: singular, stability (Routh-
Hurwitz), and coordinate boundaries. With these boundaries in mind, we employ
routing functions to compute the connected components of parameter space in which
the number and type of stable steady states remain constant, revealing the stability
landscape of these ecological models. As case studies, we revisit the classical Levins-
Culver competition-colonization model and a recent model of coral-bacteria symbioses.
In the latter, our method uncovers complex stability regimes, including regions sup-
porting limit cycles, that are inaccessible via traditional techniques. These results
demonstrate the potential of our approach to inform ecological theory and intervention
strategies in systems with nonlinear interactions and multiple stable states.

1 Introduction

Biological transitions, while ubiquitous in nature, are often exacerbated or caused by human
activities. Many of the most consequential events experienced by people or societies are
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System Initial state Altered state Possible cause

Cells Healthy Diseased Shift in mutation rates

Cells Diseased Healthy Medication

Drylands Semi-arid Desert Increased grazing pressure

Lake Healthy Eutrophic Increased temperatures

Population Disease-free Epidemic Introduction of infected individual
Population Endemic disease Disease-free ~ Vaccination

Population Abundant Extinct Increased mortality due to predation
Population Sparse Abundant Translocation intervention

Table 1: Transitions of biological systems and their possible causes

biological transitions — including tumor development, disease outbreaks, and ecosystem col-
lapse. A greater understanding of the causes of these transitions allows us to better detect,
prevent, manage, or revert them. Table 1 provides some examples of biological systems,
transitions that they may undergo, and possible causes.

Transitions occur due to changes to key aspects of these systems (possibly small in mag-
nitude and duration), leading to large-magnitude, long-term changes in the system. These
transitions may be due to perturbations to system parameters — for example, eliminating
malaria by decreasing the reproduction rate of mosquitoes — or by short-term changes in the
system state caused by external forces — such as one-time immigration of infected individuals
causing a disease outbreak. Mathematically, these transitions can be described by assessing
the stability of the equilibrium states of the system. In order to study system transitions,
we must first model the system in its current state — often represented as a steady-state
(though no real system is ever truly at equilibrium). This is generally done by mechanis-
tically describing the processes that cause changes in the system state as functions of the
current system state. However, determining the existence and stability of steady states may
sometimes be a non-trivial mathematical challenge even when the functions take the form
of relatively simple polynomials or rational functions. A major goal is to determine how the
stability landscape shifts as parameter values are perturbed. These parameter perturbations
can correspond to interventions aimed at curtailing transitions or enabling them in order to
achieve a desired state.

In this paper, we set out to apply a recent algebraic geometry method to determine the
stability landscape of any dynamical system described by a system of first-order autonomous
ordinary differential equations, & = f (x) where the rate function f is polynomial or rational
in z. Models of this form are ubiquitous in the mathematical biology literature and often used
to describe population dynamics, the spread of disease within a population, or the spread
of infection among a population of cells. With the use of routing functions [7], we are able
to decompose parameter space into (not necessarily disjoint) connected components within
which certain equilibria exist and are stable. Furthermore, regions of overlap among the
connected components indicate where multistability is possible, that is, where perturbations
to the system state (not the parameter values), can lead to transitions.

As a case study, we consider a model representing the dynamics of a host and two of its
symbionts that is described by a system of ODEs with rate functions given by multivariate



polynomials of degree two. While these functions are simple, the full stability analysis of this
model is intractable employing commonly-used techniques. We demonstrate using routing
functions to analyze slices of the stability landscape when the coral is intrinsically viable
and when the coral is intrinsically non-viable. As a by-product of this analysis, we also
determine the existence of a region of parameter space wherein the model must exhibit limit
cycles simply by determining the complement of the identified connected components. Our
hope is that this new method can be useful for mathematical biologists analyzing similarly
formulated systems.

The rest of the article is organized as follows. Section 2 summarizes steady-state analysis
and describes the proposed approach using routing functions. This approach is applied to
the Levins-Culver model [18] in Section 3 to reproduce known results. Section 4 applies the
approach to a tripartite symbiosis system. A short conclusion is provided in Section 5.

2 Steady-state analysis

This paper is concerned with understanding the steady states of a dynamical system with
polynomial or rational rate function. To this end, consider the dynamical system

&= f(z;a)
where a = (ay,...,a;) € R, are parameters, * = (z1,...,7,) € RY, are variables and
f=(f1,..., fn) are real-valued polynomial or rational functions. For a given a, the point x

is a steady-state of the system if f(z;a) = 0. A steady-state x is locally asymptotically stable,
or simply stable, if the eigenvalues of the Jacobian matrix of f with respect to the variables
evaluated at z, denoted J, f(z;a), all have negative real parts. Otherwise, x is unstable.
Each point a in the parameter space will give rise to a certain number of real positive
steady-states and a certain number of stable steady-states. In fact, the parameter space R¥
can be decomposed into regions where these counts are constant. For a polynomial dy-
namical system as described above, the boundaries of these regions are determined by an
algebraic hypersurface (possibly reducible) called the discriminant locus (described in Sec-
tion 2.1), and the regions themselves are semi-algebraic sets. Thus, determining these regions
is fundamentally a real algebraic geometry problem. See, e.g., [2, 10, 17] for more details.
Determining these regions of parameter space are of much interest in mathematical mod-
eling. Regions of the parameter space that give rise to multiple real-positive steady-states
are often referred to as regions of multistationarity, while regions of the parameter space
that give rise to multiple real-positive stable steady-states are often referred to as regions
of multistability. A concrete understanding of these regions can aid in model selection and
discrimination [9]. In some cases, just determining whether regions of multistationarity or
regions of multistability exist for a dynamical system can be a challenging question [5, 16].
As an illustration of the challenge to determine these regions of parameter space, consider
the following model that represents a predator population y with a foraging rate that follows



a Holling Type II functional response and a prey population x with a strong Allee effect:
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dt 1+ fBx

The parameters of this system are «, 5, v > 0. The right-hand side is rational where the
denominators do not vanish on the sets of interest. In fact, there are four steady-states: total
extinction (0,0), two prey-only steady-states, (A,0) and (K,0), and a coexistence steady-
state, (z*,y*), provided that z* = %Lmﬂ > 0 and

. (14 Bar)(K — o) (2" — A) o
Y= Ak >0 = (K—z")(z"—A)>0. (2)

Note that total extinction is stable with eigenvalues —1 and —m. Assume that

0< K<z = < A.

y—mp

Then, (A,0) is unstable and (K, 0) is stable. Since the system is only two-dimensional, the
stability of the coexistence steady-state (z*,y*) can be determined simply by computing the
signs of the trace and determinant of the Jacobian matrix evaluated at (z*,y*), say J*:

= (5) () (£ - 75)
det(J*) = (ﬁ) . (1 _ ?) (f% _ 1) |

The positivity of det(J*) is straightforward via * > 0 and (2). Thus, the coexistence steady-
state is stable if tr(J*) < 0 and the corresponding stability boundary arises from tr(J*) = 0.

If we fix all parameters except one, we can use tr(J*) to straightforwardly determine the
stability of the coexistence steady-state. Suppose that (a, 8,7y, m, K) =(2,3/2,1,1/2,1).
Now, for example, if A =9/4, then (z*,y*) = (2,2/9) is stable with tr(J*) = =7/12 < 0 and
det(J*) =1/72 > 0. When A = 30/11, then (z*,y*) = (2,8/15) has tr(J*) = 0 and thus lies
on the boundary of stability. Furthermore, as one increases A to pass through the boundary,
for example at A = 3, then (z*,y*) = (2,2/3) and tr(J*) = 1/4 > 0 so that (z*,y*) is
unstable. But extending this analysis to higher dimensions, say by allowing K to also be a
free parameter, leads to a much more difficult problem.

In this work, which is demonstrated using two models from ecology, we use techniques
based on routing functions (described in Section 2.2) to compute the decomposition of the
parameter space. A full description of the decomposition of the parameter space is called a
landscape, or paramter landscape. We will focus primarily on the stability landscape for our
systems of interest. In the stability landscapes described below, the number and type (e.g.,
coexistence) of the stable steady-states are constant in each region.



2.1 Boundaries

As mentioned above, for a polynomial or rational dynamical system, the region boundaries
of a parameter landscape are contained in an algebraic hypersurface. The following describes
how to obtain this hypersurface in general. To aid the description, we use language from
computational algebraic geometry, e.g., see [6] for a general background. For simplicity, we
make some assumptions about the system f that hold throughout. Given a generic a*, we
assume that the system f(z;a*) = 0 has a finite number of isolated solutions, say d, over the
complex numbers, all of which are nonsingular, i.e., f(z;a*) = 0 implies det(J, f(z;a*)) # 0.
Moreover, we assume that, for all a, the system f(x;a) = 0 has exactly d solutions count-
ing multiplicity.

In considering how to compute the region boundaries, we need to first consider the
different ways that the number of real positive stable steady-states can change as we vary
the parameters a. For our application, this will result in three types of algebraic boundaries:
the singular boundary, the stability (Routh-Hurwitz) boundary, and coordinate boundaries.
The singular boundary, which is the classical discriminant locus, arises from parameters a
where there exists  with f(z;a) = 0 and det(J,.f(x;a)) = 0. The stability (Routh-Hurwitz)
boundary arises when the greatest real part among all eigenvalues (the spectral abscissa
of J.f(x;a)), becomes 0. Finally, a coordinate boundary arises when a coordinate of a
steady-state becomes 0.

Singular boundary The first way that the number of real positive stable steady-states
can change is by the total number of real solutions changing. This can only occur when
f(z;a) = 0 has a singular solution, i.e., det(J,f(z;a)) = 0. The (Euclidean) closure of
the set of such parameters a, called the singular boundary, forms an algebraic subset of the
parameter space. For an illustrative example, consider the quadratic equation

f(z;a) = a12® + agx + az = 0.
Thus, the singular boundary arises when
f(z;a) = a12* + agr + a3 =0 and f'(z;a) = 20,2 + ay =0
which, upon eliminating z, yields the classical discriminant locus defined by
D(a) = a3 — 4ajas = 0.

In particular, f(z;a) = 0 has two real solutions when D(a) > 0, no real solutions when
D(a) < 0, and one real solution (with multiplicity two) when D(a) = 0.

As illustrated in the quadratic above, the singular boundary arises as the zero set of
an elimination ideal, which can be computed algorithmically using Grobner bases. Since
elimination ideals are key to this perspective computationally, we will present the bound-
aries, including the singular boundary, through an ideal-theoretic perspective. The first
piece is the equilibrium ideal Zy = (f) C C[z,a]. The corresponding algebraic set is the
equilibrium variety

Vi = V(I)) = {(x,a) € T | f(sa) = 0},



Notice that both the parameters a and the variables x are being treated as indeterminates
in this setup. The projection map 7, : C"** — CF defined by 7,(z,a) = a is the canonical
projection onto the parameter space. The geometric analog to the algebraic operation of
elimination is projection.

With the assumptions above, the ideal of the singular boundary is defined by

(Zs + (det(J2f))) N Cla]

and the singular boundary is the corresponding algebraic set. For example, via Grobner
bases, there is an algorithmic approach to compute the ideal of the singular boundary.

Especially for biological and ecological systems, the equilibrium ideal Z; need not be
prime, i.e., the equilibrium variety Vy is reducible. For example, the system in (1) has
four prime components. When Z; is not prime, one can construct the ideal of the singular
boundary for each prime component, which is typically an easier computation.

Stability (Routh-Hurwitz) boundary The second way that the number of real positive
stable steady-states can change is by a change in the stability of a steady-state, i.e., when
the real part of an eigenvalue becomes 0. Since we will use the Routh-Hurwitz criterion [15]
to determine stability, we will refer to this boundary as the Routh-Hurwitz boundary. Since
the singular boundary arises from an eigenvalue becoming 0, the Routh-Hurwitz boundary
contains the singular boundary.

Given parameters a, let = be a corresponding steady-state. A necessary Routh-Hur-
witz condition for x to be stable is that the coefficients of the characteristic polynomial
of J.f(x;a), namely, det(\ — J, f(x; a)), are all positive. In particular, when f is polynomial
or rational, there are polynomials or rational functions ¢,(x;a), ¢,_1(x;a), ..., co(x;a) with

det(M — J f(z;a)) = co(z;a) A" + ¢y (z;0) N+ -+ - + co(z; a).

Note that c¢,(z;a) = 1, ¢p1(z;a) = —tr(Jof(z;a)), and cy(z;a) = (—1)"det(J, f(x; 2)).
Hence, the necessary condition is that ¢;(x;a) > 0 for i =0,...,n.

With ¢, (z;a) = 1, the sufficient Routh-Hurwitz condition can be stated as all entries of
the first column of the so-called Routh array are all positive. Each entry of the Routh array
is a rational function in the coefficients ¢;(x;a) of the characteristic polynomial, with the
denominator arising from another entry so only the numerators need to be considered. We
call each numerator a Routh polynomial. A full description of the Routh array can be found
in, for example, [8].

Since the systems in this paper either have n = 2 or n = 3, we explicitly provide the
corresponding conditions where ¢,(z;a) = 1. For n = 2, the Routh-Hurwitz criterion for
stability is simply that the two Routh polynomials, namely 5, (z; a) and cy(z; a), are positive.
This corresponds with tr(J, f(z;a)) < 0 and det(J, f(x;a)) > 0 as utilized in the preliminary
example at the start of the section.

For n = 3, the Routh-Hurwitz criterion for stability is that the following three Routh
polynomials are positive:

B.(z:a), B.(w:a)B,(x;a) — cs(w; a)co(wsa), colw;a).

With ¢3(x;a) = 1, positivity of these three Routh polynomials imply £, (x;a) > 0.
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The Routh-Hurwitz boundary is the (Euclidean) closure of the set of parameters a such
that f(z;a) = 0 and some Routh polynomial vanishes. With ¢,(x;a) = 1, there are n Routh
polynomials, say r1(z;a),...,r,(x;a). Thus, for R(z;a) = [, ri(xz;a), the ideal of the
Routh-Hurwitz boundary is defined by

(Zy + (R)) N Cla].

As with the singular boundary, one can construct the ideal of the Routh-Hurwitz boundary
for each prime component of Zy and each Routh polynomial.

Coordinate boundary Finally, the third way that the number of real positive stable
steady-states can change is if a steady-state is no longer positive. Given a variable, say x;,
the x;-boundary is the Zariski closure of the set of all parameter values where the system
f(x;a) = 0 has a solution with z; = 0. Similar, to the singular boundary and the Routh-
Hurwitz boundary, the ideal of the x;-boundary is (Zy + (z;)) N Clal.

As in the illustrative example (1) and as will be seen in Sections 3 and 4, it could be the
case that certain types of steady-states have some coordinates identically equal to zero, e.g.,
extinction and prey-only in the illustrative example above. In such cases, the corresponding
ideal for the coordinate boundaries would be the zero ideal, (0), since every parameter value a
has a solution with that coordinate equal to zero. Thus, to obtain relevant information
associated with coordinate boundaries, one needs to consider each prime component of Z
separately and assess which coordinate boundaries are relevant for each prime component.

Putting everything together and removing redundancies, one obtains the total boundary.
The framework described above is flexible in that one can consider the total boundary for the
entire system or only for certain types of steady-states. Nonetheless, with the assumptions
above, the total boundary is either empty or is a union of hypersurfaces, called a hypersurface
arrangement, in C*. Since an empty total boundary is not interesting, we assume that the
total boundary, B C CF, is a hypersurface arrangement of the form

B~ | gila) =0} 3

where ¢1,..., g, are nonconstant polynomials in a. In particular, the type and number of
stable steady-states remain constant on each connected component of R\ B. The last step
is to compute such connected components, which is considered next.

2.2 Routing function and connected components

The following describes using routing functions, e.g., see [7, 13, 14], to compute the connected
components of R\ B, where B is as in (3). For a full accounting of routing functions and
justification for the algorithm proposed in this section, we refer the reader to [7]. From (3),
one obtains a rational function

g91(a) -~ - gm(a)
L+ (ay — By)2 + -+ (a, — cx)?)P (4)

re(a) = (
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where ¢ € RY and 2D > > deg(g;). For a generic choice of ¢ € R¥, the function r,
satisfies the following conditions [7, Thm. 3.4]:

1. For all € > 0, there exists § > 0 so that if ||z|| > J, then |r.(z)] < e.
2. There are finitely many critical points of 7., i.e., solutions of Vr.(a) =0, on R¥,\ B.

3. For each critical point a € R, \ B of r., the Hessian of 7. evaluated at a, namely
Hr.(a), is invertible, i.e., each critical point is non-degenerate.

4. For each a € R\ {0}, there is at most one critical point a of r. satistying r.(a) = a.

Such a function r, is called a routing function for R% j\ B and the critical points of r. in R¥ j\ B
are called routing points. The indexr of a routing point a is the number of eigenvalues of
Hr.(a) which have the same sign as r.(a). Hence, the index 0 routing points are precisely
the local maxima when r. > 0 and local minima when 7. < 0. An eigenvector v of Hr.(a) of
unit length with a corresponding eigenvalue A that has the same sign as r.(a) is said to be an
unstable eigenvector with v and —v being the corresponding unstable eigenvector directions.

One outcome of Theorem 4.4 of [7] is that connected components of R¥, \ B are in
one-to-one correspondence with the connected sets of routing points where the connections
arise from gradient ascent/descent along unstable eigenvector directions as follows. If a is
a routing point with index > 0 and v is an unstable eigenvector direction, consider the
following initial value problem:

y(t) = Sign(rc(a)) ) Vrc(y),

; (1)
hmt_>(]+ m =, (5)

lim; o+ y(t) = a.

By [7, Prop. 4.2], the trajectory y(t) is well-defined and lim;_,, y(t) must also be a routing
point. Looping over all routing points and all unstable eigenvector directions yields the
relevant connections between the routing points.

It is natural to construct a graph whose vertices are the routing points of r. in R% ;\ B and
whose edges arise by the connections between the routing points via 5. In fact, Algorithm 1
computes such a graph with the following justified by [7, Thm. 4.4].

Theorem 2.1. The connected components of the graph G computed by Algorithm 1 are in
one-to-one correspondence with the connected components of R% \ B.

Since B is a hypersurface arrangement, there is a recently developed Julia package called
HypersurfaceRegions. j1 [3] that can be used to perform the computations in Algorithm 1.

Example 1. Consider computing the connected components of R2,\B where the hypersurface
arrangement B arises from the two coordinate boundaries and two ellipses, i.e.,

(a1 —5)° | (as —5)? (a1 —5)° | (as —5)?
T I 10 e e

For a generic choice of c € R, r.(a) as in (4) yields a routing function. For our experiment,
we used ¢ = (1.2,0.7) yielding 9 routing points of r. on R\ B: 7 have index 0 and 2 have
index 1. Using gradient paths along unstable eigenvector directions as in Algorithm 1, we
find that there are 6 connected components of R2,\ B as observed in Figure 1.

—1.

g1(a) = a1, ga2(a) = az, gs3(a) =

8



Input: A routing function r satisfying conditions 1-4 above associated with R¥,\ B.
Output: A graph G whose vertices are the routing points of r and whose connected
components are in one-to-one correspondence with the connected

components of R\ B.

Compute the routing points of 7 on R\ B, say 21,..., 2.

Initialize the graph G whose vertices are zq, ..., z; with no edges.

for j=1,...,/do

foreach unstable eigenvector v of Hr(z;) do

Compute limit routing point z, starting from z; in the direction v with
respect to r using (5).

Add the edge (zj,24) to G.

Compute limit routing point z_ starting from z; in the direction —v with
respect to r using (5).

Add the edge (z;,2_) to G.

end

end
return G

Algorithm 1: Connected Components

Figure 1: Computing the 6 regions in R?,\ B where the boundaries are the two ellipses (thick
blue) and coordinate axes. Routing points (index 0 in blue, index 1 in red) and gradient
paths (thin blue) are also plotted demonstrating 6 connected components.

Given a point a € R” ;\ B which is not a routing point, the output of Algorithm 1 can be
used to determine which connected component of R¥,\ B contains a. For this, one simply
solves the following initial value problem:

y(t) = SigH(TC(CL)) ’ Vrc(y),

_ (6)
y(0) = a.

By [7, Prop. 4.1], the trajectory y(t) is well-defined and lim;_,, y(t) must be a routing point

in the same connected component as a.
The computationally-intensive parts of this approach are computing the total boundary,



computing the routing points, and tracking gradient ascent/descent paths. As the size
of the system increases, these parts become challenging on both symbolic and numerical
computations. Reducing the number of parameters by fixing some to constant values is a
common approach to reduce the computational burden to obtain some insights.

3 Levins and Culver model of competition-colonization
trade-off

Scientists have long sought to explain how coexistence can arise through spatial competi-
tion among species. While the full answer certainly involves several axes of variation [1],
many theorists have focused on individual mechanisms to improve our understanding of
coexistence. One simple theory suggests that two species can coexist through a competition-
colonization trade-off wherein one species is superior at colonizing unoccupied space while
the other species is capable of displacing the former from occupied patches [18].

The Levins-Culver model exhibits such a competition-colonization trade-off for two pop-
ulations occupying the same niche and can be summarized by the system of equations:

d Byy (L =y) = wy,

¢ (7)
a :ﬁz'z(l_y_'z)_ﬁyyz_f}/zzy

where y is the fraction of the niche occupied by species 1 and z is the fraction of the niche

occupied by species 2 [19]. The colonization rates of species 1 and 2 are limited by the

availability of resources, represented by the terms 1 —y and 1 —y — z, respectively. However,

species 1 is able to colonize any area currently occupied by species 2.

At first glance, it may seem that species 2 will always be excluded from the niche through
replacement by species 1. Through a stability analysis, it can be shown that if the intrinsic
colonization rate of species 2, (3., is large enough, then the two species can coexist in the
long term. More precisely, if 5, > B, (8, + 7. — V) /7y and S, > 7, then the coexistence
equilibrium, which satisfies

(8)

is locally asymptotically stable.

To finish this section, we give a proof that if 8, > 5, (8, + 7. — 7y) /7y and 5, > 7, then
there is a locally asymptotically stable coexistence equilibrium using routing functions. The
idea is to first construct the region boundaries in parameter space as described in Section 2.1,
and then it is enough to check there is a locally asymptotically stable coexistence equilibrium
at a single routing point in each region.

First, we construct the boundaries. The ideal Z; in this case is determined from the
right-hand sides of equation (7)

(Byy (L —=y) — vy, Bz (1 —y — 2) — Byyz — 722).

10



The ideal is not prime; hence, we consider a primary decomposition which takes the form
If = ﬂ?:l jf(z) where

The characteristic polynomial of the system is of the form A2 + a; A + ag where ag and a; are
below.

ag = 2y° B, + 2y° B, B + dyzB,8. — ybB; — 3yBybL-
= 220yB. + yBy vy + yByy + 2287
+2yByv. + ByB: — By — By + W=
ar = 3yBy +yB. +220. — By — B+ + 72

In order to find equations for the region boundaries, we need to compute the following
elimination ideals and intersect them:

(7Y 0 {agar)) N C[By, Be, vy 7z,
(77 0 (yagar)) N ClBy. B, 7y, 72
(7 0 (zagar)) N CLBy. B, vy, s,

(j;4) N (yzapar)) N CBy, Bz, Vy» Vz)-

The resulting ideal is principal with the total boundary defined by the vanishing of the
following polynomials:

gl:ﬁy_'Yya 92:ﬁ2_7z7 g3:6y_ﬁz_7y+7z7 g4:ﬁy+62_7y_7z7
95 = By = ByYzr 96 = B — Byyy — By + Byvzr 91 =20 — 2By — By + By

Note that g; is the boundary of 5, > =, and gg is the boundary of 5, > B,(8, + v — )/ V-
Since we are only interested in parameter values that are positive, we include 3,, 8., v, and
v, as boundaries along with g1, ..., g7 above, so the resulting arrangement A consists of 11
hypersurfaces. Using the Julia package HypersurfaceRegions. j1, we find that there are 168
regions in total; however, there are only 16 regions that divide up the positive orthant R? .
These are the 16 regions we need to test.

Of these 16 regions, there are 2 that make up the region where 5, > 8, (8, +7: — 1) /Yy
and 8, > 7,. We can pick a representative routing point from each of these regions and
check to see if these parameter values give rise to a locally asymptotically stable coexistence
equilibrium. The parameter values are

(By, By Yy» 7=) = (1.03941, 1.76600, 0.93685, 0.22883),
(Bys By Yy 7-) = (1.21871,1.48986, 0.75558, 0.23395).

11



It is straightforward to check that each gives rise to a locally asymptotically stable coexistence
equilibrium; therefore, every point in these regions gives rise to a stable equilibrium as this
property can only change by crossing a boundary. On the other hand, if we check any
of the other 14 regions, we find that these parameter values never give rise to a locally
asymptotically stable coexistence equilibrium confirming the result stated earlier.

4 Tripartite symbiosis

In a recent article, Gibbs et al., formulated a model of coral-bacteria symbioses by extending
the Levins-Culver model [11]. In their model, the patch landscape, in this case, the coral
reef available for bacteria to colonize, is no longer fixed but dynamically changing over time.
In addition, one type of bacteria is assumed to increase the reproduction rate of the coral it
colonizes (mutualism), while the other type of bacteria increases coral mortality (parasitism).

The coral populations are assumed to inhabit a reef with a total carrying capacity scaled
to one. In the absence of bacteria, the unoccupied host coral population, x, grows over bare
reef at the intrinsic per-capita growth rate b and dies off at the mortality rate d. The growth
of the coral is inhibited by density dependence so that its size cannot exceed the carrying
capacity of the bare reef.

The state variables y and z correspond to the amount of coral occupied by parasitic
and mutualistic bacteria, respectively. These parasitic and mutualistic bacteria populations
colonize coral through mass-action interaction with contact rates 5, and (., respectively.
The two types of bacteria cannot occupy the same patch of coral, hence z +y + 2z < 1.
Both bacterial types are obligate symbionts of the coral host, so their carrying capacities
are limited by the available coral area. Additionally, if the coral they occupy dies off (which
occurs at rate d), the bacteria die off as well. Due to virulence, the coral occupied by
parasitic bacteria endures additional mortality at the rate d, which we refer to as the “death
detriment” for brevity. Bacteria also die off on their own, leaving the coral it previously
inhabited unoccupied, at rates v, or .. The total mortality rate for parasitic bacteria is,
therefore, d + d + vy. Parasitic bacteria also colonize coral that is already occupied by
mutualistic bacteria at the per-capita rate [,y, thereby limiting the carrying capacity of
mutualistic bacteria to 1 — z — y. Finally, colonization by the mutualistic bacteria induces
an increased growth rate in the coral, b, which we refer to as “birth benefit” for brevity.

The full system of ordinary differential equations describing this model is given by equa-
tions (9) and illustrated in Figure 2:

dx -

pri bz +y) + (b+b)2][1 = (x+y+2)] = Byry — B.v2 + vy + 7.2 — dr,

d .

d—‘z = Byry + Byyz — (d+d + )y, (9)
dz

pri B.xz — Byyz — (d+,) 2.

Of interest are the criteria (i.e., sets of parameters and initial conditions) for which i)
coexistence among all three populations is stable; ii) mutualistic or parasitic bacteria are
excluded from the system in the long term; iii) mutualistic or parasitic bacteria are able
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Figure 2: The coral-bacteria symbioses compartmental model represented by system (9).
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to invade a system where it is initially absent. Studying the criteria for coexistence or ex-
clusion provides insights into the key drivers for the assembly of stable tripartite symbioses
with competing symbionts. Such knowledge could inform the development of conservation
strategies for coral reefs affected by acidifying and warming oceans by providing the cri-
teria in which beneficial bacteria stably coexist with coral, with or without the presence
of harmful bacteria.

We characterize the eight possible equilibria of system (9) into five types:

e total extinction equilibrium Ey = (0,0, 0);

e bacteria-free equilibria £, = (+,0,0);

e mutualistic bacteria exclusion equilibria E,, = (+,+,0);

e parasitic bacteria exclusion equilibria F,, = (+,0,+); and
e full coexistence equilibria E., = (+,+, +).

The results of [11] determined criteria for the existence and stability of these equilibria under
the assumption that the mutualistic bacteria had no effect on the growth of the coral (b = 0)
as well as when both bacteria had no effect whatsoever on coral life history (b = 0 and
d = 0). The other cases were considered numerically, where it was discovered that stable
limit cycles around the coexistence equilibrium point could occur for certain parameter
combinations. However, a full description of the stability landscape when b and d were both
positive was not provided.

We originally sought to fully describe the equilibrium dynamics of (9) by utilizing the
techniques outlined in Section 2.2 just as was accomplished for for the Levins-Culver model
in Section 3. However, due to the large the number of parameters, the Grobner basis com-
putations for computing the boundaries did not finish for the entire model. Thus, to reduce
to number of parameters, we set all the death rates equal to 1 and the birth rate of the
parasitic bacteria is set to 9, i.e. d =, =7, = 1 and 8, = 5. The resulting model has four
free parameters: b, 3,, b, and d.

Proceeding as in the end of Section 3, we compute the equations defining the total
boundary. It turns out that the ideal Z; C Clx, v, 2, b, B,,b, cZ] in this case has 5 primary
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components, one corresponding to each of the five equilibria state types: Ey, Fy, Eyy, Fy., Eoo
After adding in the Routh-Hurwitz conditions and eliminating x,y, z, we are left with a
principal ideal (g) C C[b,f.,b,d]. The polynomial g has 31 distinct irreducible factors,
g1, - - -, 931, whose degrees range from 1 to 20. In fact, there are 6 linear factors, 7 quadratic
factors, 2 cubic factors, 4 quartic factors, 4 quintic factors, 3 degree 9 factors, and the
remaining 5 factors have degrees 6, 7, 10, 13, and 20. We end up with the total boundary
B =J"{a € R*| gi(a) = 0}. These computations were done in Macaulay2 [12] and can
be found in a GitHub repository.

The next step is to compute the full set of routing points where each connected component
of the complement of the boundary in R%, contains a single routing point. Since the degree
of the numerator of the routing function, namely g, - - - g31, has degree 145, computing the
routing points in full generality was numerically unstable. Thus, we consider two major
cases: when b = 2 and when b = 0.5. These values were chosen because they correspond
to cases where the coral can persist on its own (b = 2 > d = 1) and where it cannot
(b = 0.5 < d = 1). Correspondingly, b — 1 is one of the six linear factors in g. For
each of these values of b, we consider the stability landscape for increasing values of the
colonization rate of the mutualistic bacteria: 3, = 2.5,3,3.5,3.9,4.1,5.9,6.1 and 10. The
values 3.9,4.1,5.9 and 6.1 were chosen since when b = 2, the linear polynomials 5, — 4 and
B, — 6 are factors of g|p—s.

For each of these 16 slices, we construct a routing function and compute the connected
components of R2;\ B. A routing point in each connected component was chosen and the
possible steady states for these parameter values were computed. Finally, we colored each
region according to which steady states were possible at the corresponding routing point.
These computations were done using the Julia package HomotopyContinuation. j1 [4]. The
results of these computations can be found in the next section, and all computations are
freely available in a GitHub repository.

4.1 Simulations

The following analyzes the three free parameters: the birth benefit of mutualist bacteria to
the coral host (b) the death detriment imposed by parasitic bacteria to the coral host (d),
and the colonization rate of mutualistic bacteria (/3,). To focus on the effects of the symbionts
on their host (via b and cZ), our results are presented as “slices” along the 3, axis. The names
and assigned colors for each stable steady state set are presented in Table 2

4.1.1 Intrinsically viable coral population (b = 2)

Figure 3 shows the changes in the b = 2 stability landscape as [, is increased from 2.5
to 10. At low values of (., the coral only steady state E, is stable, with a very narrow
stability region for mutualist exclusion E,, at low levels of death detriment d. As 8, is
increased to 3.5, there is bistability for sufficiently large values of reproductive benefit, b,
and mortality detriment, d. The mutualist population is positive only within these regions
of bistability, S, .. = {Es, By} and Sy o = {Ey, Eoo}. As [, crosses four, the stable sets
become E,,, E,., and E,, and bistability is no longer possible. Across most of the landscape,
the pathogen is now excluded, with a very narrow region of mutualist exclusion for low d,
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a small region where coexistence is stable, and a very small region where no steady states
are stable (shown in white). As 3, is further increased, the region of mutualistic extinction
vanishes, and the coexistence region grows slightly.

In this case, the extinction state Ej is not stable for any combination of A3,, b, and d since
the coral can persist without the assistance of the mutualistic bacteria. For our chosen f,
values, bistability only occurred for values of 5, = 3.5 and 3.9. When g, = 4.1, there is
a small white region in (e) for which none of the steady states are stable and the model
must have a limit cycle. For any value of 3, a stable steady state can only contain parasitic
bacteria if d is sufficiently low, with an upper limit of approximately d = 2.5 across all
values of f..

4.1.2 Intrinsically non-viable coral population (b = 0.5)

Figure 4 shows the changes in the b = 0.5 stability landscape as 3, is increased from 2.5 to 10.
In this case, where b = 0.5 < d = 1, all stable steady state sets include the total extinction
steady state Ey. Total extinction may be paired with pathogen exclusion, Sy .. = {Ep, E..},
or coexistence, Sp.o = {Eo, Eeo}, but never mutualist exclusion. In this frame of b and d
values, non-extinction steady states were only stable when (3, exceeds four (Figure 4, (e)-(h)),
that is, when the ability of the mutualistic bacteria to colonize coral was sufficiently high. In
this case, the non-extinction steady states E,. or F,, could only be stable if b was sufficiently
large, with this breakpoint decreasing as 3, increases. If d exceeded approximately 2.5, the
coexistence steady state could not be stable (e-h). Surprisingly, for 3, between 4.1 and 6.1,
there is also a lower bound for d below which the coexistence steady state E., cannot be
stable. However, as (3, is increased to ten (Figure 4 (h)), this lower bound vanishes.

Table 2: Color key for stability landscape labels

Label Name Color

o = (0,0,0) Total extinction -

= (+,0,0) | Coral only

E

E
E.y = (+,+,0) | Mutualist exclusion
E.. = (+,0,+) | Pathogen exclusion
Eeo = (+,+,+) | Coexistence

S0y = {Eo, By} | Extinction or pathogen exclusion
So.co = {Eo, Eco} | Extinction or coexistence
Sezz = {Ey, By} | Coral only or pathogen exclusion

Sz.co ={Ez, Eeo} | Coral only or coexistence

15



(e) B. = 4.1 (f) B. = 5.9 (g) B. = 6.1 (h) 8. = 10
Figure 3: Stability landscapes for increasing values of 3, with b = 2. In this case, the intrinsic

coral birth rate b exceeds the intrinsic coral mortality rate d = 1. b values are varied along
the z-axis and d values along the y-axis from zero to ten.

(e) B, =4.1 (f) 8. =59 (g) 8. =6.1 (h) B, =10
Figure 4: Stability landscapes for increasing values of 5, with b = 0.5. In this case, the

intrinsic coral birth rate b is less than the intrinsic coral mortality rate d = 1. b values are
varied along the x-axis and d values along the y-axis from zero to ten.
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4.2 Summary of results

Increasing the transmissibility of the mutualistic bacteria (3,) caused a transformation in
the stability landscape, whether the coral host is intrinsically viable (b > d) or not (b < d).
When the coral host was intrinsically viable, increasing 3, led to a shift in the landscape from
one where the coral only steady state £, was almost always stable (with the possibility of
bistability), to one where coral populations always exist and all stable steady states include
one of the colonized coral subpopulations. In particular, the region of bistability S, .., seen
when (5, = 3.9, abruptly becomes a region of stable coexistence as (3, is increased beyond
four. This suggests that the mutualistic bacteria can facilitate coexistence with the parasitic
bacteria through their ability to colonize coral. However, stable coexistence always requires
that the detrimental effect of the parasitic bacteria ((i) remains below a certain threshold.

When the coral population was not intrinsically viable (b < d), the possibility of viability
emerged when the transmissibility of the mutualistic bacteria (5.) exceeded four. Still, total
extinction was always a stable steady state, no matter the value of 3.. This suggests that if
environmental perturbations cause shifts in coral biology leading to their intrinsic inviability,
these populations could be preserved if mutualistic bacteria are present. Since these regions
are bistable, abundances likely must remain high to avoid landing in the stable manifold for
total extinction. Thus, shocks to populations, such as extreme weather events, could shift
stable regimes to ones of total extinction.

5 Conclusion

State transitions are ubiquitous in nature, and dynamic models are commonly used to under-
stand how perturbations or interventions can induce or prevent such transitions. Descriptions
of stability landscapes allow for the determination of parameter regimes wherein a desired
future state is stable or an unfavored state is unstable. Mapping parameter spaces into sta-
bility landscapes requires evaluation of a system of polynomial equations and inequalities in
several variables, a problem that is often analytically and numerically intractable.

The routing function method and algorithm presented here provide a straightforward
manner of conducting steady-state analysis and numerically determining stability landscapes.
Routing functions were originally proposed in [13] for answering connectivity queries and ex-
tended to computing smoothly connected components in [7]. The proposed extension to
analyze stability landscapes involves four steps: (1) compute the boundary ideal, (2) con-
struct a routing function and compute its critical points, (3) track gradient descent/ascent
paths from high index critical points to lower index critical points, and (4) analyze the pos-
sible steady states in each connected component in the complement of the boundary. The
utility of this method is complemented by the availability of computational tools to symbol-
ically compute boundary ideals and to numerically compute critical points and track paths,
particularly for the complement of hypersurfaces.

In this work, we illustrated the use of this method through the analysis of the coral-
bacteria symbiosis model [11]. While this model is relatively simple, describing the whole
stability landscape across the five types of equilibria was intractable through standard meth-
ods. After fixing some parameters, the routing function method allowed us to further elab-
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orate on the conditions in which bacterial colonization supports the persistence of coral
populations. In particular, we determined that colonization by mutualistic bacteria can fa-
cilitate the persistence of coral populations, whether or not the coral population is viable on
its own. In addition, we found regions of bistability that can be used to determine whether
shocks to populations might transition them away from healthy stable states to total extinc-
tion. This method also allowed us to identify a region with no stable steady states for which
the system must admit limit cycles or more complex attractors.

For simplicity, we restricted our example to explore the stability landscape induced by
certain rate parameters. This allowed for a rough qualitative sensitivity analysis of various
stable steady sets as these two parameters varied within a given “frame.” While this provided
a broad theoretical picture of model dynamics, in real applications, the parameters that are
treated as variables derive from the available data (or lack thereof) and the particular research
question. Computational efficiency of the routing function method depends on the feasibility
of symbolically computing boundary ideals and numerical conditioning of the routing points
and gradient descent/ascent paths. Of course, taking two or three parameters as variables
is often the best choice when the goal is to produce results that can be interpreted visually.

While not considered here, the routing function method can be used to address a range of
other questions commonly pursued with stability analysis. For example, given the existence
of bistability or, more generally, k-stability, one can treat initial conditions as parameters
to determine the stability landscape with respect to the initial conditions. Connectivity
questions can also be addressed, which was the original motivation for developing routing
functions. As demonstrated, this method is particularly well-suited to address common prob-
lems in the analysis of ecological models, in particular the description of stability landscapes.
The adoption of this method by mathematical biologists and ecologists has the potential to
expand the range of systems that can be analyzed and improve the understanding of param-
eters and their impact on the behavior of the model.
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