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Abstract

The field of numerical algebraic geometry consists of algorithms for numerically solving
systems of polynomial equations. When the system is exact, such as having polynomials
with rational coefficients, the solution set is well-defined. However, for a member of
a parameterized family of polynomial systems where the parameter values may be
measured with imprecision or arise from prior numerical computations, uncertainty
may emerge in the structure of the solution set, including the number of isolated
solutions, the existence of higher dimensional solution components, and the number of
irreducible components along with their multiplicities. The loci where these structures
change form a stratification of exceptional algebraic sets in the space of parameters. We
describe methodologies for making the interpretation of numerical results more robust
by searching for nearby parameter values on an exceptional set. We demonstrate these
techniques on several illustrative examples and then treat several more substantial
problems arising from the kinematics of mechanisms and robots.

1 Introduction

Numerical algebraic geometry concerns algorithms for numerically solving systems of polyno-
mial equations, primarily based on homotopy methods, often also referred to as polynomial
continuation. Reference texts for numerical algebraic geometry are [6, 45], and software
packages that implement its algorithms are available in [5, 10, 26, 49]. Built on a founda-
tion of methods for finding all isolated solutions, the field has grown to include algorithms
for computing the irreducible decomposition of algebraic sets along with operations such as
membership testing, intersection, and projection. The basic construction of the field is a
witness set, say W , in which a pure D-dimensional algebraic set, say X ⊂ Cn, is represented
by a structure having three members:

W = {f, L,W} (1)

where f : Cn → Ck is a polynomial system such that X is a D-dimensional component of
the algebraic set V (f) = {x ∈ Cn | f(x) = 0}, L : Cn → CD is a slicing system of D generic
linear polynomials, and W = X ∩ V (L) is a witness point set for X. Given a witness set,
one can sample the set it represents by moving its slicing system in a homotopy. Given
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witness sets for two components, one can compute their intersection, obtaining witness sets
for the components of the intersection [21]. A witness set can be decomposed into its irre-
ducible components using monodromy [42] to group together points on the same irreducible
component and using a trace test [9, 11, 27, 43] to verify when this process is complete.
Algorithms built on these and related techniques compute a numerical irreducible decompo-
sition of V (f), producing a collection of witness sets, one for each irreducible component. In
a similar fashion, one may construct pseudo-witness sets for projections of algebraic sets [18],
which is the geometric equivalent of symbolic elimination. Thus, using algorithms for in-
tersection, union, projection, and membership testing, one can represent and manipulate
constructible algebraic sets.

Applications of algebraic geometry, such as kinematics, computer vision, and chemi-
cal equilibrium, often involve parameterized families of polynomial systems of the form
f(x; p) : Cn × Cm → Ck, where x is an array of variables and p is an array of parameters.
For example, in kinematic analysis, x may be variables describing the relative displacement
at joints between parts while p may describe the length of links or the axis of a rotational
joint. In kinematic synthesis, where one seeks to find a mechanism to produce a desired
motion, these roles may be interchanged. The long history of research in kinematics and
its applications to mechanisms and robotics is extensive; [38] provides a useful overview. In
multi-view computer vision, the variables of a scene reconstruction describe the location of
objects and cameras in three-dimensional space while the parameters are the coordinates of
features observed in the camera images [1, 22, 29]. In chemical equilibrium, concentrations
are variables and reaction rates are parameters [33, Chap. 9] and [13, 37]. In short, in a
single instance of the family, variables are the unknowns while parameters are given, and the
parameter space defines a family of problems having the same polynomial structure. In the
simplest case, the parameters are merely the coefficients of polynomials with a fixed set of
monomials, while in many applications the coefficients are often polynomial functions of the
parameters. In general, one can consider a parameter space that is an irreducible algebraic
set or, with minor additional conditions, even a complex analytic set [35]. However, for
simplicity, we will assume here that the parameter space is the complex Euclidean space Cm.

In this article, we consider the algorithms of numerical algebraic geometry which compute
using floating point arithmetic, so function evaluations and solution points are consequently
inexact. Furthermore, in applications, parameters may be values measured with imprecision
or they may be numerical values produced in prior stages of computation. In light of these
uncertainties, the results reported by the numerical algorithms may require interpretation.
For example, a coordinate of a solution point computed as near zero may indicate that there is
an exact solution nearby with that coordinate exactly zero, but this is not assured. Moreover,
if the polynomial system is given with uncertain parameters or with coefficients presented
as floating point values, there is some uncertainty about which problem is being posed. The
interpretation of the solution set, such as classifying how many endpoints of a homotopy have
converged to finite solution points versus how many have diverged to infinity, is subject to
judgements about round-off errors from inexactly evaluating inexactly specified polynomials.
Similar judgements must be made when categorizing singular versus nonsingular solutions,
sorting solutions versus nonsolutions when using randomization, concluding that a witness
set is complete via a trace test, or counting multiplicities according to how many homotopy
paths converge to (nearly) the same point. Our aim in this article is to lay out methodologies
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for making these interpretations more robust yielding robust numerical algebraic geometry.
In a parameterized family, the irreducible decomposition has the same structure for

generic parameters; that is, the sets of parameters where the structure changes, collectively
called the discriminant variety, lie on proper algebraic subsets of the parameter space. By
structure, we mean features over the complex numbers described by integers, such as the
number of irreducible components, their dimensions and degrees, and the multiplicity of the
witness points. Within any irreducible algebraic subset of parameter space, there may exist
algebraic subsets of lower dimension where these integer features change again, creating a
stratification of algebraic sets of successively greater specialization. In an early discussion of
this phenomenon, Kahan [24] called such sets pejorative manifolds, but we prefer the more
neutral term exceptional sets. Typically, an analyst would like to be able to detect when
the problem they have posed is close to an exceptional set. Moreover, since such sets have
zero measure in their containing parameter space, the fact that a posed problem falls quite
close to an exceptional set may indicate that this is not a coincidence, and in fact, the ex-
ceptional case is the true item of interest. Additionally, constraining the problem to lie on
an exceptional set can convert an ill-conditioned problem into a well-conditioned one [24].

Factoring a single multivariate polynomial presents a special case of the phenomena we
presently address. Wu and Zeng [52] note that factorization of such a polynomial is ill-posed
when coefficient perturbations are considered since the factors change discontinuously as the
coefficients approach a factorization submanifold. Their answer to this problem is to define
a metric for the distance between polynomials and a partial ordering on the factorization
structures. This partial ordering corresponds to algebraic set inclusion in the stratification
of factorization structures, and in the parlance of Wu and Zeng, each such set is said to
be more singular than any set that contains it. (Roughly, a polynomial with more factors
is more singular than one with fewer, and for the same degree, a factor appearing with
multiplicity is more singular that a product of distinct factors.) Wu and Zeng regularize
the numerical factorization problem by requiring the user to provide an uncertainty ball
around the given polynomial. Among all the possible factorization manifolds that intersect
the uncertainty ball, they define the numerical factorization to be the nearest polynomial
on the exceptional set of highest singularity. As the radius of the uncertainty ball grows,
the numerical factorization may change to one of higher singularity. So, while the problem
remains ill-posed at critical radii, it has become well-posed everywhere else. In the case of a
single polynomial of moderate degree, the number of possible specializations is small enough
that one can enumerate them all. This gives the potential of finding the unique numerical
factorization for most uncertainty radii, and a finite list of alternatives for any range of radii,
functionalities provided by Wu and Zeng’s software package.

Since parameterized families arise often in applications, there have been several methods
proposed for studying the solutions of parameterized systems. For example, [39] describes a
parametric geometric resolution for solving parameterized square systems, i.e., when n = k.
Symbolic approaches for computing discriminant varieties for paramertized systems are con-
sidered in [25, 36]. Since the enumeration of all possible structures requires recursively
computing discriminant varieties of discriminant varieties, this is a a formidable task that
we do not attempt here. Nonetheless, an approach to compute such an enumeration for the
special case of exceptional dimension was described in [46] via fiber products.

In the process of computing a numerical irreducible decomposition, there typically will be
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only a few places where the uncertainty in judging how to classify points warrants exploration
of the alternatives. The same can be said for more limited objectives, such as computing
only the isolated solutions of a system by homotopy, where one may question the number of
solution paths deemed to have landed at infinity or observe a cluster of path endpoints that
might indicate a single solution point of higher multiplicity. If the uncertainty is due solely
to floating point round-off and we have access to either a symbolic description or a refinable
numerical description of the parameter values, then the correct judgement can be made with
high confidence by increasing the precision of the computation. Such results might then be
certified either by symbolic computations or by verifiable numerics, such as Smale’s alpha
theory [40] (see also [8, Ch. 8]) or by techniques from interval analysis [31]. Our present
concern is for cases where there is inherent uncertainty in the parameters due to empirical
measurements of the parameters or, perhaps, the parameters arise from prior computations
in finite precision. Therefore, the novel topic that we consider here is the following:

Assuming that a questionable structural element has been identified, determine
the nearest point in parameter space where the special structure occurs.

(2)

Our contributions are the two-stage robust framework described in Section 3 which first uses
fiber products as in Proposition 3.1 and then a local optimization approach, and subsequent
corollaries. Remark 3.3 describes stacking up fiber product systems to form polynomial sys-
tems whose solution sets correspond to a target structure. This robust framework is then
specialized to consider solutions at infinity (Theorem 4.1), solutions lying along a common
linear space (Theorem 5.1), factorization of components (Theorem 6.1), and solutions with
prescribed multiplicity and local Hilbert function (Theorem 7.1). In particular, our fac-
torization of components uses a novel methodology built from the second derivative trace
test [9] and applies to components of any dimension while [52] only considers hypersurfaces.

The rest of the paper is structured as follows. After describing some robustness scenarios
in Section 2, Section 3 provides a framework for robustness in numerical algebraic geom-
etry. This framework is then applied to a variety of structures: fewer finite solutions in
Section 4, existence of higher-dimensional components in Section 5, components that further
decompose into irreducible components in Section 6, and solution sets of higher multiplic-
ity in Section 7. We formulate the algebraic conditions implied by each type of structure
and use local optimization techniques to find a nearby set of parameters satisfying them.
After treating each type of specialized structure and illustrating on a small example, in
Section 8, we show the effectiveness of the approach on three more substantial problems
coming from the kinematics of mechanisms and robots. A short conclusion is provided in
Section 9. Files for the examples, which are all computed using Bertini [5], are available at
https://doi.org/10.7274/25328878.

2 Robustness scenarios

Before presenting our approach to robustifying numerical algebraic geometry, we discuss
scenarios where proximity to an exceptional set leads to ill-conditioning.

To abbreviate the discussion, we use the phrase “with probability one” as shorthand for
the more precise and stronger condition that exceptions are a proper algebraic subset of
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the relevant parameter space, where the parameter space in question should be clear from
context. Similarly, a point in parameter space is “generic” if it lies in the dense Zariski-open
set that is the complement of the set of exceptions. For example, the reference to “a system
of D generic linear polynomials,” L : Cn → CD, just after (1) means a system of the form
Ax+ b where matrix [A b ] has been chosen from the dense Zariski-open subset of CD×(n+1)

where V (L) intersects X transversely. In numerical work, we make the assumption that a
random number generator suffices for choosing generic points.

Our discussion uses the concept of a fiber product [46]. For algebraic sets A and B with
algebraic maps πA : A→ Y and πB : B → Y , the fiber product of A with B over Y is

A×Y B = {(a, b) ∈ A×B | πA(a) = πB(b)}. (3)

One may similarly form fiber products between three or more algebraic sets. In this arti-
cle, the maps involved in forming fiber products will all be natural projections of the form
(x, p) 7→ p. Moreover, for polynomial systems f, g : Cn×Cm → Ck, if A and B in Cn×Cm are
irreducible components of V (f(x, p)) and V (g(x, p)), respectively, then the fiber product of
A with B over Cm is an algebraic set in V (f(x1, p1), g(x2, p2), p1−p2), a so-called reduction to
the diagonal, which is isomorphic to an algebraic set in V (f(x1, p), g(x2, p)) ⊂ Cn × Cn × Cm.
In this situation, we refer to {f(x1, p), g(x2, p)} as a fiber product system. We note the con-
vention used throughout is that f(x, p) means that both x and p are considered as variables,
which is in contrast to f(x; p) where x are variables and p are parameters.

2.1 Multiplicity example

As a simple first example, consider solving V (f) for the single polynomial f = x2+2
√
2x+2,

which has the factorization (x+
√
2)2. Hence, V (f) is the single point x = −

√
2 which has

multiplicity 2 with respect to f . If instead of f , we are given an eight-digit version of it, say

f̃8 = x2 + 2.8284271x+ 2,

the Matlab roots command, operating in double precision, returns the two roots

x8 = −1.414213550000000± 0.000187073241389i

where i =
√
−1. Using these roots as initial guesses for Newton’s method, the solutions of

the sixteen-digit version of f ,

f̃16 = x2 + 2.828427124746190x+ 2,

are computed in double precision as

x16 = −1.414213553589213± 0.000000183520060i.

One may work the problem in increasingly higher precision by considering a sequence of
approximations aℓ of 2

√
2 rounded off to ℓ digits. For every ℓ, f̃ℓ = x2 + aℓx + 2 has a pair

of roots in the vicinity of −
√
2. A numerical package with adjustable precision can refine f̃ℓ

and a solution xℓ until |xℓ +
√
2| is smaller than any positive error tolerance one might set.
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Whether a computer program using this refinement process reports two isolated roots or one
double root depends on settings for its precision and tolerance. If the same program is only
given f̃8 or f̃16, the roots stay distinct no matter what precision is used for Newton’s method.

We can stabilize this situation by asking if there exists a nearby polynomial with a double
root. That is, we ask if there is a polynomial near to f̃8 of the form f̂(x; p) = x2 + px + 2
with a root that also satisfies the derivative f̂ ′(x; p) = 2x + p. Solving V (f̂(x, p), f̂ ′(x, p))
in C2 with Newton’s method and an initial guess taking x = x8 and p = a8, returns

(x̂, p̂) = (−1.414213562373095, 2.828427124746190),

where the imaginary parts have converged to zero within machine epsilon. Moreover, the
Jacobian matrix for this structured system is clearly nonsingular:

J

[
f̂

f̂ ′

]
=

[
2x+ p x

2 1

]
≈

[
0 −1.414213562373095
2 1

]
.

The good conditioning of this double-root problem not only leads to a quickly convergent,
accurate answer, but also it could be used to certify the answer via alpha theory [40] or
interval analysis [31]. The acceptance of the double root as the “correct” answer depends on
whether p̂ is within the tolerance of the given data. After all, if the user really wants the roots
of f̃8 as given, then x8 is the better answer. However, if the coefficient on x is acknowledged
to be only known to eight digits, then the double root x̂ is the preferred answer.

Suppose that we reformulate such that the parameter space has two entries, say

f̃(x; p) = x2 + p1x+ p2,

then we may search for the system with a double root nearest to f̃8 as

min ∥p− (2.8284271, 2)∥ subject to (f̃(x, p), f̃ ′(x, p)) = 0.

Using the Euclidean norm, the global optimum is attained at the nonsingular point

(x, p1, p2) = (−1.414213558248730, 2.828427116497461, 1.999999988334534),

which again shows that there is a polynomial f̃ near the given polynomial f̃8 such that f̃
has a double root. This illustrates the flavor of the approach put forward in [52], although
they also treat multivariate polynomials, which have a richer set of factorization structures
than just multiplicity.

One contribution of the present paper is to treat exceptional factorization and exceptional
multiplicity for systems of polynomials while [52] only considers the hypersurface case.

2.2 Divergent solutions

In numerical algebraic geometry, one of the most common objectives is to find the isolated
solutions of a “square” polynomial system, say f(x; p) : Cn×Cm → Cn, at a given parameter
point, say p = p∗. (Here, square means the number of equations equals the number of
variables.) A standard result of the field states that the number of isolated solutions is
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constant for all p in a nonempty open Zariski set in Cm. In other words, the exceptions
are a proper algebraic subset of Cm, say P ∗. A key technique in the field uses this fact
to build homotopies for finding all isolated points. In particular, if we have all isolated
solutions, say S1 ⊂ Cn, of start system f(x; p1) for a generic set of parameters, p1, then
the homotopy f(x;ϕ(t)) = 0 for a general enough continuous path ϕ(t) : [0, 1] → Cm with
ϕ(1) = p1 and ϕ(0) = p0 defines #S1 continuous paths whose limits as t → 0 include
all isolated solutions of a target system f(x; p0), e.g., see [35] or [45, Theorem 7.1.1]. The
conditions for a “general enough” path are very mild; in fact, ϕ(t) = tp1+(1−t)p0 suffices with
probability one when p1 is chosen randomly, independent of p0. Many ab initio homotopies,
which solve a system from scratch, fit into this mold. For example, polyhedral homotopies
are formed by considering the family of systems having the same monomials as the target
system, so that the parameter space consists of the coefficients of the monomials [23, 28, 50].
After solving f(x; p1) for generic p1 by such a technique, one may proceed to solve any target
system in the family by parameter homotopy. If the target parameters are special, i.e., if
p0 ∈ P ∗, then f(x; p0) has fewer isolated solutions than f(x; p1) meaning that some solution
paths of the homotopy either diverge to infinity or some of the endpoints lie on a positive-
dimensional solution component. Diverging to infinity can be handled by homogenizing f
and working on a projective space [32]. Thus, paths that originally diverged to infinity are
transformed to converge to a point with homogeneous coordinate equal to zero.

When one executes a parameter homotopy using floating point arithmetic, the computed
homogeneous coordinate of a divergent path is typically not exactly zero but rather some
complex number near zero. This also occurs when p0 is slightly perturbed off of the special
set P ∗. Usually, one does not know the conditions that define the algebraic set P ∗, but even
so, with a solution near infinity in hand, one may wonder how far p0 is from P ∗. Suppose that
due to round-off or measurement error, p0 is uncertain. Then, it could be of high interest to
know whether the closest point of P ∗ is within the uncertainty ball centered on p0.

It often happens that more than one endpoint of a homotopy falls near infinity. In such
cases, it is of interest to find a nearby point in parameter space where all those points land
on infinity simultaneously. Let us assume that f(x; p) has been homogenized so that x has
homogeneous coordinates [x0, x1, . . . , xn] ∈ Pn, with x0 = 0 being the hyperplane at infinity.
To consider j > 1 points simultaneously, we must introduce a double subscript notation,
where point xi ∈ Pn has coordinates xi = [xi0, . . . , xin]. Point xi is a solution at infinity if
it satisfies the augmented system F (xi; p) = {f(xi; p), xi0} = 0, so sending j > 1 points to
infinity simultaneously requires

{F (x1; p), . . . , F (xj; p)} = 0, (4)

which is the jth fiber product system for the projection (x, p) 7→ p [46]. We note that the
isolated solutions to f(x; p) are not necessarily independent in the sense that imposing (4)
for j points may result in forcing more than j endpoints to lie at infinity.

2.3 Emergent solutions

When a parameterized system has more equations than unknowns, f(x; p) : Cn × Cm → Ck

with k > n, there may exist exceptional sets where the number of isolated solutions increases.
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A familiar example is a linear system Ax = b where full-rank matrix A has more rows than
columns. For most choices of b in Euclidean space, the system is incompatible and has no
solutions. However, when b lies in the column space of A, there will be a unique solution. In
the more general nonlinear case, one method for finding all isolated solutions is to replace f
with a “square” randomization Rnf : Cn × Cm → Cn wherein each of the n polynomials
of system Rnf is a random linear combination of the polynomials in f . Theorem 13.5.1
(item (2)) of [45] implies that, with probability one, the isolated points in V (Rnf) include
all the isolated points in V (f). After solving Rnf by homotopy, one sorts solutions vs.
nonsolutions by evaluating f at each solution of Rnf . If V (Rnf) contains nonsolutions for
generic parameters p ∈ Cm, then there may exist an exceptional set P ∗ ⊂ Cm where one
or more of these satisfy f to become solutions. Bertini’s Theorem [45, Thm A.8.7] tells us
that the nonsolutions will be nonsingular with probability one. However, if they emerge as
singular solutions of V (f) as p → P ∗, then they will be ill-conditioned near P ∗. Even if
the nonsolutions remain well-conditioned as solutions of Rnf , meaning that the Jacobian
matrix with respect to the variables J(Rnf) = Rn · Jf is far from singular, the problem of
solving f for parameters in the vicinity of P ∗ is ill-conditioned from the standpoint that the
number of solutions changes discontinuously as we approach P ∗. The numerical difficulty
arises in deciding whether or not f(x; p) = 0 when the floating point evaluation of f is near,
but not exactly, zero. For nonsingular emergent solutions, sensitivity analysis, e.g., singular
value decomposition, of the full Jacobian matrix with respect to both the variables and the
parameters can estimate the distance in parameter space from the given parameters to P ∗,
while alpha theory or interval analysis can provide provable bounds. In the case of singular
emergent solutions, multiplicity conditions will have to be imposed as well (see below). In
any case, the simultaneous emergence of j solutions requires them to satisfy the jth fiber
product system {f(x1; p), . . . , f(xj; p)}.

2.4 Sets of exceptional dimension

Polynomial systems often have solution sets of positive dimension. This happens by force
if there are fewer equations than unknowns, but it can happen more generally as well.
Moreover, a polynomial system can have irreducible solution components at several different
dimensions. For x ∈ V (f), the local dimension at x, denoted dimx V (f), is the highest
dimension of all the irreducible solution components containing x. For a parameterized
system with the natural projection π(x, p) = p, the fiber above p∗ ∈ Cm is V (f(x; p∗)) and
the fiber dimension at point (x∗, p∗) ∈ V (f(x, p)) is dimx∗ V (f(x; p∗)). Define Dh as the
closure of the set {(x, p) ∈ CN × Cm | dimx V (f(x; p)) = h}, which is an algebraic set. A
parameterized polynomial system has a set of exceptional dimension wherever DH intersects
Dh for H > h, that is, exceptions occur at parameter values p∗ ∈ Cm where the fiber
dimension increases. The sets π(Dh) form a stratification of parameter space with each
containment progressing to higher and higher fiber dimension. Since the structure of the
solution set changes every time there is a change in dimension, each such change is another
example of ill-conditioning. As presented in [46] and discussed below in Section 5, fiber
products provide a way of finding sets of exceptional dimension.

In numerical algebraic geometry, sets of exceptional dimension can be understood as a
case of emergent solutions. Holding p constant, a witness point set for a pure D-dimensional
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component of V (f(x; p)) is found by intersecting with a codimension D generic affine linear
space, LD(x). For D > n − k, this is accomplished by first computing the isolated solu-
tions of the randomized system {Rn−Df(x; p), LD(x)}, where Rℓf denotes ℓ generic linear
combinations of the polynomials in f and LD(x) is a system of D generic affine linear equa-
tions. When p∗ is on a set of exceptional dimension, nonsolutions emerge as solutions to f
as p → p∗. For a degree d irreducible component to emerge, d new witness points must
emerge simultaneously, which leads to a fiber product formulation of the same general form
as (4), with F now defined as F (x; p) = {Rn−Df(x; p), LD(x)}. While the d witness points
of a degree d component must satisfy the dth fiber product, it may happen that imposing
the jth fiber product for j < d suffices. In particular, a different bound based on counting
dimensions often comes into play first [46].

2.5 Exceptional decomposition

Once one finds a witness set W = {f, LD,W} for a pure D-dimensional component X
of V (f), it is often of interest to decompose X into its irreducible components, which are the
closure of the connected components of X after removing its singularities, X \Xsing. For a
single polynomial, irreducible components correspond exactly with factors, so irreducible de-
composition is the generalization of factorization to systems of polynomials. Ill-conditioning
occurs near a point in parameter space where a component decomposes into more irreducible
components than general points in the neighborhood. Again, we get a stratification of pa-
rameter space where components decompose more and more finely.

Every pure-dimensional algebraic set satisfies a linear trace condition, and irreducible
components correspond with the smallest subsets of a witness point set W that satisfy the
trace test [9, 11, 27, 43]. Ill-conditioning occurs when the trace for a proper subset W1 ⊊ W
evaluates to approximately zero. We may then ask if there is a parameter point nearby where
the trace is exactly zero, indicating that X decomposes, with W1 representing a component
having lower degree. (The number of points in a witness set is equal to the degree of the
algebraic set it represents.) As presented in Section 6, since the trace test involves all the
points W1 simultaneously, a new kind of fiber product system ensues.

2.6 Exceptional multiplicity

Our opening example of a single polynomial with a double root generalizes to systems of
polynomials. As we approach a subset of parameter space where witness points merge, the
components they represent coincide, forming a component of higher multiplicity. When
we speak of the multiplicity of an irreducible component, we mean the multiplicity of its
witness points cut out by a generic slice. However, when randomization is used to find
witness points of V (f), f(x) : Cn → Ck at dimensions D > n − k, the multiplicity of
a witness point as a solution of {Rn−Df(x), LD(x)} may be greater than its multiplicity
as a solution of {f, LD(x)}, with equality only guaranteed for either multiplicity 1 (i.e.,
for nonsingular points) or when the multiplicity with respect to the randomized system
is 2 [45, Theorem 13.5.1]. Section 7 discusses in more detail how multiplicity is defined in
terms of Macaulay matrices and local Hilbert functions. For the moment, it suffices to say
that the Macaulay matrix evaluated at a generic point of an irreducible algebraic set reveals
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the set’s local Hilbert function and multiplicity, and provides an algebraic condition for it.
As such, we again get a stratification of parameter space associated with changing the local
Hilbert function and increasing the multiplicity.

Since every generic point of an irreducible algebraic set has the same multiplicity, the
conditions necessary to postulate the multiplicity of a component may be asserted for several
witness points simultaneously. As in the previous cases, asserting an algebraic condition for
several points simultaneously is a form of fiber product.

2.7 Summary

Each case discussed above—divergent solutions, emergent solutions, exceptional dimen-
sion, exceptional decomposition, and exceptional multiplicity—can lead to a kind of ill-
conditioning wherein small changes in parameters result in a discrete change in an integer
property of the solution set. Given a parameterized polynomial system f(x; p) along with
parameters near such a discontinuity, one may consider variations in the parameters and pose
the question of finding the nearest point in parameter space where the exceptional condition
occurs. In each case, imposing the exceptional condition on several points simultaneously
results in a fiber product system. In particular, when the exceptional condition applies to an
irreducible component of degree d > 1, it automatically applies to a set of d witness points,
and consequently, fiber products are key to robustifying numerical irreducible decomposition.

3 Robustness framework

The following provides a two-stage framework for robust numerical algebraic geometry to
address topic (2). The first stage is formulating a polynomial system which, as described
in Section 2, results from a fiber product [46]. The key part of this construction is to create
a polynomial system where the identified structural element of interest corresponds with a
union of irreducible components of the fiber product system. The second stage is to solve a
local optimization problem to recover a point in parameter space having the special structure.

The following is derived directly from [46] which describes the promotion of exceptional
sets with respect to dimension to be irreducible components of a fiber product system.

Proposition 3.1. Let g(x; p) : Cn×Cm → Ck be a polynomial system, π : Cn×Cm → Cm be
the projection map (x, p) 7→ p, X = V (g(x, p)) ⊂ Cn × Cm, and Y = π(X) ⊂ Cm. Suppose
that Z ⊂ Cn × Cm is a nonempty irreducible algebraic set contained in X. For a > 0, let

Za
Y = {(x1, . . . , xa, p) | (xi, p) ∈ Z} and Ga(x1, . . . , xa, p) =

 g(x1, p)
...

g(xa, p)

 .
Suppose that there exists h ≥ 0 and a Zariski open dense set U ⊂ Z such that

1. for every (u, q) ∈ U , dim (Z ∩ π−1(q)) = h and

2. for some (w, s) ∈ U , there exists an open set V ⊂ X in the complex topology that
contains (w, s) such that, for every (u′, q′) ∈ V \ Z, dim (X ∩ π−1(q′)) < h.
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Then, there exists aZ ∈ Z with 1 ≤ aZ ≤ dimY ≤ m such that, for every a ≥ aZ,
there is an irreducible component Za of V (Ga) contained in Za

Y with πa(Za) = π(Z) where
πa(x1, . . . , xa, p) = p.

Proof. This is a combination of Lemma 2.8 and Corollary 2.15 of [46] where Za is called the
main component of Za

Y . In fact, a simple dimension counting argument from Items 1 and 2
shows that

dimZa = a · h+ dim π(Z)

and the maximum dimension of an irreducible component of V (Ga) which could contain Za is

a · (h− 1) + dimY.

Hence, when a ≥ dimY , dimZa ≥ a · (h − 1) + dimY , which shows that Za must be an
irreducible component of V (Ga).

The number a is called the order of the fiber product Ga. As the order increases, Propo-
sition 3.1 shows that exceptional sets are promoted to irreducibility in the parlance of [46].

We need a fiber product framework which is flexible enough to apply to all the cases
highlighted in Section 2. The approach we take is to allow for auxiliary variables. After
constructing the fiber product, one can then simplify the system using appropriate slicing
and randomization to construct a well-constrained polynomial system. This approach is
demonstrated in the following.

Example 3.2. Consider finding the values of p ∈ C2 such that f(x; p) = p1x+ p2 has a
one-dimensional solution set. Of course, p̃ = (0, 0) is the only such point.

By the standard approach of fiber products in [46], Proposition 3.1 applies to Z = C×{p̃},
X = V (f(x, p)), and Y = C2. Since X is irreducible, one needs a = 2 = dimY with

G2(x1, x2, p) =

[
f(x1, p)
f(x2, p)

]
=

[
p1x1 + p2
p1x2 + p2

]
.

Since Z2
Y = C × C × {p̃} is irreducible, Proposition 3.1 yields that Z2

Y is an irreducible
component of V (G2). The other irreducible component of V (G2) is {(x, x, p) | f(x; p) = 0}.

For parameter values where the solution set is one-dimensional, any general line will
intersect V (f) in an isolated witness point. This condition can be formulated by introducing
auxiliary variables u ∈ C2 as the coefficients of a linear polynomial in x, so that f(x; p) is
replaced with F (x, u; p), where

F (x, u; p) =

[
p1x+ p2
u1x+ u2

]
.

In particular, for general p ∈ C2, V (F (x, u; p)) defines a curve while V (F (x, u; p̃)) is a
surface in which the closure of the projection onto u ∈ C2 is all of C2. Hence, one can
impose 2 general linear conditions on each u ∈ C2, i.e., simply instantiate each instance of u
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to be a general point in C2. To that end, applying Proposition 3.1 to Z = V (F (x, u; p̃))×{p̃},
X = V (f(x, p)), and Y = C2 with a = 2 yields

F2(x1, u1, x2, u2, p) =

[
F (x1, u1, p)
F (x2, u2, p)

]
=


p1x1 + p2
u11x1 + u12
p1x2 + p2
u21x2 + u22

 .
After instantiating each uj with general cj ∈ C2, this becomes the following system in x1, x2, p:

p1x1 + p2
c11x1 + c12
p1x2 + p2
c21x2 + c22

 .
This is a well-constrained system whose solution set is a single point, namely (x1, x2, p) =
(−c12/c11,−c22/c21, p̃). One can test that V (f(x; p̃)) = C as requested.

The particular form of the auxiliary variables and corresponding conditions are dependent
on the exceptional condition of interest. Specific formulations for various situations are
presented in Sections 4–7.

Remark 3.3. Proposition 3.1 is formulated based a single exceptional condition associated
with a corresponding polynomial system. However, one can also study cases where multiple
exceptional conditions are imposed simultaneously. In such cases, Propostion 3.1 can be used
sequentially to construct a fiber product system associated with the first exceptional condition,
append a fiber product system with the second exceptional condition, and so on. One may
view this as a compound fiber product system and the number of fiber products needed for
subsequent conditions will be based on the relationship to the previously imposed conditions.
An example of this is presented in Section 8.3.

Remark 3.4. Proposition 3.1 yields that m fiber products, which is the number of parame-
ters, always suffice, but fewer may also work. In practice, the minimal number aZ is often not
known a priori. If the corresponding irreducible component has multiplicity one with respect
to the corresponding fiber product system, Lemma 3 of [18] provides a local linear algebra
approach to compute the dimension of the image from such a smooth point on the component,
i.e., a point that projects to p̃. Moreover, from an approximation of a point that projects to
p̃, one can use a numerical rank revealing method such as the singular value decomposition
to determine the dimension. When all else fails, one could use a guess-and-check method
starting at a = 1 to determine if the fiber product system had an irreducible component with
the desired properties. If not, then increment a and try again.

Once one has a properly constructed fiber product system F(z, p) = Fa(z1, . . . , za, p) for
an appropriate value of a with each zj consisting of the original variables xj and potentially
auxiliary variables yj, the second stage of the robustness framework is to recover a parameter
value p∗ that has the identified exceptional condition. In particular, we assume that we are
given p̂ that is close to the set of exceptional parameters, and we wish to find an exceptional
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point p∗ nearby p̂. Here, one must choose a notion of “nearby,” such as the standard
Euclidean distance or an alternative based on knowledge about uncertainty in p̂. Over the
complex numbers, one may use isotropic coordinates [51] so that the square of the Euclidean
distance corresponds with a bilinear polynomial. To keep notation simple, we write this as
the local optimization problem

p∗ = argmin ∥p− p̂∥ such that F(z, p) = 0. (5)

In order to obtain local convergence conditions, e.g., see [7, Chap. 2], for the constrained
optimization problem (5), one may need to replace F will a well-constrained randomization.
Although such a randomization may introduce new solutions as summarized in Section 2.3,
there is still an open neighborhood around p̃ where any p̂ in this neighborhood will still result
in the corresponding optimal p∗ being exceptional. Of course, the size of such neighborhood
depends upon the system F , the point p̃, and the optimization method used.

Although there are many local optimization methods and distance metrics, all examples
below use the square of the standard Euclidean distance with a gradient descent homo-
topy [14]. In such cases, F is constructed to be a well-constrained system and we aim to
compute a nearby critical point of (5) using a homogenized version of Lagrange multipliers:

G(z, p, λ) =
[

F(z, p)

λ0∇(∥p− p̂∥22) +
∑M

j=1 λj∇(Fj)

]
where ∇(q) is the gradient of q and λ ∈ PM . If ẑ such that F(ẑ, p̂) ≈ 0, then the gradient
descent homotopy is simply

H(z, p, λ, t) =

[
F(z, p)− tF(ẑ, p̂)

λ0∇(∥p− p̂∥22) +
∑M

j=1 λj∇(Fj)

]
(6)

where the starting point at t = 1 is (ẑ, p̂, [1, 0 . . . , 0]). Note that such a gradient descent
homotopy is local in that it may not work in all cases, particularly when the perturbation is
“too large” or a “nearby” component did not actually exist with the given formulation. Here,
“too large” and “nearby” are taken with respect to the convergence basin of the gradient
descent homotopy. In such cases, one may need to consider alternative formulations, e.g.,
isotropic coordinates, as well as consider alternative local optimization methods.

4 Projective space and solutions at infinity

Let us begin by applying this robust framework to computing parameter values for which
the number of finite solutions of a system decreases.

4.1 Solutions at infinity

For a parameterized polynomial system f(x; p), one can consider solutions at infinity by con-
sidering a homogenization (or multihomogenization) of f with variables in projective space
(or product of projective spaces). Thus, solutions at infinity correspond with a homogenizing
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variable being equal to 0. For simplicity, suppose that we have replaced f with a homogenized
version which generically has no solutions at infinity. In an application of Proposition 3.1,
suppose that we want to reduce the number of finite solutions by forcing solutions to be
inside of the hyperplane at infinity defined by x0 = 0. This yields the following.

Theorem 4.1. Let f(x; p) be a polynomial system which is homogeneous in x = (x0, . . . , xn)
such that, for general p ∈ Cm, V (f(x; p), x0) ⊂ Pn is empty. Let ZH be a nonempty irre-
ducible component of

{(x, p) ∈ Pn × Cm | f(x; p) = 0, x0 = 0} (7)

such that, for general (y, q) ∈ ZH , y ∈ Pn is the unique solution to f(x; q) = 0 and x0 = 0.
Then, Proposition 3.1 holds when applied to

F (x, p) =

[
f(x, p)
x0

]
where x ∈ Cn+1 and p ∈ Cm, and Z is the affine cone over ZH . In particular, this component
system has no auxiliary variables.

Proof. By considering the affine cone over Pn, one has h = 1. From the assumption on
ZH , there is a Zariski open dense set U ⊂ Z such that Item 1 of Proposition 3.1 holds.
Moreover, for a general (w, s) ∈ U ⊂ Cn+1 × Cm, ([w], s) ∈ ZH ⊂ Pn × Cm is not contained
in any other irreducible component of (7). Hence, Item 2 of Proposition 3.1 holds when
fixing such (w, s) ∈ U and taking the open set V containing (w, s) to be small enough to not
intersect the affine cone over the union of the other irreducible components of (7).

Remark 4.2. The condition that f(x; p) = 0 generically has no solutions at infinity helps
to simplify the proof. Symbolically, this can be accomplished by saturating with respect to x0.
Since such a computation could be challenging, numerically this corresponds with ignoring
every irreducible component of V (f(x; p)) which maps dominantly onto the parameter space
consisting of solutions inside of x0 = 0.

For perturbed parameter values p̂, one is looking for solutions to f(x; p̂) = 0 for which
a homogenizing coordinate is close to 0. Remark 3.3 applies when aiming to have more
than one solution at infinity. If there are s such points, then the order of the fiber product
required to send all of them to infinity simultaneously is at most s but could be strictly
smaller than s due to relations amongst the solutions. Moreover, in the multiprojective
setting where variables are partitioned into several blocks associated to a cross product of
projective spaces, Remark 3.3 would also apply to having solutions in different hyperplanes
at infinity corresponding to the various blocks, e.g., see Section 8.3. In all cases, after
fiber product construction, one can use general affine patches and appropriate slicing and
randomization to construct a well-constrained polynomial system.

4.2 Illustrative example

Consider the parameterized family of polynomial systems

f(x; p) =

[
x21 + p1x1 + p2

(x1 + p3)x2 + 2x1 − 3

]
. (8)
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For generic p ∈ C3, f(x; p) = 0 has two finite solutions. However, for the exact parameter
values p̃ = (−2.3716, 0.98608803,−0.5377) ∈ Q3, f has only one finite solution. The reason
for this reduction is that, for these exact parameter values, one of the two roots of the first
polynomial happens to be x1 = −p̃3, at which value the second polynomial evaluates to
0x2 − 2p̃3 − 3 ̸= 0. To demonstrate the robustness framework, we consider starting with a
perturbation of p̃, say p̂ = (−2.3728, 0.9607,−0.5349) to 4 decimal places. Solving f(x; p̂) = 0
yields two finite solutions in C2 where one solution has large magnitude. Therefore, we aim to
recover p∗ near p̂ with one finite solution by pushing the large magnitude solution to infinity.

The first step is to create a homogenization of f in (8). Using a single homogenizing
coordinate, say x0, this yields

f(x; p) =

[
x21 + p1x0x1 + p2x

2
0

x1x2 + 2x0x1 + p3x0x2 − 3x20

]
. (9)

Viewing x ∈ P2, [0, 0, 1] is always a solution to f(x; p) = 0 and is thus ignored as in
Remark 4.2. For p̂, numerical approximations of the solutions on a randomly selected affine
patch are shown in Table 1. The first solution listed corresponds to [0, 0, 1], so it is not
considered further. The second solution listed has x0 near 0, and therefore we aim to adjust
the parameters so that it also lies on the hyperplane at infinity defined by x0 = 0.

Since there is a single solution to push to infinity, Theorem 4.1 along with the addition
of a general affine patch yields

F =


x21 + p1x0x1 + p2x

2
0

x1x2 + 2x0x1 + p3x0x2 − 3x20
x0

c0x0 + c1x1 + c2x2 − 1

 (10)

for randomly selected c ∈ C3. For illustration purposes, one can easily verify that the
closure of the image of the projection onto p ∈ C3 of the component of V (F) near solution 2
of Table 1 is V (p23−p1p3+p2) which contains p̃. Such a defining equation can be determined
using symbolic computation, e.g., via Grobner bases, or exactness recovery methods from
numerical values, e.g., [2].

With the first stage of the robustness framework complete, we now move to the sec-
ond stage involving optimization. The critical point system constructed using homogenized
Lagrange multipliers yields

G =



x21 + p1x0x1 + p2x
2
0

x1x2 + 2x0x1 + p3x0x2 − 3x20
x0

c0x0 + c1x1 + c2x2 − 1
λ1(p1x1 + 2p2x0) + λ2(2x1 + p3x2 − 6x0) + λ3 + λ4c0

λ1(2x1 + p1x0) + λ2(x2 + 2x0) + λ4c1
λ2(x1 + p3x0) + λ4c2
λ0(p1 − p̂1) + λ1x0x1
λ0(p2 − p̂2) + λ1x

2
0

λ0(p3 − p̂3) + λ2x0x2


. (11)
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Taking the second solution in Table 1 as x̂, a gradient descent homotopy (6) recovers a nearby
parameter value having the desired structure of only one finite solution, which is provided
in Table 2 to 8 decimal places. The exceptional set is two-dimensional, so we do not expect
to recover p̃ exactly, just a point p∗ nearby consistent with the size of the perturbation.

Since the solution at infinity is singular, Remark 3.4 does not apply for computing di-
mensions using linear algebra. However, if we instead use a 2-homogeneous formulation, the
solution at infinite becomes nonsingular and Remark 3.4 applies. In particular, using two
homogenizing coordinates, say x0 and x3, and considering solutions at infinity corresponding
with x3 = 0, this yields

f(x; p) =

[
x21 + p1x1x0 + p2x

2
0

x1x2 + 2x1x3 + p3x0x2 − 3x0x3

]
and F =


f(x; p)
x3

c0x0 + c1x1 − 1
c2x2 + c3x3 − 1

 . (12)

for a randomly selected c ∈ C4 after adding a general affine patch for each set of variables.
A corresponding gradient descent homotopy returns the same results as in Table 2.

5 Witness points and randomization

The next structure to consider for applying this robust framework to is computing parameter
values which have solution components of various dimensions and degrees.

5.1 Witness points

As described in Section 2, pure-dimensional solution components can be described by wit-
ness sets. A key decision in numerical algebraic geometry, such as part of a dimension-by-
dimension algorithm for computing a numerical irreducible decomposition, e.g., [19, 41, 44], is
to determine if a floating-point approximation of solution x to a randomized system Rf(x; p)
corresponds to an actual solution to the original system f(x; p). For a system whose parame-
ters are given exactly (e.g., rational numbers or radicals of rational numbers), one can refine
the approximation of x (typically using Newton’s method) and evaluate f(x; p) to higher
and higher precision to lower the uncertainty in the decision. If the point is a nonsolution,
meaning Rf(x; p) = 0 but f(x; p) ̸= 0, that fact can be certified [20].

In cases where p is only known approximately as p̂, and we have an approximate so-
lution x̂ to Rf(x; p̂), using higher precision to refine x̂ as a solution of Rf(x; p̂) and then
to evaluate f(x̂, p̂) may not result in a residual that converges to 0. Instead, we must ask
whether there exists a set of parameters p∗ near to p̂ where f(x; p∗) has a root x∗ near to x̂.

Suppose that we want to V (f(x; p)) to have a solution component of dimension D and de-
gree d. Let Grk(n) be the Grassmannian of k-dimensional linear spaces in Cn. For ℓ ∈ Grk(n),
let Lℓ be a system of k linear polynomials such that V (Lℓ) = ℓ. This yields the following,
which is itself a fiber product to impose the degree requirement.

Theorem 5.1. Suppose that f(x; p) is a polynomial system and Z is a nonempty irreducible
component of the set of (x1, . . . , xd, ℓ, p) ∈ (Cn)d×Grn−D(n)×Cm such that {x1, . . . , xd} are d
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distinct points in V (f(x; p))∩ ℓ in which, for general (y1, . . . , yd, b, q) ∈ Z, yj is nonsingular
with respect to {f(x; q), Lb(x)}. Then, Proposition 3.1 holds when applied to

F (x1, . . . , xd, ℓ, p) =


f(x1, p)
Lℓ(x1)

...
f(xd, p)
Lℓ(xd)

 .

Proof. One has h = dimGrn−D(n) = D(n−D). From the assumption on Z, there is a Zariski
open dense set U ⊂ Z such that Item 1 of Proposition 3.1 holds. Select (w1, . . . , wd, b, s) ∈ U
which is not contained in any other irreducible component of the set of (x1, . . . , xd, ℓ, p) in
(Cn)d×Grn−D(n)×Cm such that {x1, . . . , xd} are d distinct points in V (f(x; q))∩ ℓ. Hence,
Item 1 of Proposition 3.1 holds when V is an open set containing (w1, . . . , wd, b, s) that is
small enough to not intersect the union of the other irreducible components.

Rather than only considering a single dimension, Remark 3.3 applies to append the
conditions on the parameters to ensure that components in various dimensions exist simul-
taneously starting with the largest dimension. The value of D and d in the definition of F
changes accordingly at each invocation. To enforce the factorization into two components
requires additional conditions. This is the subject of Section 6 below. Additionally, if one
aims to impose that some irreducible components have multiplicity greater than 1, then F
must be modified to enforce such extra conditions. This is discussed below in Section 7.

After fiber product construction, one can use appropriate slicing and randomization to
construct a well-constrained polynomial system. For example, the Grassmannians can be
instantiated as randomly selected elements of Grn−D(n).

5.2 Illustrative example

Consider the parameterized family of polynomial systems

f(x; p) =

[
x1x2 − 2x1 + p1x2 + p2
x21 − 2x1 + p1x1 + p2

]
. (13)

For generic p ∈ C2, f(x; p) = 0 consists of two isolated solutions. However, for p̃ = (1,−2),
the irreducible decomposition consists of the line V (x1 + 1) and the point (2, 2) as shown
in Fig. 1. Perturbing the parameters produced p̂ = (0.9876,−2.2542) to 4 decimal places
with the corresponding two isolated solutions also shown in Fig. 1.

When considering witness points on a one-dimensional component of V (f(x; p)), the
system under consideration has the form

fR(x; p) =

[
Rf(x; p)
L(x)

]
=

[
x1x2 − 2x1 + p1x2 + p2 +□(x21 − 2x1 + p1x1 + p2)

□x1 +□x2 +□

]
(14)

where each □ represents an independent random complex number with R = [1 □]. Solv-
ing fR(x; p̂), there is one solution for which f(x; p̂) is far from vanishing (called a nonsolution)
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Figure 1: Solution sets for the initial and perturbed parameters

and one solution, call it x̂, where the first coordinate is in the vicinity of −1 and f(x̂; p̂)
is close to vanishing. Thus, we aim to recover p∗ near p̂ for which this later point is an
actual witness point for a one-dimensional line. With this, the fiber product system from
Theorem 5.1 after instantiating the Grassmannian randomly is

F =

 x1x2 − 2x1 + p1x2 + p2
x21 − 2x1 + p1x1 + p2
c1x1 + c2x2 + c3

 (15)

for randomly selected c ∈ C3. The critical point system is

G =



x1x2 − 2x1 + p1x2 + p2
x21 − 2x1 + p1x1 + p2
c1x1 + c2x2 + c3

λ1(x2 − 2) + λ2(2x1 + p1 − 2) + λ3c1
λ1(x1 + p1) + λ3c2

λ0(p1 − p̂1) + λ1x2 + λ2x1
λ0(p2 − p̂2) + λ1 + λ2


. (16)

With (x̂, p̂), tracking a single path with a gradient descent homotopy (6) recovers a nearby
parameter p∗ listed in Table 3 to four decimal places. Recomputing a numerical irreducible
decomposition for f(x; p∗) yields a line and an isolated point as requested.

To show that this procedure is robust to arbitrary perturbations, we repeated it on a
sample of 500 points from a bivariate Gaussian distribution centered at the initial parameter
values p̃ = (1,−2) with covariance matrix Σ = 0.12I2 where each sample represents parame-
ter values with error. In Fig. 2, the aforementioned p̃ is shown as a square, and p̂ and p∗ are
triangles, while the additional sampled values and recovered parameters are shown as circles.
For this simple problem, it is easy to recover the defining equation for the corresponding
exceptional set, namely they all lie along the line V (2p1 + p2).

To visualize marginal histograms of the recovered parameter values from the 500 samples,
Fig. 3 shows the p1 and p2 coordinates along with an intrinsic coordinate parameterizing the
line with 0 corresponding to p̃ = (1,−2).
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(a) (b)

Figure 2: (a) Illustration of recovering parameters for various perturbations including the
example summarized in Table 3; (b) Illustration using 500 samples

(a) (b) (c)

Figure 3: Histograms for (a) p1, (b) p2, and (c) intrinsic parameterizing coordinate for
recovered parameter values from 500 samples

For a standard multivariate Gaussian, all marginals are Gaussian. So, if we orthogo-
nally project a multivariate Gaussian centered at p̃ onto a linear space passing through p̃,
this will yield a Gaussian distribution in the linear space. In the case presented here, the
perturbations from the initial parameters are both generated as zero-mean with standard
deviation 0.1, so the recovered parameters along the line should be centered on the initial
parameters with that same standard deviation. Figure 3(c) is consistent with that expecta-
tion. Moreover, orthogonally projecting the distribution of the perturbed parameters onto
the line perpendicular to V (2p1+p2) will also be distributed as Gaussian with standard devi-
ation 0.1. If one were given just the perturbed parameters and their accuracy, described as a
statistical distribution, one could calculate a confidence in the null hypothesis that the given
parameters are drawn from a distribution centered on an initial value for which V (f(x; p̃))
has one component that is a line. In this case of a single remaining degree of freedom in
parameter space, a Z-score for ||p̂− p∗|| would be informative.

We will not delve into statistical analyses for more general cases. Nevertheless, we remark
that if the exceptional set in parameter space is codimension s and the incoming parameters
are perturbed from the exceptional set with a normal distributionN (0, σ2I), then the squared
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distance σ−2||p̂−p∗||2 is a chi-squared distribution with s degrees of freedom. (This assumes
that the exceptional set is locally smooth and σ is small enough that a local linearization of
the exceptional set is accurate on the scale of σ.) If the perturbations have a more general
normal distribution, say N (0,Σ), then it would be appropriate to change the norm used
in (5) to (p − p̂)TΣ−1(p − p̂) so that we are searching for a maximum likelihood estimate.
The same norm would then enter into a chi-square confidence estimate.

6 Traces and numerical irreducible decomposition

With Section 5 considering witness points of a pure-dimensional component, the next struc-
ture to consider applying this robust framework to is computing parameter values which
have solution components that decompose into several irreducible components.

6.1 Reducibility

In a numerical irreducible decomposition, the collection of witness points is partitioned into
subsets corresponding with the irreducible components. One approach for performing this
decomposition is via the trace test [9, 11, 27, 43] and a key decision is to determine when
the linear trace vanishes. For exact systems, this can be determined robustly by computing
the linear trace to higher precision, but becomes an uncertain task for systems with error as
perturbations tend to destroy reducibility.

In the present context, the second-derivative trace test from [9] is appropriate, as it can
be employed locally. Suppose that {f, LD,W} is a witness set for a pure D-dimensional
component X of V (f). Since discussions about multiplicity are provided in Section 7.1,
suppose that each irreducible component ofX has multiplicity 1 with respect to f . Moreover,
by replacing f with a randomization, we can assume that f : Cn → Cn−D. Let Wr ⊂
W consist of r points. Then, there is a pure D-dimensional component X ′ ⊂ X with
X ′ ∩ V (LD) = Wr if and only if, for a general L′

D : Cn → CD,

r∑
j=1

ẅj = 0 (17)

where {w1, . . . , wr} = X ′ ∩ V (L′
D), and ẇj and ẅj satisfy

[
Jf(wj)
JL′

D(wj)

]
· ẇj =

[
0
1

]
,

[
Jf(wj)
JL′

D(wj)

]
· ẅj = −


ẇT

j · Hessian(f1)(wj) · ẇj
...

ẇT
j · Hessian(fn−D)(wj) · ẇj

0

 . (18)
Since all the coordinates in (17) may not be independent, one can replace (17) with a
randomized version, namely α ·

∑r
j=1 ẅj = 0 for a general α ∈ Cn. Nonetheless, one can use

fiber products to recover reducibility of a component of degree r.
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Theorem 6.1. Suppose that f(x; p) is a polynomial system and Z is a nonempty irreducible
component of the set of

(w1, ẇ1, ẅ1, . . . , wr, ẇr, ẅr, ℓ, p) ∈ (Cn × Cn × Cn)r ×Grn−D(n)× Cm

such that {w1, . . . , wr} are r distinct points in V (f(x; p))∩ ℓ, (18) holds for each (wj, ẇj, ẅj)
for f(x; p) and Lℓ(x), and (17) holds. Moreover, suppose that, for general

(y1, ẏ1, ÿ1, . . . , yr, ẏr, ÿr, b, q) ∈ Z,

yj is nonsingular with respect to {f(x; q), Lb(x)}. Then, Proposition 3.1 holds when applied to

F (x1, ẋ1, ẍ1, . . . , xr, ẋr, ẍr, ℓ, p) =


S(x1, ẋ1, ẍ1, ℓ, p)

...
S(xr, ẋr, ẍr, ℓ, p)
ẍ1 + · · ·+ ẍr


where

S(x, ẋ, ẍ, ℓ, p) =



[
f(x, p)
Lℓ(x)

]
% solution[

Jf(x, p)
JLℓ(x)

]
· ẋ−

[
0
1

]
% 1st derivative

[
Jf(x, p)
JLℓ(x)

]
· ẍ+


ẋT · Hessian(f1)(x, p) · ẋ

...
ẋT · Hessian(fn−D)(x, p) · ẋ

0

 % 2nd derivative


.

Proof. One can follow a similar proof as in Theorem 5.1.

For perturbed parameter values p̂, one is looking for collections of points for which (17)
is close to 0. The situation in Theorem 6.1 covers the case when X has degree d and
one is considering decomposing X into a degree r and degree d − r component (where
1 ≤ r ≤ d− r ≤ d). If one is considering factorization into more than two components or
the factorization of components in different dimensions, then Remark 3.3 applies; that is, one
would form a compound fiber product system that stacks up several systems of the form given
in Theorem 6.1. Moreover, in the multiplicity 1 case considered here, Remark 3.4 applies.

6.2 Illustrative example

Consider the parameterized family of polynomial systems

f(x; p) = p1+ p2x1+ p3x
2
1+ p4x

3
1+ p5x1x2+ p6x

2
1x2+ p7x

3
1x2+ p8x

2
2+ p9x

2
1x

2
2+ p10x1x

3
2 (19)

from [52]. For generic p ∈ C10, f(x; p) = 0 defines a quartic plane curve. The problem
described in [52, Ex. 2] considers the parameters p̃ = (−30, 20, 18,−12, 12,−8, 0,−5, 3, 2)
with perturbation p̂ = (−30, 20, 18,−12, 12.000007,−8, 0.0000003,−5, 3, 2) so that

f(x; p̃) = (3x21+2x1x2−5)(x22−4x1+6) and f(x; p̂) = f(x; p̃)+0.0000003x31x2+0.000007x1x2
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(a) (b)

Figure 4: Solution sets corresponding to the (a) initial and recovered parameters, and (b) per-
turbed parameters for system (19).

with the corresponding quartic plane curves illustrated in Fig. 4.
For illustration, Table 4 considers the result of intersecting f(x; p̂) = 0 with the linear

space defined by 2x1−3x2 = 1. Clearly, we see that both ẅ1+ẅ2 and ẅ3+ẅ4 are close to zero
indicating that we should consider computing parameters p∗ near p̂ for which f(x; p∗) factors
into two quadratics via the second derivative trace test, i.e., apply Theorem 6.1 with r = 2.

Table 5 uses Remark 3.4 to determine the dimension of parameter space as the fiber
product index a is incremented. In this case, one sees a stabilization of the dimension of
the parameter space to 6 when a = 4, confirmed as stable when a = 5. That is, we ex-
pect to recover parameters p∗ contained in a 6-dimensional parameter space. After applying
appropriate random instantiation of the Grassmannians and randomization (17) as in Sec-
tion 6.1, the resulting gradient descent homotopy (6) with homogenized Lagrange multipliers
is a square system consisting of the same number of variables and equations which is also
listed in Table 5. Finally, Table 5 also records the numerical irreducible decomposition of
f(x; p∗) for the corresponding recovered p∗. This column also indicates that F4 suffices for
the decomposition to stabilize, with the corresponding recovered parameters (to 7 decimal
places) provided in Table 6. For comparison, written using double precision, the recovered
factorization from [52] and p∗ is provided in Table 7. The key difference is that [52] enforced
p7 = 0 so that the third factor maintained the same monomial structure as the exact system
while the second derivative trace test only enforced factorability. Hence, with the additional
constraint, the recovered factorization in [52] is further away (3.76 · 10−6) from p∗ than p̂
(3.15 · 10−6). Of course, one could impose the additional parameter space condition, namely,
p7 = 0, with the second derivative trace test approach and recover the same factorization
as [52].

7 Multiplicity and local Hilbert function

The final structure we consider for applying this robust framework to is computing parameter
values which have solutions with specified multiplicity and local Hilbert function.

22



7.1 Macaulay matrix

For a univariate polynomial u(x), a number x∗ is said to have multiplicity µ ≥ 0 if and
only if u(x∗) = u′(x∗) = u′′(x∗) = · · · = u(µ−1)(x∗) = 0 and u(µ)(x∗) ̸= 0. For a multivari-
ate polynomial system, derivatives are replaced with partial derivatives leading to different
ways of having a solution with multiplicity µ. One approach for computing multiplicity in
multivariate systems is via Macaulay matrices first introduced in [30] and used in various
methods such as [3, 12, 15, 16, 47, 53] to name a few.

For α ∈ Zn
≥0, define

|α| = α1 + · · ·+ αn, α! = α1! · · ·αn!, and ∂α =
1

α!

∂|α|

∂xα
.

For x∗ ∈ Cn, consider the linear functional ∂α[x
∗] from polynomials in x to C defined by

∂α[x
∗](g) = (∂αg)(x

∗)

which is simply the coefficient of (x−x∗)α in an expansion of g(x) about x∗. For a polynomial
system f : Cn → Ck and d ∈ Z≥0, the d

th Macaulay matrix of f at x∗ is

Md(f, x
∗) =

[
∂α[x

∗]
(
(x− x∗)βfj

)
such that |α| ≤ d, |β| ≤ max{0, d− 1}, j = 1, . . . , k

]
where the rows are indexed by (β, j) while the columns are indexed by α. Define β ≤ α if
βa ≤ αa for all a = 1, . . . , n. By the Leibniz rule,

∂α[x
∗]
(
(x− x∗)βfj

)
=

{
∂α−β[x

∗](fj) if β ≤ α,
0 otherwise.

For example, M0(f, x
∗) = f(x∗) and M1(f, x

∗) = [f(x∗) Jf(x∗)]. Moreover, there are
matrices Ad(f, x

∗) and Bd(f, x
∗) such that

Md+1(f, x
∗) =

[
Md(f, x

∗) Ad(f, x
∗)

0 Bd(f, x
∗)

]
. (20)

The local Hilbert function of f at x∗ is

hf,x∗(d) = dimnull Md(f, x
∗)− dimnull Md−1(f, x

∗)

where one takes dimnull M−1(f, x
∗) = 0. In particular, x∗ ∈ V (f) if and only if hf,x∗(0) = 1.

Moreover, if x∗ ∈ V (f), then x∗ is isolated in V (f) if and only if there exists d∗ ≥ 0 such
that hf,x∗(d) = 0 for all d > d∗ with multiplicity µ = dimnull Md∗(f, x

∗) =
∑d∗

d=0 hf,x∗(d).

Let nd be the number of columns in Md(f, x
∗) and S(d) =

∑d
j=0 hf,x∗(j). Then, Λd =

null Md(f, x
∗) ∈ GrS(d)(nd). By a natural inclusion of Λd in Cnd+1 by padding with zeros, (20)

shows that Λd+1 ∈ GrS(d+1)(nd+1) arises as the linear span of Λd and another a linear space,
say, Ωd ∈ Grhf,x∗ (d+1)(nd+1). By abuse of notation, we will write as Λd+1 = Λd ⊕ Ωd+1. In
particular, Λd∗ = Ω0 ⊕ · · · ⊕ Ωd∗ ∈ Grµ(nd∗) where Ωj ∈ Grhf,x∗ (j)(nj).

The following shows how to impose a local Hilbert function condition.
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Theorem 7.1. Let d∗ ∈ Z≥0 and h = (h0, h1, . . . , hd∗ , 0, . . . ) with h0 = 1 and hj ∈ Z≥1 for
j = 1, . . . , d∗. With the setup described above, x∗ ∈ Cn such that hf,x∗(j) = hj for j ≥ 0 if
and only if there are unique Ωj ∈ Grhf,x∗ (j)(nj) for j ≥ 0 such that

null Md(f, x
∗) = Ω0 ⊕ · · · ⊕ Ωd (21)

for all d ≥ 0.
Suppose that F (x,Ω0, . . . ,Ωd∗ , p) is the polynomial system consisting of f(x, p) along

with (21) for j = 1, . . . , d∗. Assume that Z is a nonempty irreducible component of the
set (y,Ω0, . . . ,Ωd∗ , q) such that f(y; q) = 0 and Ω0 ⊕ · · · ⊕ Ωj ⊂ null Mj(f(x; q), y) for j =
0, . . . , d∗. Moreover, suppose that, for general (y,Ω0, . . . ,Ωd∗ , q) ∈ Z, y is an isolated point
in V (f(x; q)) with multiplicity µ =

∑d∗

j=0 hf(x;q),y(j) and Ω0 ⊕ · · · ⊕ Ωj = null Mj(f(x; q), y)
for j = 0, . . . , d∗. Then, Proposition 3.1 holds when applied to F .

Proof. The first part of the result follows immediately from (20) and the definition of the
local Hilbert function. The second part follows analogously as in the other proofs.

In order to enforce various local Hilbert functions separately at several points, Theo-
rem 7.1 can be applied individually for each point and then all such systems can be collected
together. To enforce multiplicity of a component, one applies a local Hilbert function con-
dition at each of the witness points separately with respect to the polynomial system and
slicing system together. Then, one takes fiber products resulting from the component sys-
tems in Theorem 7.1 stacked together via Proposition 3.1 and Remark 3.3. Additionally,
if one aims to enforce a Hilbert function of a zero-scheme, this approach can naturally be
generalized following [15].

For perturbed parameter values p̂, one is looking for solutions to f(x; p̂) = 0 for which the
corresponding Macaulay matrices are nearly rank deficient. This can be determined using
numerical rank revealing methods such as the singular value decomposition to determine
appropriate null space conditions to apply.

As in Section 4.1, one can perform computations on general affine patches of the Grass-
mannians. In particular, adapting [4, Thm. 2], for a general unitary Rj ∈ C(nj−nj−1)×(nj−nj−1),
one can represent a general open affine patch of Grhj

(nj) as Ξj

Rj

[
Ihj

Ψj

] 
where Ξj ∈ Cnj−1×hj , Ψj ∈ C(nj−nj−1−hj)×hj and Ihj

is the hj × hj identity matrix. In
particular, the total number of elements in Ξj and Ψj is

nj−1hj + (nj − nj−1 − hj)hj = (nj − hj)hj = dimGrhj
(nj).

7.2 Illustrative example

Similar to Section 5.2, computing a numerical irreducible decomposition of

f(x; p) =

[
f1
f2

]
=

[
x31 − 2p1x

2
1 − 2x21 + p21x1 + 4p1x1 − p21 − p2

x21x2 − 2x21 − 2p1x1x2 + 4p1x1 + p21x2 − p21 − p2

]
, (22)
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with p̃ = (1, 1), has a line and an isolated point in the solution space. However, for
this system, the line has multiplicity two. When these parameters are perturbed, say
p̂ = (1.2346, 1.0089) to 4 decimal places, the point and line structure breaks into three
isolated points. In this case, we want to recover nearby parameters giving the special struc-
ture of a one-dimensional line with multiplicity two and an isolated point. As in Section 5.2,
we randomize to a single equation and add a slice. After solving

fR(x; p) =

[
Rf(x; p)
L(x)

]
=

[
f1 +□f2

□x1 +□x2 +□

]
= 0, (23)

we choose one of the two solutions near the one-dimensional line. To recover the multiplicity
at this component, we add the condition outlined in Theorem 7.1. In particular, as mentioned
in Section 2.6, since the randomized system having multiplicity 2 implies the original system
has multiplicity 2, we simply work with the randomized system with (21) corresponding
to fR(x; p) = 0 from (23) together with

JfR(x; p) ·R1 ·
[

1
ψ

]
= 0 (24)

where R1 ∈ C2×2 is a general unitary matrix. Hence, F consists of the polynomials in (23)
and (24). Using a gradient descent homotopy (6) with homogenized Lagrange multipliers
yields the recovered parameters listed in Table 8 and pictorially represented in Fig. 5.

Similar to Section 5.2, we repeated this process with 500 samples from a bivariate Gaus-
sian distribution centered at the initial parameter values p̃ = (1, 1) with covariance matrix
Σ = 0.12I2. The results of this experiment are summarized in Fig. 5. For this simple
problem, it is easy to recover the defining equation for the corresponding exceptional set,
namely they all lie along the parabola V (p21 − p2). Histograms of the marginal distributions
for p1, p2, and along an intrinsic parameterization of the tangent line to the parabola at p̃
are shown in Fig. 6.

(a) (b)

Figure 5: (a) Illustration of recovering parameters for various perturbations including the
example summarized in Table 8; (b) Illustration using 500 samples
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(a) (b) (c)

Figure 6: Histograms for (a) p1, (b) p2, and (c) intrinsic parameterizing coordinate along
tangent line for recovered parameter values from 500 samples

8 Kinematic examples

The examples in Sections 4–7 were designed for illustrative purposes. The following considers
three examples derived from the field of kinematics.

8.1 Decomposable 4-bar coupler curve

Consider the 4-bar linkage given by the parameterized family of polynomial systems

f(x; p) =

 x21 + x22 − p21
(x3 − p2)

2 + x24 − p23
(x1 − x3)

2 + (x2 − x4)
2 − p24

 . (25)

For generic p ∈ C4, V (f(x; p)) is an irreducible sextic (d = 6) curve. It is known that p1 = p3
and p2 = p4 yields a parallelogram linkage and the solution set factors into a quadratic and
quartic curve. Considering initial parameter values p̃ = (1, 2, 1, 2), we perturbed the param-
eters yielding p̂ = (1.0025, 2.0101, 1.0098, 2.0014) rounded to four decimals. For illustration,
Fig. 7 shows the solution set projected into (x1, x4) space.

For the perturbed parameter values p̂, the sextic curve does not factor. Nonetheless,
following Section 6.2, linear traces are close to zero for collections of r = 2 and d − r = 4
points. Thus, we aim to apply Theorem 6.1 to recover parameters p∗ near p̂ such that the
solution set V (f(x; p∗)) factors into a quadratic curve and a quartic curve using the second
derivative trace test. Table 9 summarizes the results of applying Remark 3.4 to determine
the number of component systems needed. One sees that the dimension stabilizes with two
systems. The corresponding system sizes are also reported in Table 9, where the systems
are square via homogenized Lagrange multipliers. Using a gradient descent homotopy (6)
with two component systems, the recovered parameters p∗ are reported in Table 10 to 4
decimals and one clearly sees the parallelogram linkage structure is recovered. The resulting
decomposable solution set V (f(x; p∗)) is illustrated in Fig. 7(a).

8.2 Stewart-Gough platform

A Stewart-Gough platform consists of two bodies, a base and an end-plate, connected by six
legs as illustrated in Fig. 8. For j = 1, . . . , 6, the jth leg imposes a square distance dj between
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(a) (b)

Figure 7: Projections of the 4-bar coupler curve in (x1, x4) space corresponding to (a) initial
and recovered parameters, and (b) perturbed parameters

point aj ∈ R3 of the base and point bj ∈ R3 of the end-plate. Letting “∗” denote quaternion
multiplication and letting v′ denote the quaternion conjugate of v, the leg constraints may
be written as follows, for j = 1, . . . , 6,

fj(e, g; a, b, d) = (aj ∗ a′j + bj ∗ b′j − dj)e ∗ e′ − e ∗ bj ∗ e′ ∗ a′j ∗ aj ∗ e ∗ b′j ∗ e′

+ g ∗ b′j ∗ e′ + e ∗ bj ∗ g′ − g ∗ e′ ∗ a′j − aj ∗ e ∗ g′ + g ∗ g′ = 0 (26)

where e, g are quaternions in a Study coordinate representation of the position and orienta-
tion of the end-plate. Hence, e, g must satisfy the Study quadric

Q(e, g) = g0e0 + g1e1 + g2e2 + g3e3 = 0. (27)

In this example, we set e0 = 1 to dehomogenize the system. For generic parameters
p = (a, b, d), this platform can be assembled in 40 rigid configurations over the complex
numbers. That is, the solution set of the parameterized polynomial system resulting from
the 6 leg constraints in (26) and Study quadratic in (27) consists of 40 isolated points. How-
ever, for p̃ reported in Table 12 in Appendix A derived from [17, Ex. 2.2], this platform moves
in a circular motion as illustrated in Fig. 8. In particular, this circular motion corresponds
to the solution set containing a quadratic curve. To apply the robustness framework, we
consider a slight perturbation yielding p̂ in Table 12 for which the platform becomes rigid.

Following Section 5.2, we aim to find p∗ near p̂ for which the solution set contains a
quadratic curve. First, we consider a randomization of the 6 leg constraints down to 5
conditions, the Study quadric, and a linear slice, namely

fR(e, g; p) =



f1 +□f6
f2 +□f6
f3 +□f6
f4 +□f6
f5 +□f6

Q
□e1 +□e2 +□e3 +□g0 +□g1 +□g2 +□g3 +□


(28)
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Figure 8: A Stewart-Gough platform. The z = 0 plane (gray) contains the circular path (red)
corresponding to one point of the end-plate

where each □ represents an independent random complex number. For fR(e, g; p̂), there are
two solutions for which the leg constraints in (26) are close to vanishing, consistent with a de-
gree 2 component having 2 witness points, and 38 solutions which are not close to vanishing.
Using Theorem 5.1 with d = 2 to construct the fiber product system, we apply Remark 3.4
which indicates 4 component systems are needed. The dimensions and corresponding square
system sizes via homogenized Lagrange multipliers are reported in Table 11. Tracking the
corresponding gradient descent homotopy (6), the recovered parameter values p∗ are also re-
ported in Table 12 and the corresponding Stewart-Gough platform has regained its motion.

8.3 Family containing the 6R inverse kinematics problem

The inverse kinematics problem for six-revolute (6R) mechanisms seeks to determine all
ways to assemble a loop of six rigid links connected serially by revolute joints. One formu-
lation [34, 48] sets the problem as a member of the following parameterized system of eight
quadratics using a 2-homogeneous construction:

f(x; p) =



f0(x; q)
f1(x; q)
f2(x; q)
f3(x; q)

x21 + x22 − x20
x25 + x26 − x20
x23 + x24 − x29
x27 + x28 − x29


, (29)
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Figure 9: Logarithmic plot of absolute values of homogenizing coordinates for the 64 solutions

where fj, j = 0, 1, 2, 3, has the form

fj(x; q) = qj0x1x3 + qj1x1x4 + qj2x2x3 + qj3x2x4 + qj4x5x7 + qj5x5x8

+ qj6x6x7 + qj7x6x8 + qj8x1x9 + qj9x2x9 + qj10x3x0 + qj11x4x0

+ qj12x5x9 + qj13x6x9 + qj14x7x0 + qj15x8x0 + qj16x0x9, (30)

with x0 and x9 as the homogenizing coordinates. In particular, this system is defined
on P4 × P4 with corresponding variable sets {x0, x1, x2, x5, x6} × {x3, x4, x7, x8, x9}. We de-
homogenize the system by solving on the affine patches defined by x1 = 1 and x3 = 1.

With q consisting of 68 values, we take the parameters as the 32 values in q associated
with monomials that do not vanish at infinity, i.e., V (x0) ∪ V (x9), namely qj0, . . . , qj7 for
j = 0, . . . , 3. The remaining 36 coefficients, namely qj8, . . . , qj16, j = 0, . . . , 3, are fixed
as constants because they are associated with monomials that vanish at infinity. Table 13
in Appendix A contains their values. For generic parameters, the resulting system has 64
finite solutions. However, for parameters that correspond with a 6R problem, the system
should only have 32 finite solutions. Thus, to use the robustness framework, we truncated
q ∈ C68 corresponding to an actual 6R problem using single precision. Hence, the constants
in Table 13 are listed in single precision and the parameter values in Table 14 are listed
in both single precision (corresponding to the perturbed parameters) and double precision
(corresponding to the initial parameters).1 Solving the system with the perturbed parameter
values results in 64 points corresponding to finite solutions that are clustered into three
groups: 16 having |x0| close to zero, 16 having |x9| close to zero, and 32 having both |x0|
and |x9| far from zero as illustrated in Fig. 9.

First, suppose that we aim to recover parameters by forcing the 16 solutions with |x0|
close to zero to be at infinity, i.e., actually satisfy x0 = 0. The fiber product system is
constructed following Theorem 4.1. Since the solutions are not necessarily independent of
each other, we use Remark 3.4 applied to the 16th-order fiber product system, F16, and
observe that the are actually 4 unnecessary conditions, i.e., only a = 12 subsystems in the
fiber product are necessary. A gradient descent homotopy (6) confirms this result.

1See https://bertini.nd.edu/BertiniExamples/inputIPP_1024 for values in 1024-bit precision.
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(a) (b)

Figure 10: Absolute values of the homogenizing coordinates for (a) 16 solutions associated
with x0 = 0 and (b) 16 solutions associated with x9 = 0

It is the same story if one aims to recover parameters by forcing the 16 solutions with |x9|
close to zero to be at infinity. So, now suppose that we aim to recover parameters by forcing
both sets of 16 solutions with either |x0| or |x9| close to zero to be at infinity. Then, applying
Remark 3.4, we see that these are not independent and only need 23 fiber products. Thus,
when pushing these 32 solutions to infinity, we take 12 for one of the infinities and only 11 for
the other. After adding homogenized Lagrange multipliers, this results in a square system
of size 423. Tracking the gradient descent homotopy (6) yields the recovered parameters
reported in Table 14 of Appendix A. Solving with the recovered parameters shows that
all 32 of these solutions are pushed back to infinity as illustrated in Fig. 10.

9 Conclusion

Fiber products were brought to bear in numerical algebraic geometry in [46] as a means of
finding sets of exceptional dimension. That work showed that the repeated fiber product
of V (f(x, p)) with itself promotes a set of exceptional dimension into its own irreducible
component, which then can be found by numerical irreducible decomposition. The proof
in [46], which is summarized in Proposition 3.1, was based on a growth argument that
showed that as the order of the fiber product increases, the dimension of the fiber product
of the exceptional set grows faster than the unexceptional set containing it. Building on this
fiber product framework, we show in Proposition 3.1, that a similar principle applies not
only to exceptional dimension, but also to exceptional sets corresponding to reducing the
number of finite solutions, decomposing a set into several factors, and imposing conditions
for a component to have higher multiplicity. The existing paper most closely related to the
present work is [52], but it only addresses single polynomials, not systems of polynomials.

Our fiber product construction is the first stage of a framework for robustness in numer-
ical algebraic geometry wherein computations for a set of parameters near an exceptional
set provide a prospective structural element. Starting from the perturbed parameters and
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its nearly exceptional solution set, the second stage uses local optimization techniques to
search for nearby points in parameter space where the special structure exists. Illustrative
examples apply the idea to each type of exceptional set and three substantial examples from
kinematics are presented.

In all of the examples presented here, we aimed to recover real parameter values using a
gradient descent homotopy based on homogenized Lagrange multipliers associated with the
Euclidean distance. For nonreal parameter values, one can use isotropic coordinates. Also,
there are many other optimization approaches one may use to recover parameter values on
exceptional sets and these other approaches could expand the size of the local convergence
zone, possibly allowing to recover parameters from larger perturbations. Finally, one can
adjust the distance metric used for the objective function, such as one based on knowledge
about the relative size of the parameters and their uncertainties.

Figures 3 and 6 provide histograms of the recovered parameters arising from perturbations
centered at a parameter value on an exceptional set. In fact, one can analyze the distribution
of the recovered parameters in relation to the distribution of the perturbations. As described
in Section 5.2, when using perturbations arising from a Gaussian distribution, this will yield a
Gaussian distribution when projecting onto a linear space. When projecting onto a nonlinear
space, such as in Section 7.2, this yields approximately a Gaussian distribution on the tangent
space. Further statistical analysis regarding recovered parameters is warranted.

Finally, we note that the codimension of an exceptional set in parameter space may be
less than the number of conditions one seeks to impose on the solution set. For example, in
the 6R problem of Section 8.3, one might naively expect the exceptional set for sending 32
points to infinity to be codimension 32, but in fact, it is codimension 23. While we have
found this result numerically, it raises the more general question of how such results can be
understood using the tools of algebraic geometry.
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A Appendix

The following provides tables associated with Sections 8.2 and 8.3.

Table 1: Solutions to (9) on a randomly selected affine patch for p̂ where i =
√
−1

Solution x0 x1 x2

1 0.0000 + 0.0000i 0.0000 + 0.0000i –0.2235 + 0.8253i
2 0.0020 – 0.0072i 0.0010 – 0.0037i –0.2263 + 0.8289i
3 –0.0368 + 2.7475i –0.0682 + 5.0964i 0.0198 – 1.4776i
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Table 2: Initial (exact), perturbed (8 decimals), and recovered (8 decimals) parameter values

Parameter Initial (p̃) Perturbed (p̂) Recovered (p∗)

p1 –2.37160000 –2.37284227 –2.36891717
p2 0.98608803 0.96067280 0.96814820
p3 –0.53770000 –0.53492792 –0.52506952

Table 3: Initial (exact), perturbed (4 decimals), and recovered (4 decimals) parameter values

Parameter Initial (p̃) Perturbed (p̂) Recovered (p∗)

p1 1 0.9876 1.0992
p2 –2 –2.2542 –2.1984

Table 4: Summary of solutions (8 decimals) satisfying f(x; p̂) = 2x1 − 3x2 − 1 = 0

j wj ẇj ẅj

1
1.15384590
0.43589727

0.08241763
−0.27838824

0.00546655
0.00364437

2
−0.99999993
−0.99999995

0.07142858
−0.28571428

−0.00546648
−0.00364432

3
1.64589862
0.76393241

−0.17082057
−0.44721371

0.13416408
0.08944272

4
8.35410056
5.23606704

1.17082044
0.44721363

−0.13416415
−0.08944277

Table 5: Summary for different component systems

Index a Dimension System Size Recovered Components

1 9 35 One component of degree 4
2 8 60 One component of degree 4
3 7 85 One component of degree 4
4 6 110 Two components of degree 2
5 6 135 Two components of degree 2
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Table 6: Initial (exact), perturbed (exact), and recovered (7 decimals) parameter values

Parameter Initial (p̃) Perturbed (p̂) Recovered (p∗)

p1 –30 –30.0000000 –30.0000003
p2 20 20.0000000 19.9999994
p3 18 18.0000000 18.0000003
p4 –12 –12.0000000 –11.9999997
p5 12 12.0000070 12.0000057
p6 –8 –8.0000000 –8.0000019
p7 0 0.0000003 –0.0000014
p8 –5 –5.0000000 –5.0000002
p9 3 3.0000000 2.9999992
p10 2 2.0000000 2.0000006

Table 7: Comparison of factors (double precision)

Factors from [52]
−30.0000005908641

1− 0.600000000000000x2
1 − 0.400000158490569x1x2

1− 0.666666625730982x1 + 0.166666656432746x2
2

Factors from p∗
−30.0000003490653

1− 0.600000003568289x2
1 − 0.400000104966183x1x2

1− 0.666666639555509x1 + 0.166666672330951x2
2 − 7.87997843076905 · 10−8x1x2

Table 8: Initial (exact), perturbed (4 decimals), and recovered (4 decimals) parameter values

Parameter Initial (p̃) Perturbed (p̂) Recovered (p∗)

p1 1 1.2346 1.0479
p2 1 1.0089 1.0980

Table 9: Decomposable coupler curve: dimensions and system size as fiber product index a
increases.

Index a Dimension System Size

1 3 53
2 2 102
3 2 151
4 2 200
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Table 10: Initial (exact), perturbed (4 decimals), and recovered (4 decimals) parameter values

Parameter Initial (p̃) Perturbed (p̂) Recovered (p∗)

p1 1 1.0025 1.0062
p2 2 2.0101 2.0057
p3 1 1.0098 1.0062
p4 2 2.0014 2.0057

Table 11: Stewart-Gough Platform: dimension and system size as fiber product index a
increases.

Index a Dimension System Size

1 40 72
2 38 102
3 36 132
4 35 162
5 35 192
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Table 12: Initial (exact), perturbed (12 decimals), and recovered (12 decimals) parameters
Parameter Initial (p̃) Perturbed (p̂) Recovered (p∗)

a1x 0.0000 0.000000000251 0.000000000320
a1y 0.0000 0.000000001013 0.000000000982
a1z 0.0000 0.000000000980 0.000000000477
b1x 0.0000 –0.000000000200 –0.000000000269
b1y 0.0000 –0.000000000637 –0.000000000606
b1z 1.5000 1.499999998979 1.499999999482
d1 3.2500 3.249999999891 3.249999999724
a2x 1.0000 1.000000000136 1.000000000272
a2y 0.0000 –0.000000000753 –0.000000001236
a2z 0.2500 0.249999998300 0.249999998434
b2x 1.0000 1.000000001806 1.000000001671
b2y 0.0000 –0.000000000886 –0.000000000402
b2z 1.0000 0.999999999658 0.999999999525
d2 1.5625 1.562499999151 1.562499999240
a3x 1.0000 0.999999999712 0.999999999839
a3y 1.0000 0.999999999733 0.999999999918
a3z 0.0000 0.000000000109 –0.000000000010
b3x 1.0000 0.999999998769 0.999999998641
b3y 1.0000 0.999999999125 0.999999998940
b3z 1.5000 1.499999999413 1.499999999531
d3 3.2500 3.250000000389 3.250000000350
a4x –0.5000 –0.500000000115 –0.499999999750
a4y 0.5000 0.500000000098 0.500000000171
a4z 0.0000 0.000000000167 0.000000000893
b4x –0.5000 –0.499999998762 –0.499999999127
b4y 0.5000 0.499999999424 0.499999999351
b4z 1.0000 1.000000000799 1.000000000073
d4 2.0000 2.000000000415 2.000000000779
a5x 0.5000 0.500000000717 0.499999999761
a5y 1.5000 1.500000000939 1.500000000405
a5z 0.0000 0.000000000105 0.000000000622
b5x 0.5000 0.499999998819 0.499999999776
b5y 1.5000 1.499999999660 1.500000000194
b5z 1.0000 0.999999999603 0.999999999086
d5 2.0000 1.999999998435 1.999999998693
a6x –0.2500 –0.250000000190 –0.249999999931
a6y 1.2500 1.249999999364 1.250000000155
a6z 0.2500 0.250000002270 0.250000001515
b6x –0.2500 –0.249999999033 –0.249999999292
b6y 1.2500 1.250000001020 1.250000000228
b6z 1.0000 0.999999999682 1.000000000437
d6 1.5625 1.562500000179 1.562499999676
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Table 13: Constant values truncated to single precision

Constant Single Precision Constant Single Precision

q08 7.4052387·10−2 q28 1.9594662·10−1

q09 –8.3050031·10−2 q29 –1.2280341·100
q010 –3.8615960·10−1 q210 0.0000000·100
q011 –7.5526603·10−1 q211 –7.9034219·10−2

q012 5.0420168·10−1 q212 2.6387877·10−2

q013 –1.0916286·100 q213 –5.7131429·10−2

q014 0.0000000·100 q214 –1.1628081·100
q015 4.0026384·10−1 q215 1.2587767·100
q016 4.9207289·10−2 q216 2.1625749·100
q18 –3.7157270·10−2 q38 –2.0816985·10−1

q19 3.5436895·10−2 q39 2.6868319·100
q110 8.5383480·10−2 q310 –6.9910317·10−1

q111 0.0000000·100 q311 3.5744412·10−1

q112 –3.9251967·10−2 q312 1.2499117·100
q113 0.0000000·100 q313 1.4677360·100
q114 –4.3241927·10−1 q314 1.1651719·100
q115 0.0000000·100 q315 1.0763397·100
q116 1.3873009·10−2 q316 –6.9686807·10−1
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Table 14: Initial (double precision), perturbed (truncated single precision), and recovered
(double precision) parameters

Parameter Single|Double Precision Recovered

q00 –2.4915068|11232596·10−1 –2.491506848757833·10−1

q01 1.6091353|78745045·100 1.609135324728055·100
q02 2.7942342|61384628·10−1 2.794234123846178·10−1

q03 1.4348015|88307759·100 1.434801543598025·100
q04 0.0000000|00000000·100 2.329107073061927·10−8

q05 4.0026384|20852447·10−1 4.002638399151275·10−1

q06 –8.0052768|41704895·10−1 –8.005276506597172·10−1

q07 0.0000000|00000000·100 1.339330350134300·10−8

q10 1.2501635|03697273·10−1 1.250163518996785·10−1

q11 –6.8660735|90276054·10−1 –6.866073304900900·10−1

q12 –1.1922811|66678474·10−1 –1.192281095708419·10−1

q13 –7.1994046|84195284·10−1 –7.199404481832083·10−1

q14 –4.3241927|30334479·10−1 –4.324192773933984·10−1

q15 0.0000000|00000000·100 1.358542627603532·10−8

q16 0.0000000|00000000·100 –1.039184803095887·10−9

q17 –8.6483854|60668959·10−1 –8.648385383114613·10−1

q20 –6.3555007|06536143·10−1 –6.355500280163283·10−1

q21 –1.1571992|24063992·10−1 –1.157199361445811·10−1

q22 –6.6640447|34656436·10−1 –6.664044436579097·10−1

q23 1.1036211|15850889·10−1 1.103620867759053·10−1

q24 2.9070203|22913935·10−1 2.907020211729024·10−1

q25 1.2587767|24480555·100 1.258776710166779·100
q26 –6.2938836|22402776·10−1 –6.293883708977084·10−1

q27 5.8140406|45827871·10−1 5.814040462810132·10−1

q30 1.4894773|41316300·100 1.489477303748473·100
q31 2.3062341|36720304·10−1 2.306233954795566·10−1

q32 1.3281073|07376312·100 1.328107268535429·100
q33 –2.5864502|59957599·10−1 –2.586450384436285·10−1

q34 1.1651719|51133394·100 1.165171916593329·100
q35 –2.6908493|58556267·10−1 –2.690849292497942·10−1

q36 5.3816987|17112534·10−1 5.381698714725988·10−1

q37 5.8258597|55666972·10−1 5.825859575485448·10−1
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