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Abstract

A standard question in real algebraic geometry is to compute the number of connected com-
ponents of a real algebraic variety in affine space. This manuscript provides algorithms for
computing the number of connected components, the Euler characteristic, and deciding the
connectivity between two points for a smooth manifold arising as the complement of a real hy-
persurface of a real algebraic variety. When considering the complement of the set of singular
points of a real algebraic variety, this yields an approach for determining smooth connectivity
in a real algebraic variety. The method is based upon gradient ascent/descent paths on the real
algebraic variety inspired by a method proposed by Hong, Rohal, Safey El Din, and Schost for
complements of real hypersurfaces. Several examples are included to demonstrate the approach.
Keywords. Connectivity, smooth points, real algebraic sets, polynomial systems, homotopy
continuation, numerical algebraic geometry

1 Introduction

In real affine space R", a real algebraic variety has the form

X =Wr(g1,.--,95) ={xeR" | g1(x) = -+ = gx(x) =0} (1)

where ¢1,...,9r € R[x1,...,2,], that is, polynomials in x = (x1,...,2,) with real coefficients.
Many problems in science and engineering can be translated into questions regarding real algebraic
varieties. For example, the real algebraic variety X could describe the configuration space of a
mechanism and path planning (e.g., see [6}/13,/16]) corresponds with determining connected paths
between two points on X. Moreover, singularity-free path planning (e.g., see |10,/11]) corresponds
with determining smooth connections between two points on X. Due to its ubiquity, there are many
algorithms proposed for deciding connectivity with a non-exhaustive list being [3|5,/14,{15,(17-19,27].

The approach in [20,21] considers connectivity in R™\Vr(f), where f € R[z1,...,xy], using
connections between critical points via gradient ascent paths. The algorithms described below are
based on this work, but generalized to consider Xy = X\Vr(f) which is assumed to be smooth.

*Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame,
IN 46556 (jcummin7@nd.edu)

TDepartment of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame,
IN 46556 (hauenstein@nd.edu, https://www.nd.edu/~jhauenst)

fDepartment of Mathematics, North Carolina State University, Raleigh, NC 27695 (hong@ncsu.edu, https://
hong.math.ncsu.edu/)

3Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27402
(cdsmyth@uncg.edu, https://sites.google.com/view/cliffordsmyth/)


https://www.nd.edu/~jhauenst
https://hong.math.ncsu.edu/
https://hong.math.ncsu.edu/
https://sites.google.com/view/cliffordsmyth/

(a) (b)

Figure 1: (a) Four smoothly connected components for a pair of intersecting lines with the singular
point at the intersection. (b) Two smoothly connected components for the Whitney umbrella with
the singular points forming the “handle” of the umbrella.

That is, X n Vr(f) is assumed to at least contain the singular points of X. Thus, connected
components of X; are smoothly connected in X. For example, Figure (a) shows that the pair
of intersecting lines Vg(27 — x3) has four smoothly connected components using f = 4(x% + x3)
while Figure (b) shows that the Whitney umbrella Vi(2? — z2x3) has two smoothly connected
components using f = 422 + 42323 + 3. Additionally, given a point in X t, one can decide which
smoothly connected component the point belongs to yielding an approach to decide if two points
lie on the same smoothly connected component.

The rest of the paper is organized as follows. Section [2] provides a summary of preliminary
topics. Section [3] describes routing functions which are the basis for the algorithms in Section [4
Section [5] proves the correctness of the algorithms while Section [6] demonstrates the algorithms on
some examples. A short conclusion is provided in Section [7}

2 Preliminaries

The following summarizes some background information that will be used throughout.

2.1 Smooth points

The following provides a short summary of smooth points with more details found in, e.g., .
For X as in , the dimension of X, denoted dim X, is the largest d such that (0,1)? injects by
a semi-algebraic map into X. If dim X = d, a point x € X is a smooth point of X, if there is an
open neighborhood of x in X which is a d-dimensional submanifold, i.e., the tangent space of x
with respect to X, denoted T, X, is d-dimensional. A point z € X is a singular point of X if it is
not a smooth point. Let X, and X be the set of smooth and singular points of X, respectively.
Hence, X = X;ep U Xging and Xreg N Xing = &, 1.€., Xreg = X\ Xsing.

Example 2.1. For X = Vg(22—22) as in Figure(a), dim X =1 and Xging = Vr(z1,22) = {(0,0)}.
For X = Vg(23 —23x3) as in Figure(b), dim X = 2 and Xging = Vr(z1,22) = {(0,0,23) | z3 € R},
called the “handle” of the Whitney umbrella.



The following will be assumed throughout which relates the smooth points with respect to X
with the null space of the Jacobian matrix of the defining polynomials g1, ..., gk.

Assumption 2.2. For X as in , let g ={g1,...,9x} and Jg(z) be the k x n Jacobian matriz
of g at x. Then, it is assumed that the system g is such that the following holds:

Xieg = {z € X | dimnull Jg(z) = dim X'}.
Form =n —dim X, let My, be the set of m x m minors of Jg(z) and S =3, 5/ p?. Therefore,
Xsing = X 0 VR(M,) = X n VR(S) = Wr(91,---, 9%, 5) and Xieg = X\V&(S).

For example, Assumption can always be satisfied by replacing g1, ..., gr with a generating
set for the real radical, e.g., see [9], of the ideal {(gi,...,gx). This assumption, which provides
that the tangent space of X at 2 € X,¢g corresponds with the null space of Jg(z), is utilized when

proving Theorem
2 2

Example 2.3. For X = Vg(2? — 22), g = 2% — 23 satisfies Assumption with n = 2 and
dim X = 1. Moreover, My = {21, —2x2} with S = 4(z3 + x3) yields

Xsing =Xn VR(Ml) =Xn VR(S) = VR(IL’l,:IZQ).

For X = Vg(2? — 23x3), g = 2% — 233 satisfies Assumption with n = 3 and dim X = 2.
Moreover, My = {2x1, —2z9x3, —13} with S = 4% + 4z323 + x5 yields

Xsing = X 0 VR(M1) = X 0 Vr(S) = Vr(z1,22).
In particular, {x1,x2} is a generating set for the real radical of {g,S) in both of these cases.

A semi-algebraic connected set C' = X is said to be smoothly connected if C' © X,¢s. Moreover,
the smoothly connected components of X are the connected components of X, eg.

Example 2.4. For X = Vi(z? — 22), the smoothly connected components are
Cy={(t,t) | t>0)}, Ca={(t,—t) | t >0}, C3 = {(—t,t) | t >0}, and Cy = {(—t,—t) | t > 0}
as illustrated in Figure (a). For X = V(22 — 22x3), the smoothly connected components are
Cy = {(uv,u,v?) | u>0,v € R} and Cy = {(uv,u,v?) | u < 0,v € R}

as illustrated in Figure [1(b).

2.2 Gradient system

Let X be as in which satisfies Assumption Suppose that a,b € R[zy,...,z,] such that
X nVr(b) = & and f = a/b. Hence, f is a rational function defined everywhere on X with
Vr(f) = Vk(a). Moreover, suppose that

X\Wr(f) € Xieg and, equivalently, Xgngs < X n Vr(f). (2)

Let Xy = X\VR(f) © Xyeg. Since X is a manifold, the gradient of f on Xy, denoted Vi, f, is
well-defined. Note that f # 0 on Xy so the connected components of X; are the union of the



connected components of Xy n {f > 0} and X; n {f < 0}. Thus, one can perform gradient ascent
on Xy when starting at a point with f > 0 and gradient descent on Xy when starting at a point
with f < 0 and remain in X¢. In particular, suppose that zo € X and oy = sign f(xo) € {—1, +1},
then the gradient system under consideration is formally written as

j((g - Zg.-vxff(w) on Xy (3)

Of course, gradient systems on manifolds are well-studied, e.g., [24,129]. Computationally, one can
consider using a local tangential parameterization. Suppose that d = dim X and x € Xy. Let
V, € R"* he an orthogonal matrix such that its columns form an orthonormal basis for T, X.
Hence, Jg(x)V; = 0 and V,I'V, = I, the d x d identity matrix. Let m, : X; — R? such that
72 (y) = VI (y — z) is the orthogonal projection from Xy to T, X centered at z (see Figure , ie.,
mz(x) = 0. Since x € X§ < Xyeg, there exists €, > 0 such that 7, restricted to Xy n B () is
invertible, where

Be,(z) = {y e R" | |y — o < e} with |y —a| = v/(y1 — 1) + - + (yn — 2n)2.

Since U, = m(Xs N Be,(z)) = R? is an open neighborhood of the origin, can be considered
locally in parameterizing coordinates p € U, with y(p) = 7~ (p) € Xy n B, (). In particular,

Vx,f(z) = Ve f(z) - Vz € R% (4)

Moreover, the corresponding Hessian matrix is

n a ]
Hy, f(@) =), af. () - Wy + V| Hen f(z) - Vi € RT
i=1 """

where W), ..., W e R4 are symmetric and form the unique solution to the linear system

n
=1

29; .
ai?(x)'W;+VxT'HR”9j($)'% = 0 forj=1,...,k,

Z(Vx)ij'wi = 0 forj=1,...,d.

i=1
In particular,
. pt-Wip
ylp) =z +Ve-p+ B : + higher order terms (5)
pt-Weep

such that g(y(p)) = 0 since y(p) € X;.
Example 2.5. For X = Vg(z? — 22) and f = 4(22 + 23), let x = (1,1) so that

_a |1 1_ 2 _ 1.
.‘/ﬂﬁ_ﬁ[l}iwm_[OLWx_[O]}

o Vi, f(z) = Vg2 f(z)- Vi = 8V2;

° HXff(x) = %(;p) ’ le + (367];(‘7’,) ’ WIQ + VIT : HRQf(‘T) : Vx = 8.
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Figure 2: An example of a tangential parameterization of X centered at x. The green point is x,
the red point is p = x + pv for v € T, X, and the blue point is y = 7, *(p).

Since X is locally linear at x, y(p) = x + V, - p for p € R. Hence, for q(p) = f(y(p)), one has
Vrq(0) = VXff(l, 1) and Hgrq(0) = HXff(l, 1).
Similarly, for X = Vg(2% — 2323) and f = 422 + 42323 + 23, let x = (1,1,1) so that

1 1/3
0 4/27
_ 1 _ Wl — W2 — Wl W3 — _wl/a
oV, = V2 (1) 411?3 o [ 4/27 —16/81 j|; ! R 1/2,

o Vx, f(z) = Vpsf(z) Vo= 22[ 15 T ];

567 303
o Hx, f(x) = 2L(2) Wl + 2L (@) W2+ ZL(x) W2+ V] - Haaf(2) - Vo = & { 303 127 ]

oxs3

For y(p) as in and q(p) = f(y(p)), then Vg2q(0) = Vx, f(1,1,1) and Hg2q(0) = Hx, f(1,1,1).

3 Routing points and routing functions

The keys to the algorithms in [20,21] are routing points and routing functions. Suppose that X as
in satisfies Assumption and let 7 : X — R be a twice continuously differentiable function
on X such that r(z) = 0 for all x € Xging, ie., X, = X\VR(r) € Xieg. A point z € X is called a
routing point of r on X if z € X, i.e., r(z) # 0, and Vx,r(z) = 0, which is equivalent to

dimnull [ Vger(2)T Veegi(2)" -+ Veege(2)? | = dim X. (6)



One can formulate @ using [7] which, when & = n — dim X, is equivalent to using Lagrange
multipliers. Moreover, a routing point z is nondegenerate if Hx,r(z) is invertible. Since the gradient
system depends upon a sign, the index of a nondegenerate routing point is also sign dependent.
In particular, the index of a nondegenerate routing point z is the number of eigenvalues of Hx, r(z)
of the same sign as r(z). Eigenvectors of Hy, r(z) corresponding with the eigenvalues of the same
sign as r(z) are called unstable eigenvector directions. For example, if r(z) > 0, then, since is
aiming to increase the function value, the index is the dimension of the local ascending manifold
at z, which is the number of positive eigenvalues of Hx,r(z), and the eigenvectors corresponding
with a positive eigenvalue are the unstable eigenvector directions.

Definition 3.1. The function r is called a routing function on X if the following conditions hold:
1. X; = X\VR(r) € Xieg,
2. for all € > 0, there exists 6 > 0 such that if x € X with |z| =6, then |r(z)] <,
3. the corresponding set of routing points on X is finite and each is nondegenerate,
4. for each o € R\{0}, there is at most one routing point x on X satisfying r(z) = «, and
5. the norms of r, Vx,r, and Hx, r are bounded on X,.

In particular, a routing function vanishes on Xgns as well as at infinity, and each level set
contains at most one routing point. Therefore, if C' is a connected component of X,, then r on C
must obtain either a minimum (if 7 < 0 on C') or a maximum (if 7 > 0 on C'), which must occur at
a routing point. The following formalizes this.

Proposition 3.2. With the assumptions and definitions above, there is at least one routing point
in each connected component of X, of index 0.

Example 3.3. For X = Vg(2? —22), the function f(x) = 4(2? +23) is not a routing function on X

since [ is unbounded on X. Nonetheless, consider the following rational function related to f:
4(x? + 3)

((1‘1 — 1/2)2 + (SCQ - 1/3)2 + 1)27

r(z) = (7)
so that X, = Xy. In fact, v is a routing function with four routing points (£7/(6v/2), £7/(6+/2)).
Proposition[3.9 holds with exactly one routing point in each connected component of X, as illustrated
in Figure[3, with each being a local mazimum of r along X,. Thus, each routing point has indez 0.
The colors in Figure[3 verifies that r takes different values at each of the routing points.

The following provides a generalization of the construction used in Example to create a
routing function derived from [20421].

Theorem 3.4. Suppose that X as in satisfies Assumption and f € R[z1,...,x,] such that
Xy = X\Vr(f) © Xreg- Let £ € Zsq such that 20 > deg f. Then, there is a Zariski open dense
subset U < R™ such that, for every ce U,

1 a routing function on X.
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Figure 3: Pair of intersecting lines colored based on the value of the routing function with the four
routing points marked, each corresponding to a local maxima of the routing function.

Proof. Let c € R" and define D.(z) = (z1 —c1)? ++ -+ (¥ —n)? + 1. Thus, ro(z) = f(z)- D.(z)~".
Since D, does not vanish on R", r. is infinitely differentiable with X, = X; < X,¢. Moreover,
2¢ > deg f ensures that r. is bounded on R™ (and hence on X') and vanishes at infinity. Additionally,

Viere(x) = Van f(2) - De(x) ™ =2 - f(z) - De(2)™ " (& = 0) (8)

is also bounded on R" for the same reason. Since V,, in is orthonormal, this shows that Vx, 7. is

bounded on X. A similar argument shows that H X, Tc 1s also bounded on X, since the matrices ng
describe the local curvature of Xy ¢ X, and V; is orthonormal.

All that remains is showing that the set of routing points is finite, each is nondegenerate, and
evaluate to different values of r. for values ¢ in a Zariski open dense subset of R™. Since f and D,
are nonzero on X,,, @ can be equivalently formulated as

dim null[ 3 VR;(J;()I)T - (Dm;(;% Vergi(x)T -+ Vgage(z)T ] = dim X.
Note that the last £ columns have a null space dimension equal to dim X on X, = X; © X,¢
via Assumption and are independent of ¢. Moreover, the first column has the term 55(5) that
is independent o and g. Hence, the routing points of 7. on Xy correspond with the points
in X; where the first column is contained in the span of the last k& columns. As c is varied,
this aforementioned term forces the location of the routing points of r. on X, 6 to change. Since
this term is in the gradient of r., this also forces the value of r. to instantaneously change as
well. Therefore, the remaining part now follows from an algebraic version of Sard’s theorem, e.g.,
see Thm. A.4.10], as in the proof of [21, Thm. 36].

O]
Theorem [3.4] shows that one can obtain a routing function using a generic ¢ € R™.

Example 3.5. To demonstrate a value of ¢ that does not work, consider X = Vg (23 + 23 — 1) with
f =4(x? + 23). For { =2, consider ¢ = 0 so that 7o(z) is as in (7). With this, every point on X



is a critical point so that ro is not a routing function on X. However, with ¢ = (1/2,1/3), then

A(xf + 23)
xr1 — 1/2)2 + (xg — 1/3)2 + 1)2

re(z) =

‘ ((
is a routing function with two routing points: (3/v/13,2/4/13) is a maximum (index 0) and its
antipodal point (—3/v/13,—2/4/13) is a minimum (index 1) of r. on X.

Example 3.6. For X = Vg(2? — 23x3), consider f(z) = 42? + 42323 + x5 from Ezample .
Consider c € R and ¢ = 3 so that

423 + 4323 + 23
xr1 — 01)2 + (xg — 62)2 + ($3 — 63)2 + 1)3‘

@ =7

When ¢ = 0, then ro is not a routing function since the two routing points (0, £4/2,0) are degenerate,
i.e., Hx,r is not invertible at these two points. With, say ¢ = (1/2,1/3,1/4), then r. is a routing
function with six routing points: 4 local maxima and 2 saddles with index 1. This is considered
again in Example [f.5 with routing points on the Whitney umbrella shown in Figure [J.

Example 3.7. For X = Vg(2? — x3x3), consider f(z) = z1w273 which means that Xy is the set of
all points in X where all three coordinates are nonzero. The function

L1123
2 2 2 2
]+ x5+ x5+ 1)

ro(z) = (

18 not a routing function since two pairs of routing points are in the same level set. However, as
suggested by the proof of Theorem perturbing away from being centered at the origin destroys
the symmetric structure so that, say ¢ = (1/6,1/5,1/4), yields a routing function, namely

T1T2X3
re®) = (G — 1607 + (e2 — /5 + (a5 — AP 4 P Y

This yields four routing points, two are local mazima with r. > 0 and two are local minima with
re < 0 as shown in Figure[]. With the sign dependent notion of index, all four have index 0.

For a routing function r» on X, the Euler characteristic of X, is determined by counting the
number of routing points of each index as summarized in the following.

Theorem 3.8. When r is a routing function for X as in which satisfies Assumption then
the Euler characteristic of X, is

d
X(Xp) = Y (—1)rk (10)
=0

where rkf” is the number of routing points of r on X, of index j.

Proof. Let C1,...,Cs be the connected components of X,.. Since the Euler characteristic is additive,
it is enough to prove the formula on each connected component.

Suppose that C' is a connected component of X, and let z1,...,2; be the routing points of r
contained in C. Since r has the same sign on C, we will consider the positive and negative
cases separately. Suppose that » > 0 on C and let 0 < § < min{r(z1),...,7(zx)}. Thus, r is
a Morse function on C corresponding to the gradient vector field Vx,r and we can retract C' to
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Figure 4: Whitney umbrella with coordinate axes removed and four routing points marked, each
corresponding to a local optima of r. as in @D

Cs = (r|c)71([d,0)) via the vector field, where r|¢ is the restriction of r to C. Since Cj is a smooth
compact manifold with boundary as r|c is bounded, it is well-known, e.g. §2.3|, that

d
X(Cs) = D (=1)7rk§
=0

where rkjc is the number of routing points in C of index j (corresponding to positive eigenvalues).
As the Euler characteristic is invariant under homotopy, x(C) = x(Cs) as claimed.

Similarly, if » < 0 on C, let max{r(z1),...,7(zx)} < < 0. Thus, r is a Morse function on C
corresponding to the gradient vector field —Vx, r and we can retract C to Cs = (r|¢) " ((—00,6])
via the vector field. The same formula holds with index corresponding to negative eigenvalues. []

Example 3.9. For Example the corresponding Euler characteristic is (—1)° -4 = 4. Addi-
tionally, the Euler characteristic of the unit circle is (—=1)° -1+ (=1)* -1 = 0 from Ezxample .
From FExample the Fuler characteristic of the Whitney umbrella with the “handle” removed
is (=1)° -4 + (=1)! -2 = 2. Finally, the Euler characteristic of the Whitney umbrella with the
coordinate aves removed is (—1)° -4 = 4 from Example .

4 Connectivity algorithms

The number of connected components of X, = Xy is bounded above by the number of routing
points of r on X, of index 0 via Proposition The following shows how to partition the set of
routing points into subsets precisely corresponding to the connected components using the gradient
system . The key to this computation is tracking from routing points with positive index.
Since a routing point is a stationary point of , for routing points of positive index, one needs
to consider in an instantaneous initial direction in order to have non-stationary trajectory.
By adapting the approach of , this yields a connectivity algorithm. Thus, this gradient



representation of smoothly connected components via a routing function and routing points provides
an analog to witness sets for complex irreducible varieties which permit membership testing, e.g.,
see [28, Chap. 13-15].

To set the stage, first consider an initial point which is not a routing point.

Proposition 4.1. Suppose that X in satisfies Assumption and r is a routing function on X.
If xg € X, is not a routing point, i.e., Vx,r(xg) # 0, then defines a unique trajectory which
limits to a routing point of r on X,..

Proof. Recall that for a routing function, r, Vx, r, and Hx,r are all bounded on X, and hence,
for any a > 0, X, n 77 ((—00,—a] U [a,0)) is compact. Standard existence and uniqueness
theory for initial value problems, e.g., [22, § 8.1, Thm. 3], adapted to manifolds shows that
has a unique solution x(t) € X, for all £ > 0. Moreover, since z( is not a routing point, r(x(t))
is strictly monotonic while z(¢) must be bounded. Hence, z = lim;_,o z(t) is well-defined with
|r(2)] > |r(zo)| > 0. Boundedness also implies that one must have Vx, r(z) = 0, i.e., the trajectory
limits to a routing point. ]

Proposition together with stationary trajectories starting at routing points shows that the
gradient vector field on X, defined by sign(r(x)) - Vx,r(z) is complete. Numerically, trajecto-
ries which limit to an index 0 routing point are robust and the limit point is the corresponding
steady-state solution computed via time marching using a numerical differential equation solver.
Conversely, trajectories which limit to a routing point of positive index are numerically unstable as
arbitrarily small numerical perturbations theoretically change the corresponding limit. However,
from a numerical perspective, the proof in Section [5| shows that the key to computing a correct
decomposition is accurately computing limits of trajectories when they limit to an index 0 routing
point. For trajectories not limiting to an index 0 routing point, all that is needed from a numerical
perspective is to compute another routing point in the same smoothly connected component where
the value of |r| has increased, which is easily accomplished by having |r| be monotonically increasing
along numerically approximated trajectories.

Next, consider an initial point which is a routing point z € X, with an initial direction v € R"
in the tangent space of X, at z with |v| = 1 Since z is nondegenerate, there exists ¢y > 0 such
that z is the unique routing point in X, n B, (z) and the orthogonal projection from X, to T, X,
centered at z is invertible. Thus, for € € (0, €g), one can apply Proposition with initial condition
ro = 7 1 (2+ € v) to yield trajectory z.(t). By uniqueness, lim,_,o+ z(t) is well-defined and limits
to a routing point of 7 on X,. This is summarized in the following.

Proposition 4.2. Suppose that X in satisfies Assumption and r is a routing function
on X. Suppose that z € X, is a routing point and v € R™ is a unit vector in the tangent space of
X, at z. Letting x.(t) be the trajectory from Proposition starting at the orthogonal projection
of z+e€-v onto X, then x(t) = lim._,g+ x(t) is well-defined trajectory which limits to a routing
point of r on X,..

Example 4.3. To illustrate Propositions[{.1 and[4.3, consider Ezample[3.6 with c = (1/2,1/3,1/4).
First, consider the trajectory emanating from the non-routing point xo = (—2.25,1.5,2.25) which
limits to a routing point that is a local mazimum. In Figure[5, xo is shown in red with the trajectory
(yellow) limiting to a routing point (black). Second, consider the trajectories emanating from the
index 1 saddle points, approximately (—0.5002,1.0635,0.2212) and (—0.5255, —1.3526,0.1509), in
the two directions arising from the unstable eigenvector. In Figure[d], each of these two trajectories
are shown (green and magenta) which limit to a routing point that is a local mazimum.
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Figure 5: Whitney umbrella with “handle” removed and six routing points marked (black). Illus-
tration of a trajectory (yellow) from a non-routing point (red) along with two trajectories (green
and magenta) emanating from each index 1 saddle in the unstable eigenvector direction which con-
nects the local maxima on the same connected component.

As observed in Figure [p| the trajectories from the saddles in an unstable eigenvector direction
connect the local optima that lie in the same connected component. This holds in general and is
summarized in Algorithm [I] and Theorem

The matrix A in Algorithm [1]is constructed to be reflexive (diagonal entries are 1) and sym-
metric. Thus, transitive closure means to enforce the transitivity property, i.e., if z; is connected
to z; which is connected to 2, then z; is connected to z. Using Boolean matrix multiplication and
addition, the transitive closure of A € R™*™ ig

M=A+A%+. ...+ A™

In particular, M;; = 1 if and only if z; and z; lie on the same connected component of X,.
Algorithm [2] uses the output of Algorithm [I] as input to answer connectivity queries.

Theorem 4.4. Algorithms[1] and[g are correct.
A proof is presented in Section
Example 4.5. From Ezample[].3, one can write the matrices A and M in Algorithm[1] as

101000 111000
011000 111000
111000 111000

A=10001 01 and M=\ o (g1 11
000011 000111
0001 11| (0001 1 1

That is, M shows that X, has two connected components each corresponding with three routing
points, two local mazxima and a saddle of index 1 as illustrated in Figure @ Thus, since X, = Xyeg
where X is the Whitney umbrella, the Whitney umbrella has two smoothly connected components.

11



Input: Polynomials g1, ..., gx € R[z1,...,z,] with X = Vr(g1,...,gx) satisfying
Assumption and routing function r.
Output: Euler characteristic of X, and partitioned subset of the routing points of r on
X, corresponding to the connected components of X..
Computing the routing points of r on X, say z1, ..., zm, and corresponding indices, say
Py nsime

Compute y = Z;n:l(—l)ij.

Initialize A = I, the m x m identity matrix.

for j=1,...,mdo

foreach unstable eigenvector v for Hx,r(z;) do
Compute limit routing point from z; in the direction v with respect to r, say 2, .
Set Ajy, = Ay, j = 1.
Compute limit routing point from z; in the direction —v with respect to r, say z,._.
Set Ajyy_ = Ay_j = 1.

end
end
Set M to be the transitive closure of A.
Partition {z1,..., z;,} based on the connected components of M, say C1,...,Cs.

return (x,{Ci,...,Cs})
Algorithm 1: Euler characteristic and connected components

Input: Polynomials g1, ..., gk € R[z1,...,2z,] with X = Vr(g1,...,gx) satisfying
Assumption routing function r, partitioned subsets C1,...,Cs of the routing
points of r on X, corresponding to the connected components of X,., and points
p.q € X,

Output: True if p and ¢ lie on the same connected component of X, and False otherwise.

if p is a routing point then

| Set p' € {1,...,s} so that pe Cy.
else
Compute limit routing point z;, via Proposition starting at p.
Set p' € {1,...,s} so that z;, € Cpy.
end
if q is a routing point then
| Set ¢'e{1,...,s} so that ge Cy.
else
Compute limit routing point Zj, via Proposition starting at q.
Set ¢ € {1,...,s} so that z;, € Cy.
end
return True if p' = ¢, else False
Algorithm 2: Connectivity query

Example 4.6. From Ezample[3.7, the Whitney umbrella with the coordinate azes removed decom-
poses into four connected components.
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5 Correctness proof

The following presents a proof of Theorem [£.4] Clearly, the Euler characteristic follows from The-
orem The correctness of Algorithm [2| follows from the statement and proof of Proposition 4.1
with strict monotonicity showing p and z;, as well as g and z;, lie on the same connected component
of X,. In particular, Algorithm [2] depends upon correct input computed via Algorithm Now,
in Algorithm [I] Proposition yields that routing point z; is connected to routing points z,4
and z,_. Since the transitive closure ensures the transitivity of the connections described by A,
the only thing left to show regarding Algorithm [I] is that the connections derived from unstable
eigenvectors suffice for determining the connected components via the mountain pass theorem.
For a routing point z, the stable manifold of z with respect to r on X, is

M, (2) = {z} u{zo € X, | Vx,7(z0) # 0 and the trajectory from Proposition [£.1] limits to z}.

The proof of |2, Thm 4.2] can be trivially adapted to this case with appropriate adjustments to
conclude that codim M, (z) is the index of z with respect to r, e.g., if z is a routing point with
r(z) > 0 and is a local maximum (index 0), then dim M,(z) = dim X,. Clearly, uniqueness of
trajectories yields

X, = | ] M,(z).

routing points z

Therefore, for a connected component C' of X,., one has

o ] M, (2). (11)

routing points z € C

In this way, one is identifying each connected component with the finitely many routing points that
lie inside of it.

Suppose that zg € C is a routing point. If dim M, (zp) < dim X, i.e., the index of z is positive,
then select any unstable eigenvector direction and let z; be the corresponding routing point as in
Proposition Hence, z; € C and |r(z9)| < |r(z1)|. If dim M,(z1) < dim X,, one can repeat
this process yielding a sequence of routing points zg, z1,... with |r(z;)| < |7(zj4+1)|. Hence, this
must be a sequence of distinct routing points. Since there are only finitely many routing points,
this process must terminate after finitely many steps yielding, say, a routing point zy € C with
dim M, (z¢) = dim X,, i.e., the index of zy is 0. Therefore, this shows that every routing point in C
is connected to some routing point of index 0 in C' by trajectories following unstable eigenvector
directions. Hence, all that remains is showing connectivity between routing points of index 0 in C.

For a routing point z, let M, (z) denote the Euclidean closure of M,(z) in X,. Since

| | M,(2)

index > 0 routing points z € C

has positive codimension, it immediately follows that

C= U M,(2).

index 0 routing points z € C

Suppose that z and 2’ are distinct routing points in C of index 0 with S, ,» = M, (2) n M,(2') # &.
Such a pair must exist when C' contains at least two index 0 routing points by connectivity of C.

13



Figure 6: Four routing points for a quartic curve away from the coordinate axes

Hence, r(z) # r(2’). Since r vanishes at infinity, for any a # 0, Vg(r — «) is compact. Thus, r
satisfies the Palais-Smale condition and the Mountain Pass Theorem [1] (see also [25, Thm. 3])
shows the existence of an index 1 routing point z” in S, . so that z and 2’ are connected by
trajectories emanating from the unstable eigenvector direction at 2”.

Since C' is connected and there are only finitely many routing points, one can repeat this
argument to create a sequence of connecting trajectories between any two index 0 routing points
in C. Therefore, Algorithm [I] correctly identifies the connected components of X.

6 Examples

The following considers various examples for computing smoothly connected components. The
routing points were computed using Bertini [§] and the trajectories were computed using Matlab.

6.1 Positive solutions

In order to compute the number of smoothly connected components in the positive orthant, one
can choose a routing function r so that X, < (R*)" where R* = R\{0} and then only consider
routing points in the positive orthant. For example, one can reconsider both Example [3.3] and
Example to see that each has a single routing point in the positive orthant, i.e., each has one
smoothly connected component in the positive orthant.

For another example, consider the compact quartic curve X < R? from [12, Ex. 9] defined by

g(z) = o1 + 3 — (x1 — 22)*(x1 + 29) = 0.

Since X N (R*)? © X,eq, one can consider the routing function

r(x) = 112
((.%'1 — 1/3)2 + (1‘2 - 1/2)2 + 1)2'

This yields four routing points as shown in Figure [f] Two of the routing points have a negative
coordinate and are ignored. This leaves two routing points with positive coordinates, each of which
is a local maximum yielding that X n (Rsg)? has two smoothly connected components.
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Surface ‘ # index 0 ‘ # index 1 ‘ # index 2 ‘ X ‘ # smoothly connected components
1

Dingdong 2 2 1 2
Calypso 2 2 0 0 2
Chubs 32 44 4 -8 8
Twilight 2 1 1 2 2
Eistute 7 1 4 4
Seepferdchen 7 11 2 —2 1

Table 1: Summary data for some algebraic surfaces in R3

6.2 Some surfaces

With the Whitney umbrella used as an illustrative example, the following summarizes comput-
ing the Euler characteristic and the number of smoothly connected components for the following
surfaces in R3{]

e (Dingdong) g(z) = 2?2 + 23 — x% + x%

Calypso) g(z) = 2% + 323 — 23

(
(
(Chubs) g(x) = i + 25 + a3 — (aF + 23 + 3) + 1/2
(Twilight) g(z) = (2] + 23 — 3)° + (2§ — 2)?

(

Eistute) g(z) = (22 + 23)3 — 42223(23 + 1)

e (Seepferdchen) g(z) = 2} — 52223/2 + 2§ — (z1 + 23)z3

Table |1| summarizes the results of the computations when taking f(z) = |Vgsg(z)|? and
0.7978234324
f(x)

r(z) = where ¢ = [ 0.6623073432
(21— e1)? + (22 = c2)? + (w3 — c3)? + 1)dess 0.2347907832

in which ¢ was selected randomly.

6.3 Connectivity in real projective space

In [23 Ex. 6.4], for small € > 0, the following octic curve in P4 is shown to consist of six ovals:

(w2 + 23) (w2 + 23 — 24) + €(2} + 22123 — 2124 + 25 — 2374) + 223
zo(z2 + 73 — 74) + €(ToT3 — TOT4 + T1T3 — V174 + ToTy + 374 — T3) — 22 | = 0.
xo(x1 + 3) + €(Tors + T12T2 + T1T3 + X174 + Toxz — Toxg + x%)

To verify this, fix e = 1072, and consider the double cover on the unit sphere in R by appending
l‘(% +- xi — 1 to the system above yielding a smooth compact degree 16 curve X < R®. Since X
is smooth and compact with X n V(z4) = &, we can use the routing function r(z) = x4 with
X = X,. This yields 40 routing points which arise as 20 pairs of antipodal points. Thus, one only

!See https://homepage.univie.ac.at/herwig.hauser/bildergalerie/gallery.html, https://silviana.org/
gallery/hauser/, and https://www-sop.inria.fr/galaad/surface/|for additional information.
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needs to consider the 20 routing points with x4 > 0 which arise as 10 local maxima (index 0) and
10 local minima (index 1). Using gradient ascent from the local minima, this yields 6 connected
components, 2 with a single local maximum and local minimum and 4 with two local maxima and
local minima, confirming the results in [23, Ex. 6.4].

To justify our choice of €, we also considered the system where ¢ was a free parameter and
computed the discriminant with respect to €. This computation showed that the smallest positive
root of the discriminant with respect to € to be approximately 0.01438729081. Hence, for any ¢ > 0
less than this value, the structure of the routing points will be the same yielding an octic curve
with the same real geometry. In particular, this justifies our choice of € = 1072 as it is smaller than
the smallest positive root of the discriminant.

6.4 Counting input modes for a five-bar mechanism

Input modes of a five-bar mechanism, which is illustrated in Figure [7] with more details provided
in |16} Fig. 2], are the connected components of the corresponding configuration space after remov-
ing the input singularities [16]. There are transmission problems at input singularities causing a
loss of control authority of the end-effector. Hence, in [16], a margin around the input singularities
was avoided, which may be for the application to provide a safety margin, e.g., to accommodate
manufacturing tolerances. Nonetheless, the following considers computing the actual number of
input modes without the safety margin.

Adapted from [16], the configuration space is defined by g = {g1, ..., 94} = 0 with parameters
(bg, l1,02,03,04,p,q) and variables (z,y, c1, 51, ¢2, s2) where ¢; = cos#; and s; = sin6;, such that

g = 22+ y?+ 02 =20 (zer +ys1) —p? — ¢

g = G(2®+y?) + GB((la—p)? + ¢*) + (bx? + 03 — 3)(p? + ¢*) — 2bL2(px + qy)
— 20l3(p(zea + ys2) — qlwse — yea)) + 20103((lap — p* — ¢*)(c1¢2 + 5152))
+ 2b,03(p* + ¢%)ca + 2b,01((Lap — p* — ¢)c1 + Lags1) — 2010203q(c1s2 — s1¢2)
+ 20105((p — l2)(zc1 + ys1) — q(xsy — ycr)),

g3 = c% + s% —1,

g1 = c3+s3-1.

. (0 , 0) - (bxo) =

Figure 7: Illustration of a five-bar mechanism
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The input singularities are defined by

ox oy

For the parameters, corresponding with 16, Ex. 1],

by = 0.19882665671846764, 41 = 0.46540235567944005,
p 0.048759206368821334, 0.3486213752206714,
g = 0.32778886030888477, l3 0.24863642973175545,

ly = 0.4110712177344681,

)
)
I

X = Vk(g) is a smooth surface in R® and f is a quadratic polynomial such that {g, f} = 0 defines
two irreducible curves of degree 6 in C°. Using the routing function

f

/r' —
((x —20)?2 + (y —y0)? + (c1 — c10)? + (51 — 510)2 + (€2 — 20)? + (52 — $20)? + 1)2
where
g = 0.919487917032162, yo = —0.319228546667734, ci9o = 0.170535501959555,
s10 = 0.502534118611306, co9 = —0.552376121017726, s99 = —0.489809769081462,

were randomly selected, there are 8 routing points: four each with f > 0 and f < 0. For f > 0,
there is a maximum and three saddles of index 1. For f < 0, there is a minimum and three
saddles of index 1. Hence, Proposition immediately yields that X, has two smoothly connected
components, one with f > 0 and the other with f < 0. When partitioning with a “thicker kerf,” [16]
reports 6 input modes with the comment that the “counts generally do not match the true number
of regions” due to the safety margin around the input singularities.

7 Conclusion

By using gradient ascent/descent paths on a real algebraic variety, algorithms were developed for
computing the Euler characteristic, counting the number of smoothly connected components, and
performing membership in a smoothly connected component. In particular, Algorithm [I] computes
a representation of each smoothly connected component consisting of routing points and gradient
ascent/descent paths which can be used to decide membership via Algorithm [2| Such algorithms
could naturally be extended to atomic semi-algebraic sets, with an example presented for considering
the intersection of a real algebraic variety with the positive orthant.

As constructed, the algorithms rely upon the ability to construct a routing function, which
relies upon a generic choice of a constant vector ¢. An element of more concern when implementing
such a theoretical algorithm is is the proper tracking of gradient ascent/descent paths emanating
from unstable eigenvector directions. Future work could be to investigate using certified differential
equation solvers for validating the numerically computed trajectories.
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