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Abstract. Various methods can obtain certified estimates for roots of
polynomials. Many applications in science and engineering additionally
utilize the value of functions evaluated at roots. For example, critical val-
ues are obtained by evaluating an objective function at critical points. For
analytic evaluation functions, Newton’s method naturally applies to yield
certified estimates. These estimates no longer apply, however, for Hölder
continuous functions, which are a generalization of Lipschitz continuous
functions where continuous derivatives need not exist. This work develops
and analyzes an alternative approach for certified estimates of evaluating
locally Hölder continuous functions at roots of polynomials. An imple-
mentation of the method in Maple demonstrates efficacy and efficiency.

Keywords: Roots of polynomials · Hölder continuous functions · Cer-
tified evaluations.

1 Introduction

For a univariate polynomial p(x), the Abel-Ruffini theorem posits that the roots
cannot be expressed in terms of radicals for general polynomials of degree at
least 5. A simple illustration of this is that the solutions of the quintic equation

p(x) = x5 − x− 1 = 0 (1)

cannot be expressed in radicals. Thus, a common technique is to compute numer-
ical approximations with certified bounds for the roots of a polynomial. Some
approaches based on Newton’s method are the Kantorovich theorem [6] and
Smale’s α-theory [14]. Kantorovich’s approach is based on bounds for a twice-
differentiable function in an open set while Smale’s approach only uses local
estimates at one point coupled with the analyticity of the function. Certified ap-
proximations of roots of polynomials can also be obtained using interval methods
such as [3,7,10,13] along with the Krawczyk operator [8,9].

https://sites.nd.edu/parker-edwards
https://www.nd.edu/~jhauenst
https://www.uncg.edu/~cdsmyth/
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Although computing certified estimates for roots of polynomials is impor-
tant, many applications in science and engineering utilize the roots in further
computations. As an illustrative example, consider the optimization problem

min{21x8 − 42x4 − 56x3 + 3 : x ∈ R}. (2)

For this problem, the global minimum is the minimum of the critical values which
are obtained by evaluating the objective function g(x) = 21x8− 42x4− 56x3 + 3
at its critical points, i.e. at the real roots of g′(x) = 168x2(x5−x− 1). Since the
quintic in (1) is a factor of g′(x), only approximations of the roots of g′ can be
computed. One must translate these approximate roots to certified evaluations
of the objective function g(x) evaluated at the roots of the polynomial g′(x) to
obtain certified bounds on the global minimum of (2).

One approach for computing a certified evaluation of f(x) at roots of a poly-
nomial p(x) is via certified estimates of solutions to the multivariate system
p(x) = y − f(x) = 0. For sufficiently smooth f , approaches based on Newton’s
method generate certified estimates. When f is not differentiable, one can alter-
natively follow a two-stage procedure: first, certifiably estimate a root of p(x) to
error at most ε and then use interval evaluation methods, e.g. see [10, Chap. 5],
to compute a certified estimate of f(x) evaluated at the root. Such an approach
provides direct control on the approximation error of a root of p(x) but not on
the output evaluation error of f(x) which will typically be larger than ε.

The approach in this paper considers certified evaluations of locally Hölder
continuous functions at roots of polynomials and links the desired output of
the certified evaluation with the error in the approximation of the root. Hölder
continuous functions are a generalization of Lipschitz functions which are in-
deed continuous, but need not be differentiable anywhere, e.g., see Section 5.3.
Moreover, satisfying the local Hölder continuity condition does not guarantee
that a function can be evaluated exactly for, say, rational input. Therefore, our
approach also incorporates numerical evaluation error into the certified bounds.

The rest of the paper is organized as follows. Section 2 describes the neces-
sary analysis of locally Hölder continuous functions, with a particular focus on
polynomials and rational functions. Section 3 summarizes the approach used for
developing certified bounds on roots of polynomials. Section 4 combines the cer-
tification of roots and evaluation bounds on Hölder continuous functions yielding
our approach for computing certified evaluations. Section 5 presents information
regarding the implementation in Maple along with several examples demonstrat-
ing its efficacy and efficiency. Section 6 applies the techniques developed for
certified evaluations to prove non-negativity of coefficients arising in a series
expansion of a rational function. The paper concludes in Section 7.

2 Hölder continuous functions

The following describes the collection of functions under consideration.
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Definition 1. A function f : C → C is locally Hölder continuous at a point
x∗ ∈ C if there exist positive real constants ε, C, α such that

|f(x∗)− f(y)| ≤ C · |x∗ − y|α ≤ C · εα (3)

for all y ∈ B(x∗, ε) where B(x∗, ε) = {z ∈ C : |z−x∗| ≤ ε}. In this case, f(x) is
said to have Hölder constant C and Hölder exponent α at x∗. Moreover, if α = 1,
then f(x) is said to be Lipschitz continuous at x∗ with Lipschitz constant C.

Functions which are locally Hölder continuous at a point are clearly con-
tinuous at that point and the error bound provided in (3) will be exploited in
Section 4 to provide certified evaluations. Every function f(x) which is contin-
uously differentiable in a neighborhood of x∗ is locally Hölder continuous with
α = 1, i.e., locally Lipschitz continuous. For n ≥ 1, f(x) = n

√
|x| is continuous

but not differentiable at x∗ = 0. It is locally Hölder continuous at x∗ = 0 with
Hölder constant C = 1 and Hölder exponent α = 1/n.

A computational challenge is to determine a Hölder constant C and Hölder
exponent α for f(x) on B(x∗, ε) given f(x), x∗, and ε > 0. Sections 2.1 and 2.2
describe a strategy for polynomials and rational functions, respectively.

2.1 Polynomials

Since every polynomial f(x) is continuously differentiable, we can take the Hölder
exponent to be α = 1 at any point x∗. However, the Hölder constant C depends
upon x∗ and ε. The Fundamental Theorem of Calculus shows that one just needs

C ≥ max
y∈B(x∗,ε)

|f ′(y)|. (4)

Although one may attempt to compute this maximum directly, the Taylor series
expansion of f ′(x) at x∗ provides an easy to compute upper bound. If d = deg f ,

f ′(x) =
∑d
i=1

f(i)(x∗)
(i−1)! (x−x∗)i−1 so that the triangle inequality yields the bound

C :=

d∑
i=1

|f (i)(x∗)|
(i− 1)!

εi−1 ≥ max
y∈B(x∗,ε)

|f ′(y)|. (5)

2.2 Rational functions

The added challenge with a rational function f(x) is to ensure that it is defined
on B(x∗, ε). One may attempt to compute the poles of f(x) and ensure that
none are in B(x∗, ε). However, the implementation in Section 5 is based on
a local approach that also enables computing local upper bounds on |f ′(x)|.
For f(x) = a(x)/b(x), one can prove b(y) 6= 0 for all y ∈ B(x∗, ε) by showing
that |b(x∗)| > |b(y)− b(x∗)| for all y ∈ B(x∗, ε). If db = deg b, then

|b(y)− b(x∗)| =

∣∣∣∣∣
db∑
i=1

b(i)(x∗)

i!
(y − x∗)i

∣∣∣∣∣ ≤
db∑
i=1

|b(i)(x∗)|
i!

εi.
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Therefore, a certificate that f(x) is continuously differentiable on B(x∗, ε) is

|b(x∗)| >
db∑
i=1

|b(i)(x∗)|
i!

εi

yielding

min
y∈B(x∗,ε)

|b(y)| ≥ |b(x∗)| −
db∑
i=1

|b(i)(x∗)|
i!

εi > 0. (6)

When b(x∗) 6= 0, it is clear that one can always take ε small enough to satisfy (6).
When f(x) is continuously differentiable on B(x∗, ε), then one can take the

Hölder exponent α = 1 and the Hölder constant C as in (4). Hence,

max
y∈B(x∗,ε)

|f ′(x)| ≤
max

y∈B(x∗,ε)
|a′(y)|

min
y∈B(x∗,ε)

|b(y)|
+

max
y∈B(x∗,ε)

|a(y)| · max
y∈B(x∗,ε)

|b′(y)|

min
y∈B(x∗,ε)

|b(y)|2

where the maxima can be upper bounded similar to (5) and the minimum can
be lower bounded using (6).

3 Certification of roots

The initial task of determining certified evaluation bounds at roots of a given
polynomial is to compute certified bounds of the roots. From a theoretical per-
spective, we assume that we know the polynomial p(x) exactly. From a computa-
tional perspective, we assume that p(x) has rational coefficients, i.e., p(x) ∈ Q[x].
The certification of roots of p(x) can thus be performed using RealRootIsolate

based on [2,12,15,16,17] in Maple as follows.
Since p(x) is known exactly, we can first reduce down to the irreducible case

with multiplicity 1 roots by computing an irreducible factorization of p(x), say

p(x) = p1(x)r1 · · · ps(x)rs

where p1, . . . , ps are irreducible with corresponding multiplicities r1, . . . , rs ∈ N.
For p(x) ∈ Q[x], factor in Maple computes the irreducible factors in Q[x], i.e.,
each pi(x) ∈ Q[x]. If z ∈ C is a root of pj(x), then z has multiplicity 1 with
respect to pj(x), i.e., z is a simple root of pj(x) with pj(z) = 0 and p′j(z) 6= 0.
In contrast, z has multiplicity rj with respect to p(x). Note that one could
alternatively use a squarefree factorization with appropriate modifications.

For each irreducible factor q := pj , one computes certified approximations
of each root. Although methods over C are more efficient [1,11], we utilize the
RealRootIsolate function in Maple by transforming the domain C into R2 via

q(x+ iy) = qr(x, y) + i · qi(x, y) where i =
√
−1. (7)

Therefore, solving q = 0 on C corresponds with solving qr = qi = 0 on R2. Ap-
plying RealRootIsolate with an optional absolute error bound abserr that will
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be utilized later guarantees as output isolating boxes for every real solution to
qr = qi = 0 on R2. Therefore, looping over the irreducible factors of p, one ob-
tains certified bounds for every root z of p(x) in C of the form a1 ≤ real(z) ≤ a2
and b1 ≤ imag(z) ≤ b2 where a1, a2, b1, b2 ∈ Q.

4 Certified evaluations

Combining information on Hölder continuous functions from Section 2 and cer-
tification of roots of polynomials from Section 3 yields the following approach to
develop certified evaluations. With input a polynomial p(x), a Hölder continuous
function f(x) which is defined at each root of p(x), and an error bound ε > 0, the
goal is to develop an approach that computes an approximation of f(z) within ε
for each root z of p(x). Since one may not be able to evaluate f(x) exactly, we
incorporate an evaluation error of δ ∈ (0, ε). Typically, δ can be decreased by
utilizing higher precision computations. For rational input, rounding to produce
finite decimal representations constitutes the only source of representation error
in Maple. Our implementation utilizes enough digits to have δ = ε/10.

The first step is to utilize Section 3 to determine initial certified bounds for
each root of p(x). For an initial error bound on the roots, we start with γ = ε/2
and approximate each root z by x∗ with |z − x∗| < γ. Certified evaluations are
then obtained root by root since the Hölder constants are dependent upon local
information near each root. In particular, the next step is to compute a Hölder
exponent α and Hölder constant C that is valid on the ball B(x∗, 2γ). If this is
not possible, e.g., if f(x) cannot be certified to be defined on B(x∗, 2γ), one can
simply reduce γ, e.g., by replacing γ by γ/2 and repeating the process using a
newly computed certified approximation of z. Since f(x) is defined at each root
of p(x), such a loop must terminate.

The final step is to utilize local information to compute a new approximation
of root z that will produce a certified evaluation within ε. Consider µ such that

0 < µ ≤ min

{
γ,

α

√
ε− δ
C

}
and z∗ an approximation of z such that z ∈ B(z∗, µ). Since |x∗ − z∗| ≤ 2γ,
we have B(z∗, µ) ⊂ B(x∗, 2γ) so that all of the Hölder constants are valid
on B(z∗, µ). Hence, all that remains is to compute a certified approximation
of f(z∗), say f∗, within the evaluation error of δ since

|f∗ − f(z)| ≤ |f∗ − f(z∗)|+ |f(z∗)− f(z)| ≤ δ + C · |z∗ − z|α ≤ δ + C · µα ≤ ε.

Remark 1. When f is polynomial, one could use the built-in Maple function

RootFinding[Isolate]([p_r,p_i],[x,y],constraints=[f],

digits=ceil(-log[10](eps)))

where pr and pi are the real and imaginary parts of p(x+ iy), respectively, to es-
timate both the roots of p and evaluations of f at those roots. The difference be-
tween our approach and the built-in functionality is that RootFinding[Isolate]
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approximates roots using a relative diameter, does not allow direct control of the
evaluation error, and is only implemented for polynomial evaluation functions.
See Section 5.1 for a polynomial example utilizing RootFinding[Isolate].

Example 1. As an illustration, consider evaluating the Cantor ternary function

f

(
∞∑
j=1

aj
3j

)
=

1

2N
+

1

2

N−1∑
j=1

aj
2j

where

{
aj ∈ {0, 1, 2} for j = 1, 2, . . . ,
N = min{j | aj is odd} ∈ Z>0 ∪ {∞}.

at the unique root z ∈ [0, 1] of the polynomial

p(x) =

(
3

2

)101

x5 + 17

(
3

2

)101

x− 1

with error ε = 10−16. Figure 1 plots the Cantor ternary function on the do-
main [0, 1] along with the point (z, f(z)). Clearly, the Cantor ternary func-
tion f(x) is not polynomial so that RootFinding[Isolate] can not be utilized.
Since f(x) can be evaluated exactly at points with a finite ternary expansion,
we can take δ = 0. Moreover, f(x) is Hölder continuous on [0, 1] with Hölder
exponent α = log 2/log 3 and Hölder constant C = 2 so that we can simply take

µ = 10−26 <
α

√
ε− δ
C

.

Hence,

z∗ =
2

340
+

2

341
+

1

342
+

1

343
+

2

344
+

2

345
+

1

348
+

1

349
+

1

350
+

1

351
+

2

352
+

1

353
+

1

354
+

2

355
+

1

356

satisfies |z − z∗| < µ so that

f(z∗) =
1

242
+

1

2

(
2

240
+

2

241

)
=

7

242

is certifiably within ε of f(z).

Fig. 1. Plot of the Cantor ternary function f with evaluation at a root of p.
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5 Implementation and examples

The certified evaluation procedure has been implemented as a Maple pack-
age entitled EvalCertification available at https://github.com/P-Edwards/
EvalCertification along with Maple notebooks for the examples. The main ex-
port is the procedure EstimateRootsAndCertifyEvaluations which has the
following high level signature:

Input:

– Univariate polynomial p ∈ Q[x].
– List of locally Hölder continuous functions f1, . . . , fm with which to certifi-

ably estimate evaluations at the roots of p(x).
– List of procedures specifying how to compute local Hölder constants and

exponents for f1, . . . , fm. (See Section 5.3 for example of the syntax).
– Desired accuracy ε ∈ Q>0.

Main output:

– Complex rational root approximations z∗1 , . . . , z
∗
s , one for each of the distinct

roots z1, . . . , zs of p(x), such that |zj − z∗j | ≤ ε.
– For each fi and xj , a complex decimal number f∗ij with |fi(xj)− f∗ij | ≤ ε.

The EvalCertification package is formatted in a .mpl file which can be read
into a notebook with:

read("EvalCertification.mpl")

with(EvalCertification)

This lists the package’s following four exports: the main function and three built
in procedures for determining local Hölder constants and exponents for common
classes of Hölder functions.

EstimateRootsAndCertifyEvaluations, HolderInformationForExponential,

HolderInformationForPolynomial, HolderInformationForRationalPolynomial

The following highlight specific Maple types of inputs and outputs as well as
other interface details.

5.1 Critical values

As a first example, consider (2) by certifiably evaluating

f(x) = 21x8 − 42x4 − 56x3 + 3

at the roots of p(x) = f ′(x) = 168x2(x5 − x− 1) with error ε = 10−14.

https://github.com/P-Edwards/EvalCertification
https://github.com/P-Edwards/EvalCertification
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f_polynomial := 21x^8 - 42x^4 - 56x^3 + 3;

f_derivative := diff(f_polynomial, x);

EstimationPrecision := 1/10^14;

The main call to EstimateRootsAndCertifyEvaluations is subsequently:

solutions_information :=

EstimateRootsAndCertifyEvaluations(f_derivative,

[f_polynomial, f_derivative],

HolderInformationForPolynomial,

EstimationPrecision);

The first argument provides the polynomial to solve and the second is a list of
polynomials to evaluate. For illustration, we include evaluating the polynomial
to solve in the evaluation list. The third argument is a procedure for computing
Hölder constants which, in this case, uses the procedure that implements the
estimates in Section 2.1 for polynomials. Notice that we need only provide the
procedure once since all functions for evaluation fall into the same class of Hölder
functions, namely polynomials. The last argument is the final error bound.

The output solutions information is formatted as a Record. Certifiably
estimated roots are stored in a list as illustrated.

solutions_information:-root_values =

[0,

2691619717901426047/2305843009213693952,

26745188167908553113/147573952589676412928 -

19995423894655642147*I/18446744073709551616, ...]

Evaluations are also stored in lists, one list for each function to evaluate with one
entry for each root of p. Estimates are ordered so that the estimate at index i
in its list corresponds to the root at index i in the roots list.

solutions_information:-evaluations_functions_1 =

[3., -91.6600084778015707, ...];

solutions_information:-evaluations_functions_2 =

[0, -6.692143197043304*10^(-16), ...];

Therefore, the solution to (2) is −91.6600084778015707 which is certifiably cor-
rect within an error of 10−14.

Since f(x) is polynomial, we can compare with RootFinding[Isolate] as
discussed in Remark 1. Since evaluations at only the real critical points are of
interest, one can simply utilize

Isolate(f_derivative, constraints = [f_polynomial], digits = 14);

which yields

[x = 0., x = 1.1673039782614],

[[21*x^8 - 42*x^4 - 56*x^3 + 3 = 3.],

[21*x^8 - 42*x^4 - 56*x^3 + 3 = -91.660008477802]]
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The 14 digits of 1.1673039782614 are indeed correct, but the result has an abso-
lute error of approximately 1.87 · 10−14 while the evaluation −91.660008477802
has an absolute error of approximately 4.29 · 10−13.

5.2 Comparison with ball arithmetic

Interval and ball arithmetic methods can provide similar certification function-
ality as EvalCertification by first isolating each root and then evaluating a
interval extension of the function. As mentioned in the Introduction, this two-
step procedure does not provide direct control on the size of the evaluation
error and thus one may need to perform several loops to refine the isolation of
each root to have sufficiently small evaluation error. In contrast, for evaluating
functions without poles, EvalCertification always performs root estimation
exactly twice: once to obtain local Hölder information and then a second time
to guarantee small evaluation error.

For illustration, consider evaluating the function f(x) = 50x at the roots of
the polynomial p(x) = (x7 + x− 1)(x− 1000) with an error at most ε = 2−1000.
The library Arb [5] required a root estimation error of at most 0.91 · 2−8176 to
provide the requisite evaluation error. In Arb, relative error is input as a number
of bits of precision available to computations. Thus, by supplying additional bits
of precision, one lowers the relative and absolute error. For our computation, the
precision in Arb was initialized at 210 = 1024 bits of precision which is enough
to accurately store the desired error of 2−1000 exactly. We then utilized the two-
stage procedure which loops back to refine the root if the output evaluation error
is unacceptably large. If we simply double the number of bits of precision used
in each loop, then three iterations are required to yield 8192 bits of precision
which is sufficient to perform root estimation accurately enough for the function
evaluation to yield the desired evaluation error.

As mentioned in Section 3, transforming complex root isolation into bivariate
real root isolation is a costly maneuver. However, such an approach was used in
EvalCertification to take advantage of the already existing RealRootIsolate

in Maple. Since Arb implements a faster univariate solver that only allows relative
error bounds on the estimates as input, this accounts for the drastic difference in
computing time on this problem using Arb (0.52s) and using RealRootIsolate

in Maple via EvalCertification (153s).

5.3 Extending with custom Hölder information procedures

Polynomial and rational functions can utilize the built-in procedures for comput-
ing local Hölder constants. One more feature of EvalCertification is the ability
to extend the certification procedures to new classes of functions by specifying
how to compute local Hölder constants. To illustrate, consider the Weierstrass
function f : R→ R given by

f(x) =

∞∑
n=0

7−
n
3 cos(7nπx)
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Fig. 2. Plot of the Weierstrass function f(x), the polynomial p(x), and point (z, f(z))
where z is the unique real root of p(x).

which we aim to evaluate at the unique real root z of p(x) = x7 +x−1. Figure 2
plots f(x) and p(x) along with the point (z, f(z)). The Weierstrass function f(x)
is nowhere differentiable but is globally Hölder continuous [4] with exponent
α = 1/3 and constant C ≤ 4.73. The following is the format for defining a new
procedure to supply the Hölder information:

WeierInfo := proc(f, point, radius, domain_estimate := false)

return Record(’exponent’ = 1/3,

’constant’ = 4.73,

’avoid_roots’ = false); end proc;

All custom Hölder information procedures must follow the same signature as this
example. The exponent α and constant C in the output Record should satisfy
the Hölder conditions for InputFunction on the ball B(point, radius). For this
example, the Hölder information is independent of the point and radius since
the Weierstrass function is globally Hölder continuous. The entry avoid roots

lists estimates within radius of points missing from the input function’s domain
or false if defined everywhere.

Since f(x) is an infinite series, we must evaluate a finite truncation of it, say

fN (x) =

N∑
n=0

7−
n
3 cos(7nπx) with |f(x)− fN (x)| ≤

∞∑
n=N+1

7−
n
3 =

7−
N+1

3

1− 7−
1
3

=: EN .

Therefore, to approximate f(z), one has three sources of error: approximation
error in z, finite truncation error EN , and numerical error when evaluating fN .
After selecting N such that EN < ε, one can simply replace ε by ε−EN with the
other two errors already accounted for in our approach. The following commands
produce certified evaluations of f to precision 10−14 at z utilizing N = 51 so
that E51 < 4.71 · 10−15:
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(a) (b) (c) (d)

Fig. 3. Results of tests with (a) d ∈ {1, . . . , 25},D = 5, n = 1, and ε = 10−14; (b) d = 5,
D ∈ {1, . . . , 25}, n = 1, and ε = 10−14; (c) d = 5, D = 5, n ∈ {1, . . . , 25}, and
ε = 10−14; (d) d = 5, D = 5, n = 1, and ε ∈ {1, 10−1, . . . , 10−25}.

p := x^7 + x - 1;

MaxErr := 1/10^14-E_N;

solutions_information :=

EstimateRootsAndCertifyEvaluations(p,[F_N],WeierInfo,MaxErr);

This yields z∗ = 0.79654435412846 and f∗ = −1.06659590869988.

5.4 Benchmarking

As mentioned in Section 5.2, the dominant computational cost is in estimating
roots with the next largest cost associated with computing local Hölder con-
stants. Suppose that R(p, ε) is the complexity of approximating roots of p within
ε, H(f1, . . . , fn, p, ε) is the minimum complexity of computing Hölder constants
at one root, and A(p, f1, . . . , fn, ε) is the number of repetitions required to find
an accuracy γ ≤ ε where local Hölder constants can be calculated. Then,

A(p, f1, . . . , fn, ε)(R(p, ε) + ndeg(p)H(f1, . . . , fn, p, ε)) +R(p, ε)

is a lower bound on the complexity. The number of repetitions A is 1 for functions
without poles and otherwise depends on the input in a complicated way which
we do not attempt to characterize here.

We benchmarked EvalCertification using random polynomials generated
by the command randpoly in Maple. All tests computed roots of a random
polynomial p(x) with integer coefficients between −1010 and 1010 and evaluated
rational functions where the numerator and denominator were polynomials of
degree D. The average was taken over 50 random selections. Figure 3 shows
the results of the benchmarking tests, which were performed on Ubuntu 18.04
running Maple 2020 with an Intel Core i7-8565U processor. They were based on
the degree d of p(x), the value of D, the number of functions n to evaluate, and
the size of the output error ε.
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6 Application to prove non-negativity

One application of our approach for computing certified evaluations is to certifi-
ably decide whether or not all coefficients of the Taylor series expansion centered
at the origin are non-negative for a given real rational function r(x). We focus
on non-negativity since non-positivity is equivalent to non-negativity for −r(x)
and alternating in sign is equivalent to non-negativity for r(−x). The following
method uses certified evaluations to obtain information about the coefficients
in the tail of the Taylor series expansion reducing the problem to only needing
to inspect finitely many coefficients. This approach assumes that the function
does not have a pole at the origin, its denominator has only simple roots, and its
denominator has a real positive root that is strictly smallest in modulus amongst
all its roots. This approach can be extended to more general settings, but will
not considered here due to space considerations.

We will make use of the following standard theorem.

Theorem 1. Let p(x), q(x) ∈ R[x] such that p(x) and q(x) have no common
root, q(0) 6= 0 and deg(p(x)) < deg(q(x)) = d. If q(x) has only simple roots
say α1, . . . , αd ∈ C, then r(x) = p(x)/q(x) has a Taylor series expansion of the
form r(x) =

∑∞
n=0 rnx

n converging for all x ∈ C with |x| < min{|α1|, . . . , |αd|}.
Furthermore, for all n ≥ 0,

rn = −
d∑
i=1

p(αi)

αiq′(αi)
α−ni . (8)

Theorem 1 follows from partial fraction decomposition of rational functions or
using linear recurrences. For completeness, we provide a proof in the Appendix.
Using Theorem 1, we obtain the following result on the eventual behavior of the
coefficients of the Taylor series of certain rational functions.

Theorem 2. With the setup from Theorem 1, define Ci = −p(αi)/(αiq′(αi))
for i = 1, . . . , d. If α1 ∈ R is such that |α1| < min{|α2|, . . . , |αd|}, then there
exists N after which exactly one of the following conditions on rn holds:

1. If α1 > 0 and C1 > 0, then rn > 0 for all n > N .
2. If α1 > 0 and C1 < 0, then rn < 0 for all n > N .
3. If α1 < 0, then rn is alternating in sign for all n > N , i.e., (−1)n · rn > 0

for all n > N or (−1)n · rn < 0 for all n > N .

Moreover, one may take N = log(K)/ log(M/m) where K =
∑d
i=2 |Ci|/|C1|,

m = |α1|, and M = min{|α2|, . . . , |αd|}.

A proof of Theorem 2 is provided in the Appendix. Theorems 1 and 2 yield
the following.

Corollary 1. Suppose that f(x), q(x) ∈ R[x] have no common root, q(0) 6= 0,
and q(x) has only simple roots, namely α1, . . . , αd ∈ C, such that α1 ∈ R
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and |α1| < min{|α2|, . . . , |αd|}. Let g(x), p(x) ∈ R[x] be the unique polyno-
mials such that f(x) = q(x) · g(x) + p(x) with deg(p(x)) < deg(q(x)). De-
fine Ci = −p(αi)/(αiq′(αi)) for i = 1, . . . , d. Then, f(x)/q(x) has a Tay-
lor series expansion f(x)/q(x) =

∑∞
n=0Rnx

n converging for all x ∈ C with
|x| < min{|α1|, . . . , |αd|} and there is a threshold N0 so that exactly one of the
following conditions on Rn holds:

1. If α1 > 0 and C1 > 0, then Rn > 0 for all n > N0.
2. If α1 > 0 and C1 < 0, then Rn < 0 for all n > N0.
3. If α1 < 0, then Rn is alternating in sign for all n > N0, i.e. (−1)n ·Rn > 0

for all n > N0 or (−1)n ·Rn < 0 for all n > N0.

One can take N0 = max{deg(f(x)) − deg(q(x)) + 1, log(K)/ log(M/m)} where

K =
∑d
i=2 |Ci|/|C1|, m = |α1|, and M = min{|α2|, . . . , |αd|}.

Proof. Since f(x)/q(x) = g(x) + p(x)/q(x), applying Theorem 1 yields the first
part. Since the Taylor series coefficients of f(x)/q(x) and p(x)/q(x) are same for
n > deg(f(x))−deg(g(x)), the second part immediately follows from Theorem 2.

One key to utilizing Theorem 2 and Corollary 1 is to certify that q(x) sat-
isfies the requisite assumptions. Validating that q(x) has only simple roots fol-
lows from computing an irreducible factorization as in Section 3 and checking
if every factor has multiplicity 1. Section 6.1 describes a certified approach to
verify the remaining conditions on q(x). Section 6.2 yields a complete algorithm
for certifiably deciding non-negativity of all Taylor series coefficients which is
demonstrated on two examples.

6.1 Classification of roots

Given a polynomial q(x) ∈ R[x] with only simple roots and q(0) 6= 0, the fol-
lowing describes a method to certifiably determine if q(x) has a positive root
that is strictly smallest in modulus amongst all its roots. This method uses
the ability to certifiably approximate all real points in zero-dimensional semi-
algebraic sets. Computationally, this can be accomplished using the command
RealRootIsolate in Maple. Note that some of these computations could also
be accomplished using RootFinding[Isolate] following Remark 1.

The first step is to certifiably determine if q(x) has a positive root via

P = {p ∈ R : q(p) = 0, p > 0}.

If P = ∅, then one returns that q(x) does not have a positive root. Otherwise,
one proceeds to test the modulus condition for α1 = minP.

The modulus condition needs to be tested against negative roots and non-real
roots. For negative roots, consider

N = {n ∈ R : q(−n) = 0, n > 0} and B = {b ∈ R : q(b) = q(−b) = 0, b > 0}.

By using certified approximations of α1 and points in N and B of decreasing
error, one can certifiably determine which of the following holds: α1 < minN ,
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α1 > minN , or α1 ∈ B ⊂ P. If α1 > minN or α1 ∈ B, then one returns that q(x)
does has not a positive root that is strictly smallest in modulus amongst all its
roots. Otherwise, one proceeds to the non-real roots by considering

L = {(r, a, b) ∈ R3 : q(r) = 0, r > 0, q(a+ ib) = 0, b > 0, a2 + b2 < r2} and
E = {(r, a, b) ∈ R3 : q(r) = 0, r > 0, q(a+ ib) = 0, b > 0, a2 + b2 = r2}.

Note that q(a + ib) = 0 provides two real polynomial conditions on (a, b) ∈ R2

via the real and imaginary parts as in (7) so that L and E are clearly zero-
dimensional semi-algebraic sets. Moreover, for the projection map π1(r, a, b) = r,
π1(L∪E) ⊂ P. By using certified approximations of α1 and points in L and E of
decreasing error, one can certifiably determine if α1 ∈ π1(L∪E) or α1 /∈ π1(L∪E).
If the former holds, then one returns that q(x) does has not a positive root that
is strictly smallest in modulus amongst all its roots. If the later holds, then one
returns that q(x) does indeed have a positive root that is strictly smallest in
modulus amongst all its roots.

6.2 Certification of non-negativity

Suppose that f(x), q(x) ∈ R[x] which satisfy the assumptions in Corollary 1. The
following describes a method to certifiably determine if all of the coefficients Rn
of the Taylor series expansion for f(x)/q(x) centered at the origin are non-
negative or provides an integer n0 such that Rn0

< 0.
First, the Euclidean algorithm is utilized to determine g(x), p(x) ∈ R[x] with

deg(p(x)) < deg(q(x)) such that f(x) = q(x) ·g(x)+p(x). Define h(x) = x ·q′(x)
and C(x) = −p(x)/h(x). Hence, d = deg(q(x)) = deg(h(x)) such that q(x)
and h(x) have no common roots. As in Corollary 1, let α1, . . . , αd be the roots
of q(x) with α1 ∈ R>0 such that α1 < min{α2, . . . , αd}. Let β1, . . . , βd ∈ C (not
necessarily all distinct) be the roots of h(x).

Certified evaluations at the roots of q(x) and h(x) with error bound εk = 2−k

for k = 1, 2, . . . can be used until the following termination conditions are met:

1. α∗i and β∗j are such that α∗1 ∈ R, |α∗i − αi| < εk, and |β∗j − βj | < εk
2. the set {0, α∗1, . . . , α∗d} is 2 · εk separated, i.e., |s− t|2 ≥ (2εk)2 for all distinct
s, t in this set,

3. γ∗ ≤ min{|α∗i − β∗j | : 1 ≤ i, j ≤ d} such that γ∗ > 2 · εk + ε
1/(4d)
k ,

4. for m∗ = α∗1 + εk and M∗ ≤ min{|α∗2|, . . . , |α∗d|} − εk, one has m∗ < M∗,

5. L∗i such that L∗i ≥ |cd|−2
∑2d−1
`=0 |u(`)(α∗i )|ε`k/`! where cd is the leading coef-

ficient of q(x) and u(x) = −p′(x)h(x) + p(x)h′(x), and
6. either (a) C∗1 + L∗1

√
εk < 0 or (b) C∗1 − L∗1

√
εk > 0.

Note that starred quantities in the termination conditions above, or in the further
discussion below, are either exact rational approximations to real constants or
complex numbers with rational real and imaginary parts that approximate roots.

Before proving that such a termination condition can be met, we describe
the last steps which are justified by Corollary 1. Let ε = εk be the value where
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the termination conditions are met and calculate 0 < b∗ ≤ min{|C∗1 ± L∗1
√
ε|},

K∗ ≥ (1/b∗)
∑d
i=2(|C∗i |+ L∗i

√
ε), A∗ ≥ log(K∗)/ log(M∗/m∗),

N∗0 = max{deg(f(x))− deg(q(x)), dA∗e}.

The inequalities in Items 3, 4, and 5 and these values above are meant to signify
the rounding direction in machine precision used to compute the values. With
this, if C∗1 +L∗1

√
εk < 0, then return n0 = N∗0 + 1 for which Rn0 < 0. Otherwise,

the non-negativity of all Rn is equivalent to the non-negativity of R0, . . . , RN∗
0

which can be computed by explicit computation. If there exists n0 ∈ {0, . . . , N∗0 }
such that Rn0

< 0, return n0. Otherwise, return that all Rn are non-negative.

First, note that Item 1 is obtained by real root certification. We have

δ = min{|αi − αj |, |αi| : 1 ≤ i < j ≤ d} > 0.

By Item 1, |α∗i − α∗j | ≥ |αi − αj | − 2εk and |α∗i | ≥ |αi| − εk. Thus,

δ∗ = min{|α∗i − α∗j |, |α∗i | : 1 ≤ i < j ≤ d} ≥ δ − 2εk − η

where η > 0 is the machine precision on the lower bounds on the quantities in δ∗.
Since εk → 0 and η can be made arbitrarily small, eventually δ∗− 2εk − η > 2εk
and Item 2 will be met.

Since q(x) and h(x) have no roots in common, consider

γ = min{|αi − βj | : 1 ≤ i, j ≤ d} > 0.

We have γ∗ ≥ γ − 2εk − η where η > 0 is the machine precision on the lower

bounds of the quantities in γ∗. Eventually, γ∗ ≥ γ − 2εk − η > 2εk + ν + ε
1/(4d)
k

where ν > 0 is the machine precision on the upper bound for ε
1/(4d)
k and Item 3

will be met.

Since ∆ = M −m > 0, we have M∗ > M− εk−η where η > 0 is the machine
precision on the lower estimates in M∗ and also m∗ = α∗1 + εk < α1 + 2εk. Thus,
M∗ −m∗ ≥ ∆− 3εk − η so that eventually Item 4 will be met.

Since C(x) = p(x)/h(x), we have C ′(x) = u(x)/h2(x). Assuming the previous
items have all been met, we have

|βj − α∗i | ≥ |β∗j − α∗i | − |βj − βJ |∗ > 2εk + ε
1/(4d)
k − εk > εk.

Hence, h(x) has no roots in B(α∗i , εk) and C ′(x) is continuous on B(α∗i , εk). Fix
z ∈ B(α∗i , εk) and let ζ be the straight line segment contour from α∗i to z in
B(α∗i , εk). Since C ′(x) exists on B(α∗i , εk), C(z) − C(α∗i ) =

∫
ζ
C ′(x)dx. Thus,

|C(z) − C(α∗i )| ≤ P · |z − α∗i | where P = max{|C ′(x)| : x ∈ B(α∗i , εk)}.
Therefore, we have P ≤ P1/P

2
2 where P1 = max{|u(x)| : x ∈ B(α∗i , εk)} and

P2 = min{|h(x)| : x ∈ B(α∗i , εk)}. Since u(z) =
∑2d−1
`=0 u(`)(α∗i )(z − α∗i )`/`!,



16 P.B. Edwards et al.

we have P1 ≤
∑2d−1
`=0 |u(`)(α∗i )|ε`k/`!(1 + η) where η > 0 is the machine precision

that results from the upper bound on the quantities |u(`)(α∗i )|. Since

h(z) = cd

d∏
j=1

(z − βj) and |z − βj | ≥ |α∗i − β∗j | − |z − α∗i | − |β∗j − βj | > ε
1/(4d)
k ,

we have |h(z)| ≥ |cd|ε1/4. Thus, P 2
2 ≥ |cd|2ε1/2 and |C(z) − C(α∗i )| ≤ L∗i

√
ε.

Thus, |C∗i − Ci| ≤ L∗i
√
ε where Ci = C(αi) and C∗i = C(α∗i ). By the inclusions

B(α∗i , εk) ⊂ B(αi, 2εk) ⊂ B(αi, 1), all estimates |u(`)(α∗i )| will be bounded above
by the corresponding maximum values of |u(`)(z)| for z ∈ B(α1, 1). Thus, even
though P1 varies in each step k, P1 and L∗i will be uniformly bounded above
for all k. Since L∗1 is uniformly bounded above and C1 6= 0 by the proof of
Theorem 2, Item 6(a) will eventually be met if C1 < 0 while Item 6(b) will
eventually be met if C1 > 0.

Having proved termination, we note that in order to get a value of N∗0 which
is reasonably close to the value of N0 in Corollary 1, one may continue to de-
crease εk past the point where all termination conditions are first met. The
reason for this is to separate m∗ and M∗ as far all possible, i.e., to match the
actual gap between m and M as closely as possible. This could be wise especially
when m∗ is very close to M∗ in which case log(M∗/m∗) will be very close to 0
so that N∗0 will be very large.

Example 2. To demonstrate the approach, consider the rational functions

(1− x3 − x7 + x18)−1 and (1− x3 − x7 + x21)−1.

The implementation of this approach in Maple certifies that both rational func-
tions have Taylor series expansions centered at the origin where all of the co-
efficients are non-negative. The value of N0 from Corollary 1 which could be
certified by the method described above was N∗0 = 204 and N∗0 = 55, respec-
tively. Thus, it was easy to utilize series in Maple to check the non-negativity
of the Taylor series coefficients up to N∗0 combined with Corollary 1 for the tail.

7 Conclusion

This manuscript developed techniques for certified evaluations of locally Hölder
continuous functions at roots of polynomials along with an implementation in
Maple. These techniques were demonstrated on several problems including certi-
fied bounds on critical values and proving non-negativity of coefficients in Taylor
series expansions. Although this paper focused on roots of univariate polynomi-
als, it is natural to extend to multivariate polynomial systems in the future.
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Appendix

Proof of Theorem 1. Suppose that C 6= 0 such that q(x) = C ·
∏d
i=1(x−αi). Thus,

we know q′(x) = C ·
∑d
i=1

∏
j 6=i(x− αj) and q′(αi) = C ·

∏
j 6=i(αi − αj) 6= 0 for

https://doi.org/10.1109/TC.2017.2690633
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all i. Let pi(x) = q(x)/(x− αi) = C ·
∏
j 6=i(x− αj). Hence, pi(αi) = q′(αi) and

pi(αj) = 0 if j 6= i. The polynomials p1, . . . , pd are linearly independent since,

if
∑d
i=1 aipi(x) = 0, then evaluating at x = αj yields aj · q′(αj) = 0 which

implies aj = 0. Thus, they must form a basis for the d-dimensional vector space
of polynomials of degree at most d− 1.

Since p(x) has degree at most d − 1, there are unique constants ai so that∑d
i=1 aipi(x) = p(x). Evaluating at x = αj yields ajq

′(αj) = p(αj) so that
aj = p(αj)/q

′(αj). Therefore, for all x ∈ C \ {α1, . . . , αd},

p(x)

q(x)
=

d∑
i=1

p(αi)

q′(αi)

1

x− αi
=

d∑
i=1

− p(αi)

αiq′(αi)

1

1− x/αi
. (9)

The terms in (9) have a Taylor series expansion centered at the origin that
converge for all x with |x| < min{|α1|, . . . , |αd|} such that, as (8) claims,

p(x)

q(x)
=

d∑
i=1

− p(αi)

αiq′(αi)

∞∑
n=0

α−n
i xn =

∞∑
n=0

(
−

d∑
i=1

p(αi)

αiq′(αi)
α−n
i

)
xn.

Proof of Theorem 2. Clearly, one has rn = dn

dzn
p(z)
q(z)

∣∣∣
z=0

. Since p(x) and q(x) have

real coefficients, rn is real for all n ≥ 0. For i ∈ {1, . . . , d}, let tin = Ciα
−n
i so

that (8) reduces to rn =
∑d
i=1 t

i
n. Moreover, α1 ∈ R \ {0} implies C1 ∈ R \ {0}.

Clearly, if α1 < 0, then t1n is alternating in sign.
Consider the case when α1 > 0. First, note that t1n and C1 always have the

same sign. The following derives a threshold N such that |rn − t1n| < |t1n| for all
n > N . Given such an N , rn will have the same sign as t1n and C1 for n > N

and the theorem will be proved. To that end, since (rn − t1n)/t1n =
∑d
i=2 t

i
n/t

1
n,

|rn − t1n|
|t1n|

≤
d∑

i=2

|Ci|
|C1|
|α1|n

|αi|n
≤ K

(m
M

)n
for all n. Since, by assumption, m/M < 1, there is a threshold N so that
K(m/M)n < 1 and |rn − t1n| < |t1n| for all n > N . We may take N so that
K(m/M)N = 1 or N = log(K)/ log(M/m) as claimed.
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