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Abstract

We present a method for solving two minimal problems for
relative camera pose estimation from three views, which are
based on three view correspondences of (i) three points and
one line and (ii) three points and two lines through two
of the points. These problems are too difficult to be effi-
ciently solved by the state of the art Gröbner basis methods.
Our method is based on a new efficient homotopy continu-
ation (HC) solver, which dramatically speeds up previous
HC solving by specializing HC methods to generic cases of
our problems. We characterize their number of solutions
and show with simulated experiments that our solvers are
numerically robust and stable under image noise. We show
in real experiments that (i) SIFT feature location and orien-
tation provide good enough point-and-line correspondences
for three-view reconstruction and (ii) that we can solve diffi-
cult cases with too few or too noisy tentative matches where
the state of the art structure from motion initialization fails.

1. Introduction
3D reconstruction has made an impact [4] by mostly re-

lying on points in Structure from Motion (SfM) [1, 67, 23,
49]. Still, even production-quality SfM technology fails [4]
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Figure 1. A deficiency of the traditional two-view approach to
bootstraping SfM: not enough features detected (small red dots)
and thus a SOTA SfM pipeline COLMAP [67] fails to recon-
struct the relative camera pose. In contrast, the proposed trinoc-
ular method requires only three matching features: two triplets of
point-tangents (points with SIFT orientation shown in green and
cyan) and one triplet of points without orientation (purple) to re-
construct the pose. Red cameras are computed by our approach,
and green shows ground truth.

when the images contain (i) large homogeneous areas with
few or no features; (ii) repeated textures, like brick walls,
giving rise to a large number of ambiguously correlated fea-
tures; (iii) blurred areas, arising from moving cameras or
objects; (iv) large scale changes where the overlap is not
sufficiently significant; or (v) multiple and independently
moving objects each lacking a sufficient number of features.

The failure of bifocal pose estimation using RANSAC on
hypothesized correspondences, e.g., using 5 points [48], is
highlighted in a dataset of images of mugs, Figure 1 (sim-
ilar to the dataset in [51] but without a calibration board),
for which the failure rate using the standard SfM pipeline
COLMAP [63] is 75%. The failure of just directly apply-



ing the 5-point algorithm in this example is even higher.
A similar situation exists for images containing repeated
patterns where there are plenty of features, but determin-
ing correspondences is challenging. Most traditional mul-
tiview pipelines estimate the relative pose of the two best
views and then register the remaining views using a P3P al-
gorithm [68] to reduce the failure rate. The focus of this
paper is to address the issue of failure of traditional bifocal
algorithms in such cases.

The failure of bifocal algorithms motivates the use of
(i) more complex features, i.e., having additional attributes
and (ii) more diverse features. We propose that orienta-
tion (in the sense of inclination) is a key attribute to dis-
ambiguate correspondences and we show that SIFT orien-
tation in particular is a stable feature across views for tri-
focal pose estimation. Orientation can also from curve tan-
gents [18, 17, 6], and the orientation of a straight line in
multiple views also constrains pose. Observe, however, that
orientation cannot be constrained in two views alone: SIFT
orientation or line orientations in two views are uncorre-
lated, but together can identify their 3D counterparts and
thus can constrain orientation in a third view. This motivates
trinocular pose estimation based on point features endowed
with orientation or including straight line features.

Camera estimation from trifocal tensors is long believed
to augment two-view pose estimation [21], although a re-
cent study suggests no significant improvements over bifo-
cal pairwise estimation [31]. The calibrated trinocular rela-
tive pose estimation from four points, 3v4p, is notably diffi-
cult to solve [50, 59, 60, 17], and is not a minimal problem –
it is over-constrained. The first working trifocal solver [50]
effectively parametrizes the relative pose between two cam-
eras as a curve of degree ten representing possible epipoles.
A third view is then used to select the epipole that mini-
mizes reprojection errors. In this sense, trinocular pose es-
timation has not truly been tackled as a minimal problem.

Trifocal pose estimation requires the determination of
11 degrees of freedom: six unknowns for each pair of
rotation R and translation t, less one for metric ambigu-
ity. Three types of constraints arise in matching triplets of
point features endowed with orientation. First, the epipo-
lar constraint provides an equation for each pair of corre-
spondences in two views. Second, in a triplet of corre-
spondences, each pair of correspondences are required to
match scale, providing another constraint; a total of three
equations per triplet. It is easy to see, informally, that three
points are insufficient to determine trifocal pose, while four
points are too many. Third, each triplet of oriented feature
points provides one orientation constraint. Thus, with three
points, only two points need to be endowed with orienta-
tion, giving a total of 11 constraints for the 11 unknowns.
We refer to this problem of three triplets of corresponding
points, with two of the points having oriented features as

“Chicago.” In the second scenario, i.e., using straight lines
as features, with three points, only one free (unattached to a
point) straight line feature is required. We refer to the prob-
lem of three triplets of corresponding points and one triplet
of corresponding free lines as “Cleveland.” This paper ad-
dresses trifocal pose estimation for the above two scenar-
ios, shows that both are minimal problems, and develops
efficient solvers for the resulting polynomial systems.

Specifically, each problem comprises eleven trifocal
constraints that in principle give systems of eleven polyno-
mials in eleven unknowns. These systems are not trivial to
solve and require techniques from numerical algebraic ge-
ometry [9, 14, 41] (i) to probe whether the system is over
or under constrained or otherwise minimal; (ii) to under-
stand the range of the number of real solutions and estimate
a tight upper bound; and (iii) to develop efficient and prac-
tically relevant methods for finding solutions which are real
and represent camera configurations. This paper shows that
the Chicago problem is minimal and has up to 312 solutions
(the area code of Chicago is 312) of which typically 3-4 end
up becoming relevant to camera configurations. Similarly,
we show that the Cleveland problem is minimal and has up
to 216 solutions. The minimality of combinations of points
and lines for the general case [15] is a parallel development
to the more concrete treatment presented here.

The numerical solution of polynomial systems with sev-
eral hundred solutions is challenging. We devised a custom-
optimized Homotopy Continuation (HC) procedure which
iteratively tracks solutions with a guarantee of global con-
vergence [14]. Our framework specializes the general HC
approach to minimal problems typical of multiple view ge-
ometry, thereby dramatically speeding up the implementa-
tion. Specifically, our Chicago and Cleveland solvers are
not only the first solvers for such high degree problems, but
are orders of magnitude faster than solvers for such scale of
problems: 660ms on average on an Intel core i7-7920HQ
processor with four threads. They share the same generic
core procedure with plenty of room to be further optimized
for specific applications. Most significantly, since finding
each solution is a completely independent integration path
from the others, the solvers are suitable for implementation
on a GPU, as a batch for RANSAC, which would then re-
duce the run time by the number of tracks, i.e., by two or-
ders of magnitude. We hope that our developments can be
a template for solving other computer vision problems in-
volving systems of polynomials with a large number of so-
lutions, and in fact the provided C++ framework is fully
templated to include new minimal problems seamlessly.

It should be emphasized that trifocal pose estimation as a
more expensive operation is not intended as a competitor of
bifocal estimation algorithms. Rather, the trifocal approach
can be considered as a fallback option in situations where
bifocal pose estimation fails.



Experiments are initially reported on complex synthetic
data to demonstrate that the system is robust and stable
under spatial and orientation noise and under a significant
level of outliers. Experiments on real data first demonstrates
that SIFT orientation is a remarkably stable cue over a wide
variation in view. We then show that our approach is suc-
cessful in all cases where the traditional SfM pipeline suc-
ceeds, but of course at higher computational cost. What is
critically important is that the proposed approach succeeds
in many other cases where the SfM pipeline fails, e.g., on
the EPFL [70] and Amsterdam Teahouse datasets [71], as
shown in Figures 9 and 10. Those cases where the bifocal
scheme fails – flagged by the number of inliers, for example
– can consider the application of a currently more expensive
but more capable trifocal scheme to allow for reconstruc-
tions that would otherwise be unsolved.

1.1. Literature Review

Trifocal Geometry Calibrated trifocal geometry estima-
tion is a hard problem [50, 59, 60, 62]. There are no pub-
licly available solvers we are aware of. The state of the art
solver [50], based on four corresponding points (3v4p), has
not yet found many practical applications [37].

For the uncalibrated case, 6 points are needed [26], and
Larsson et al. recently solved the longstanding trifocal min-
imal problem using 9 lines [38]. The case of mixed points
and lines is less common [53], but has seen a growing in-
terest in related problems [63, 58, 72]. The calibrated cases
beyond 3v4p are largely unsolved, spurring more sophisti-
cated theoretical work [2, 3, 33, 40, 43, 44, 52]. Kileel [33]
studied many minimal problems in this setting, such as the
Cleveland problem solved in the present paper, and reported
studies using homotopy continuation. Kileel also stated that
the full set of ideal generators, i.e.,, a given set of polyno-
mial equations provably necessary and sufficient to describe
calibrated trifocal geometry, is currently unknown.

Seminal works used curves and edges in three views
to transfer differential geometry for matching [5, 61], and
for pose and trifocal tensor estimation [13, 66], beyond
straight lines for uncalibrated [24, 7] and calibrated [64,
63] SfM. Point-tangents – not to be confused with point-
rays [11] – can be framed as quivers (1-quivers), or fea-
ture points with attributed directions (e.g., corners), initially
proposed in the context of uncalibrated trifocal geometry
but de-emphasizing the connection to tangents to general
curves [30, 74]. We note that point-tangent fields may also
be framed as vector fields, so related technology may apply
to surface-induced correspondence data [17]. In the cali-
brated setting, point-tangents were first used for absolute
pose estimation by Fabbri et al. [18, 19], using only two
points, later relaxed for unknown focal length [36]. The tri-
focal problem with three point-tangents as a local version of
trifocal pose for global curves was first formulated by Fab-

bri [17], presented here as a minimal version codenamed
Chicago.

Homotopy Continuation The basic theory of polynomial
homotopy continuation (HC) [9, 46, 69] was developed in
1976, and guarantees algorithms that are globally conver-
gent with probability one from given start solutions. A
number of general-purpose HC softwares have consider-
ably evolved over the past decade [8, 12, 41, 73]. The
computer vision community has used HC most notably in
the nineties for 3D vision of curves and surfaces for tasks
such as computing 3D line drawings from surface intersec-
tions, finding the stable singularities of a 3D line draw-
ing under projections, computing occluding contours, sta-
ble poses, hidden line removal by continuation from singu-
laritities, aspect graphs, self-calibration, and pose estima-
tion [10, 22, 27, 28, 29, 34, 35, 42, 45, 54, 55, 57], as well as
for MRFs [10, 47], and in more recent work [16, 25, 65]. An
implementation of the early continuation solver of Krieg-
man and Ponce [34] by Pollefeys is still widely available
for low degree systems [56].

As an early example [27], HC was used to find an early
bound of 600 solutions to trifocal pose with 6 lines. In the
vision community HC is mostly used as an offline tool to
carry out studies of a problem before crafting a symbolic
solver. Kasten et al. [32] recently compared a general pur-
pose HC solver [73] against their symbolic solver. However,
their problem is one order of magnitude lower degree than
the ones presented here, and the HC technique chosen for
our solver [14] is more specific than their use of polyhedral
homotopy, in the sense that fewer paths are tracked (c.f . the
start system hierarchy in [69]).

2. Two Trifocal Minimal Problems

2.1. Basic Equations

Our notation follows [24] with explicit projective scales. A
more elaborate notation [13, 18] can be used to express the
equations in terms of tangents to curves.
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Figure 2. Notation for the trifocal pose problems.



Let X and Y denote inhomogeneous coordinates of 3D
points and xpv,ypv ∈ P2 denote homogeneous coordinates
of image points. Subscript p numbers the points and v num-
bers the views. If only a single subscript is used, it indexes
views. Symbols Rv, tv denote the rotation and translation
transforming coordinates from camera 1 to camera v; d is
an image line direction or curve tangent in homogeneous
coordinates; and D is the 3D line direction or space curve
tangent in inhomogeneous world coordinates. Symbols α, β
denote the depth of X,Y, respectively, and η is the dis-
placement along D corresponding to the displacement γ
along d.

We next formulate two minimal problems for points and
lines in three views and derive their general equations be-
fore turning to specific formulations. We first state the new
minimal problem, Chicago, followed by an important simi-
lar problem, Cleveland.

Definition 1 (Chicago trifocal problem). Given three points
x1v,x2v,x3v and two lines `1v , `2v in views v = 1, 2, 3,
such that `pv meet xpv for p = 1, 2, v = 1, 2, 3, compute
R2, R3, t2, t3.

Definition 2 (Cleveland trifocal problem). Given three
points x1v,x2v,x3v in views v = 1, 2, 3, and given one
line `1v in each image, compute R2, R3, t2, t3.

To setup equations, we start with image projections of
points α1x1 = X, α2x2 = R2X + t2, α3x3 = R3X + t3
and eliminate X to get

αvxv = Rvα1x1 + tv, v = 2, 3. (1)

Lines in space through X are modeled by their points Y =
X + ηD in direction D from X. Points Y are projected to
images as β1y1 = X + ηD, β2y2 = R2(X + ηD) + t2,
β3y3 = R3(X+ ηD) + t3. Eliminating X gives

β1y1 = α1x1 + ηD

β2y2 = α2x2 + ηR2D

β3y3 = α3x3 + ηR3D.

(2)

The directions dv of lines in images, which are obtained as
the projection of Y minus that of X, i.e.,

βvγvdv = yv − xv = αvxv + ηD− xv, (3)

are substituted to (2). After eliminating D we get

(βv − αv)xv + βvγvdv = Rv ((β1 − α1)x1 + β1γ1d1) ,

(4)
for v = 2, 3. To simplify notation further, we change vari-
ables as εv = βv − αv , µv = βvγv and get

εvxv + µvdv = Rv (ε1x1 + µ1d1) , v = 2, 3. (5)

For Chicago, we have three times the point equations (1)
and two times the tangent equations (5). There are 12 un-
knowns R2, t2, R3, t3, and 24 unknowns αpv, εpv, µpv .

For Cleveland we need to represent a free 3D line L in
space. We write a general point of L as P+λV, with a point
P onL, the direction V ofL and real λ. Considering a triplet
of corresponding lines represented by their homogeneous
coordinates `v , the homogeneous coordinates of the back-
projected planes are obtained as πv = [Rv | tv]T `v . Now,
all πv have to contain P and V and thus

rank
[
[I | 0]T `1 | [R2 | t2]T `2 | [R3 | t3]T `3

]
< 3. (6)

Equations 1 and 6 are the basic equations for Cleveland.
There are many ways to use elimination from these basic

equations to obtain alternate formulations for these prob-
lems. A particular formulation based on vanishing minors
for both Chicago and Cleveland, which produced our first
working solver for Chicago, is described in 3.1.

2.2. Problem Analysis

A general camera pose problem is defined by a list of la-
beled features in each image, which are in correspondence.
The image coordinates of each feature are given, and we
aim to determine the relative poses of the cameras. The
concatenated list of all the feature coordinates from all cam-
eras is a point in the image space Y , while the concate-
nated list of the features’ locations in the world frame or
camera 1 is a point in the world feature space W . Unless
the scale of some feature is given, the scale of the rela-
tive translations is indeterminate, so relative translations are
treated as in projective space. ForN cameras, the combined
poses of cameras 2, . . . , N relative to camera 1 are points in
SE(3)N−1. Let the pose space be X , the projectivized ver-
sion of SE(3)N−1, and so dimX = 6N − 7. Given the 3D
features and the camera poses, we can compute the image
coordinates of the features by considering a viewing map
V : W ×X → Y . A camera pose problem is: given y ∈ Y ,
find (w, x) ∈ W ×X such that V (w, x) = y. The projec-
tion π : (w, x) 7→ x is the set of relative poses we seek.

Definition 3. A camera pose problem is minimal if V :W×
X→Y is invertible and nonsingular at a generic y ∈ Y .

A necessary condition for a map to be invertible and non-
singular is that the dimensions of its domain and range must
be equal. Let us consider three kinds of features: a point, a
point on a line (equivalently a point with tangent direction),
and a free line (a line with no distinguished point on it).
For each feature, say F , let CF be the number of cameras
that see it. The contributions to dimW and dimY of each
kind of feature are in the table below, where a point with a
tangent counts as one point and one tangent. Thus, a point
feature has several tangents if several lines intersect at it.



Feature dimW dimY
Point, P 3 2 · CP

Tangent, T 2 1 · CT

Free Line, L 4 2 · CL

Accordingly, summing the contributions to dimY −dimW
for all the features, we have the following result.

Theorem 2.1. Let 〈x〉 .= max(0, x). A necessary condition
for a N -camera pose problem to be minimal is 6N − 7 =∑

P 〈2CP − 3〉+
∑

T 〈CT − 2〉+
∑

L〈2CL − 4〉.

For trifocal problems where all cameras see all features,
i.e., CP = CT = CL = 3, a pose problem with 3 feature
points and 2 tangents meets the condition. A pose problem
with 3 feature points and 1 free line also meets the condi-
tion. Adding any new features to these problems will make
them overconstrained, having dimY > dimW ×X .

To demonstrate sufficiency, it’s enough to find (w, x) ∈
W ×X where the Jacobian of V (w, x) is full rank. Such a
rank test for a random point (w, x) serves to establish non-
singularity with probability one. Using floating point arith-
metic this is highly indicative but not rigorous unless one
bounds floating-point error, which can be done using inter-
val or exact arithmetic. A singular value decomposition of
the Jacobian using floating point showing that the Jacobian
has a smallest singular value far from zero can be taken as a
numerical demonstration that the problem is minimal. Sim-
ilarly, a careful calculation using techniques from numerical
algebraic geometry can compute a full solution list in C for
a randomly selected example and thereby produce a numer-
ical demonstration of the algebraic degree of the problem.
Using such techniques, we make the following claims with
the caveat that they have been demonstrated numerically.

Theorem 2.2 (Numerical). The Chicago trifocal problem
is minimal with algebraic degree 312, and the Cleveland
problem is minimal with algebraic degree 216.

Proof. The previous paragraphs explain the numerical ar-
guments, but the definite proof by computer involves sym-
bolically computing the Gröbner basis over Q, with special
provisions, as discussed in the supplementary material.

While this result is in agreement with degree counts for
Cleveland in [33], the analysis of Chicago is novel as this
problem is presented in this paper for the first time.

3. Homotopy Continuation Solver
In this section we describe our homotopy continuation
solvers. In subsection 3.1 we reformulate the trifocal pose
estimation problems as parametric polynomial systems in
unknowns R2, R3, t2, t3 using the equations based on mi-
nors described in 3.1, while other formulations are dis-
cussed in supplementary material. We attribute relatively
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Figure 3. Visible line diagrams for Chicago and Cleveland.

good run times to two factors. First, we use coefficient-
parameter homotopy, outlined in 3.2, which naturally ex-
ploits the algebraic degree of the problem. Already with
general-purpose software [8, 41], parameter homotopies are
observed to solve the problems in a relatively efficient man-
ner. Secondly, we optimize various aspects of the homotopy
continuation routine, such as polynomial evaluation and nu-
merical linear algebra. In subsection 3.3, we describe our
optimized implementation in C++ which was used for the
experiments described in section 4.

3.1. Equations based on minors

One way of building a parametric homotopy continuation
solver is to formulate the problems as follows. An instance
of Chicago may be described by 5 visible lines in each view.
We represent each line by its defining equation in homoge-
neous coordinates, i.e., as `1v, . . . , `5v ∈ C3×1 for each
v ∈ {1, 2, 3}. With the convention that the first three lines
pass through the three pairs of points in each view and that
the last two pass through associated point-tangent pairs, let

Lj =
[
[I |0]T `j1 [R2 |t2]T `j2 [R3 |t3]T `j3

]
, (7)

for each j ∈ {1, . . . , 5}. We enforce line correspondences
by setting all 3×3 minors of each Lj equal to zero. Certain
common point constraints must also be satisfied,i.e.,, that
the 4× 4 minors of matrices [L1 | L2 | L4], [L2 | L3 | L5],
and [L1 | L3] all vanish.

We may describe the Cleveland problem with similar
equations. For this problem, we are given lines `1v, . . . , `4v
for v ∈ {1, 2, 3}. We enforce line correspondences for ma-
trices L1, . . . , L4 defined as in (7) and common point con-
straints by requiring that the 4 × 4 minors of [L1 | L2],
[L1 | L3], and [L2 | L3] all vanish. The “visible lines”
representation of both problems is depicted in Figure 3.

3.2. Algorithm

From the previous section, we may define a specific sys-
tem of polynomials F (R;A) in the unknowns R =
(R2, R3, t2, t3) parametrized by A = (`11, . . .). Many rep-
resentations for rotations were explored, but our main im-
plementation employs quaternions. A fundamental tech-
nique for solving such systems, fully described in [69], is
coefficient-parameter homotopy. Algorithm 1 summarizes
homotopy continuation from a known set of solutions for



given parameter values to compute a set of solutions for
the desired parameter values. It assumes that solutions for
some starting parameters A0 have already been computed
via some offline, ab initio phase. For our problems of inter-
est, the number of start solutions is precisely the algebraic
degree of the problem.

Several techniques exist for the ab initio solve. For ex-
ample, one can use standard homotopy continuation to solve
the system F (R;A0) = 0, where A0 are randomly gener-
ated start parameters [9, 69]. This method may be enhanced
by exploiting additional structure in the equations or using
regeneration. Another technique based on monodromy, de-
scribed in [14], was used to obtain a set of starting solutions
and parameters for the solver described in Section 3.3.

Algorithm 1: Homotopy continuation solution tracker
input: Polynomial system F (R;A), where

R = (R2, R3, t2, t3), and A parametrizes the data;
Start parameters A0; start solutionsR0 where
F (R0;A0) = 0; Target parameters A∗

output: Set of target solutionsR∗ where F (R∗;A∗) = 0

Setup homotopy H(R; s) = F (R; (1− s)A0 + sA∗).
for each start solution do

s←− ∅
while s < 1 do

Select step size ∆s ∈ (0, 1− s].
Predict: Runge-Kutta Step from s to s + ∆s such
that dH/ds = 0.
Correct: Newton step st. H(R; s + ∆s) = 0.
s←− s + ∆s

return Computed solutionsR∗ where H(R∗, 1) = 0.

3.3. Implementation

We provide an optimized open source C++ package called
MINUS – MInimal problem NUmerical Solver1. This is a
homotopy continuation code specialized for minimal prob-
lems, templated in C++, so that efficient specialization for
different problems and different formulations are possible.
The most reliable and high-quality solver according to our
experiments uses a 14 × 14 minors-based formulation. Al-
though other formulations have demonstrated further poten-
tial for speedup by orders of magnitude, there may be relia-
bility tradeoffs (c.f . supplementary material).

4. Experiments
Experiments are conducted first for synthetic data for a de-
tailed and controlled study, followed by experiment on chal-
lenging real data. Due to space constraints, we present re-
sults for the more challenging Chicago problem, leaving
Cleveland for supplementary materials.

1Code available at http://github.com/rfabbri/minus

Synthetic data experiments: The synthetic data from [20,
18] consists of 3D curves in a 4 × 4 × 4cm3 volume pro-
jected to 100 cameras (Figure 4), and sampled to get 5117
points enclosed with orientations (tangents of curves) that
are projections of the same 3D analytic points and 3D curve
tangents [20], and then degraded with noise and outliers.
Camera centers are randomly sampled around an average
sphere around the scene along normally distributed radii of
mean 1m and σ = 10mm. Rotations are constructed via
normally distributed look-at directions with mean along the
sphere radius looking to the object, and σ = 0.01 rad such
that the scene does not leave the viewport, followed by uni-
formly distributed roll. This sampling is filtered such that
no two cameras are within 15◦ of each other.

Our first experiment studies the numerical stability of the
solvers. The dataset provides true point correspondences,
which inherit an orientation from the tangent to the analytic
curve. For each sample set, three triplets of point corre-
spondences are randomly selected with two endowed with
the orientation of the tangent to the curve. The real solu-
tions are selected from among the output, and only those
that generate positive depth are retained. The unused tan-
gent of the third triplet is used to verify the solution as it
is an overconstrained problem. For each of the remaining
solutions a pose is determined.

The error in pose estimation is compared with ground-
truth as the angular error between normalized translation
vectors and the angular error between the quaternions. The
process of generating the input to pose computation is re-
peated 1000 times and averaged. This experiment demon-
strates that: (i) pose estimation errors are negligible, Fig-
ure 5(a); (ii) the number of real solutions is small: 35 real
solutions on average, pruned down to 7 on average by en-
forcing positive depth, and even further to about 3-4 physi-
cally realizable solutions on average employing the unused
tangent of the third point as verification, Figure 5(b); (iii)
the solver fails in about 1% of cases, which are detectable
and, while not a problem for RANSAC, can be eliminated by
running the solver for that solution path with higher accu-
racy or more parameters at a higher computational cost.

The second experiment shows that we can reliably and
accurately determine camera pose with correct but noisy
correspondences. Using the same dataset and a subset
of the selection of three triplets of points and tangents –
200 in total – zero-mean Gaussian noise was added both
to the feature locations with σ ∈ {0.25, 0.5, 0.75, 1.0}
pixels and to the orientation of the tangents with σ ∈
{0.05, 0.1, 0.15, 0.2} radians, reflecting expected feature
localization and orientation localization error. A RANSAC
scheme determines the feature set that generates the highest
number of inliers. Experiments indicate that the translation
and rotation errors are reasonable. Figure 6 (top) shows
how the extent of localization error affects pose (in terms



Figure 4. Sample views of our synthetic dataset. Real datasets have
also been used in our experiments. (3D curves are from [18, 20]).

Figure 5. (a) Errors of computed pose are small showing that the
solver is numerically stable. (b) The histogram of the numbers of
real solutions in different stages.

Figure 6. Translational and rotational error distributions between
cameras 1 and 2 (blue) and 1 and 3 (green) for different levels of
feature localization (top) and orientation noise (bottom).

of translation and rotation errors) under a fixed orientation
perturbation of 0.1 radians; Figure 6 (bottom) shows how
the extent of orientation error affects pose under a fixed lo-
calization error of 0.5 pixels. The more meaningful repro-
jection error, i.e., the distance of a point from the location

Figure 7. Distributions of reprojection error of feature location
plotted against localization and orientation errors.

Figure 8. Average reprojection error on ground truth inlier points
with different ratio of outliers.

determined by the other two points in a triplet, is shown in
Figure 7, averaged over 100 triplets.

The third experiment probes whether the system can re-
liably and accurately determine trifocal pose when correct
noisy correspondences are mixed with outliers. With a fixed
feature localization error of 0.25 pixels and feature orienta-
tion error of 0.1 radians, 200 triplets of features were gen-
erated, with a percentage of these replaced with samples
having random location and orientation. The ratio of out-
liers is varied over 10%, 25% and 40%, and the experiment
is repeated 100 times for each. The resulting reprojection
error is small and stable across outlier ratios, Figure 8.
Computational efficiency: Each solve using our software
MINUS takes 660ms on average (1.9s in the worst case)
as compared to over 1 minute on average for the best pro-
totypes using general purpose software [8, 41], both on an
Intel core i7-7920HQ processor and four threads. More ag-
gressive but potentially unsafe optimizations towards mi-
croseconds are feasible, but require assessing failure rate,
as reported in the supplementary materials.
Real data experiments: Much like the standard pipeline,
SIFT features are first extracted from all images. Pair-
wise features are found by rank-ordering measured simi-
larities and making sure each feature’s match in another
image is not ambiguous and is above accepted similarity.
Pairs of features from the first and second views are then
grouped with the pairs of features from the second and
third views into triplets. A cycle consistency check enforces
that the triplets must also support a pair from the first and
third views. Three feature triplets are then selected using
RANSAC and the relative pose of the three cameras is deter-
mined from two tangents with their assigned SIFT orienta-
tion and a third point without orientation.



Figure 9 shows that camera pose is reliabily and accu-
rately found using triplets of images taken from the EPFL
dense multi-view stereo test image dataset [70]. Our quan-
titative estimates on 150 random triplets from this dataset
give pose errors of 1.5 × 10−3 radians in translation and
3.24 × 10−4 radians in rotation. The average reprojec-
tion error is 0.31 pixels. These are comparable to or better
than the trifocal relative pose estimation methods reported
in [31]. Our conclusion for this dataset, whose purpose is
simply to validate the solver, is that our method is at least
as good and often better than the traditional ones. See sup-
plementary data for more examples and a substantiation of
this claim. Note that we do not advocate replacing the tra-
ditional method for this dataset. We simply state that our
method works just as well, of course at a higher cost.

The EPFL dataset is feature-rich, typically yielding on
the order of 1000 triplet features per image triplet. As such
it does not portray some of the typical problems faced in
challenging situations when there are few features available.
The Amsterdam Teahouse Dataset [71], which also has
ground-truth relative pose data, depicts scenes with fewer
features. Figure 10 (top) shows a triplet of images from this
dataset where there is a sufficient set of features (the soup
can) to support a bifocal relative pose estimation followed
by a P3P registration to a third view (using COLMAP [67]).
However, when the number of features is reduced, as in Fig-
ure 10 (bottom) where the soup can is occluded, COLMAP
fails to find the relative pose between pairs of these images.
In contrast, our approach, which relies on three and not five
features, is able to recover the camera pose for this scene.
Further results are in supplementary material.

We also created another featureless dataset similar to
the one in [51] but with the calibration board manually re-
moved. This scene lacks point features, which is extremely
challenging for traditional structure from motion. We built
20 triplets of images within this dataset. Within these 20
triplets, camera poses of only 5 triplets can be generated
with COLMAP, but with our method, 10 out of 20 camera
poses can be estimated. We reached a 100% improvement
over the standard pipeline on image triplets. The sample
successful cases are shown in Figure 1 and 11.

5. Conclusion
We presented a new calibrated trifocal minimal problem, an
analysis demonstrating its number of solutions, and a prac-
tical solver by specializing general computation techniques
from numerical algebraic geometry. Our approach is able to
characterize and solve a similar difficult minimal problem
with mixed points and lines. The increased ability to solve
trifocal problems is key to future work on broader problems
connecting the multi-view geometry of points and lines to
that of points and tangents appearing when observing 3D
curves, e.g., in scenes without point features, using tools of

Figure 9. Trifocal relative pose estimation of EPFL dataset. At
each row, image samples are shown with results on the right:
ground truth in green and estimated poses in red outlines.

Figure 10. Samples of trifocal relative pose estimation of the Am-
sterdam Teahouse dataset. Top row is a sample triplet of images
that COLMAP is able to tackle; second row is a triplet from the
images where COLMAP fails. COLMAP results are in blue out-
lines, our results are in red, and ground truth is green.

Figure 11. Trifocal relative pose results for a dataset comprising
three mugs, which is challenging for traditional SfM. For each row,
image triplet samples are shown, with results on the right. Ground
truth poses are in solid green and estimated poses are in red.

differential geometry [17, 20]. Our “100 lines of custom-
made solution tracking code” will also be used to try to im-
prove solvers of many other minimal problems which have
not been solved efficiently with Gröbner bases [39].



References
[1] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz,

and Richard Szeliski. Building Rome in a day. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion. IEEE Computer Society, 2009.

[2] C. Aholt and L. Oeding. The ideal of the trifocal variety.
Math. Comp., 83, 2014.

[3] Alberto Alzati and Alfonso Tortora. A geometric approach
to the trifocal tensor. Journal of Mathematical Imaging and
Vision, 38(3):159–170, Nov 2010.

[4] ARKit Team. Understanding ARKit tracking and detection.
Apple, WWDC, 2018.

[5] N. Ayache and L. Lustman. Fast and reliable passive trinoc-
ular stereovision. In 1st International Conference on Com-
puter Vision, June 1987.

[6] Daniel Barath and Zuzana Kukelova. Homography from two
orientation- and scale-covariant features. In The IEEE Inter-
national Conference on Computer Vision (ICCV), October
2019.

[7] Adrien Bartoli and Peter Sturm. Structure-from-motion
using lines: Representation, triangulation, and bundle ad-
justment. Computer vision and image understanding,
100(3):416–441, 2005.

[8] Daniel J. Bates, Jonathan D. Hauenstein, Andrew J.
Sommese, and Charles W. Wampler. Bertini: Soft-
ware for numerical algebraic geometry. Available at
bertini.nd.edu.

[9] Daniel J. Bates, Jonathan D. Hauenstein, Andrew J.
Sommese, and Charles W. Wampler. Numerically solving
polynomial systems with Bertini, volume 25 of Software, En-
vironments, and Tools. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2013.

[10] Alfred M. Bruckstein, Robert J. Holt, and Arun N. Netravali.
How to catch a crook. J. Visual Communication and Image
Representation, 5(3):273–281, 1994.

[11] Federico Camposeco, Torsten Sattler, and Marc Pollefeys.
Minimal solvers for generalized pose and scale estimation
from two rays and one point. In European Conference on
Computer Vision, pages 202–218. Springer, 2016.

[12] Tianran Chen, Tsung-Lin Lee, and Tien-Yien Li. Hom4PS-
3: A parallel numerical solver for systems of polynomial
equations based on polyhedral homotopy continuation meth-
ods. In Hoon Hong and Chee Yap, editors, Mathematical
Software – ICMS 2014, pages 183–190, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

[13] Roberto Cipolla and Peter Giblin. Visual Motion of Curves
and Surfaces. Cambridge University Press, 1999.

[14] Timothy Duff, Cvetelina Hill, Anders Jensen, Kisun Lee,
Anton Leykin, and Jeff Sommars. Solving polynomial sys-
tems via homotopy continuation and monodromy. IMA Jour-
nal of Numerical Analysis, 39(3):1421–1446, 2018.

[15] Timothy Duff, Kathlén Kohn, Anton Leykin, and Tomas Pa-
jdla. Plmp-point-line minimal problems in complete multi-
view visibility. arXiv preprint arXiv:1903.10008, 2019.

[16] A. Ecker and A. D. Jepson. Polynomial shape from shading.
In 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 145–152, June 2010.

[17] Ricardo Fabbri. Multiview Differential Geometry in Appli-
cation to Computer Vision. Ph.D. dissertation, Division Of
Engineering, Brown University, Providence, RI, 02912, July
2010.

[18] Ricardo Fabbri, Peter J. Giblin, and Benjamin B. Kimia.
Camera pose estimation using first-order curve differential
geometry. In Proceedings of the IEEE European Confer-
ence in Computer Vision, Lecture Notes in Computer Sci-
ence. Springer, 2012.

[19] Ricardo Fabbri, Peter J. Giblin, and Benjamin B. Kimia.
Camera pose estimation using first-order curve differential
geometry. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2019. Accepted.

[20] Ricardo Fabbri and Benjamin B Kimia. Multiview differen-
tial geometry of curves. International Journal of Computer
Vision, 117:1–23, 2016.

[21] Olivier Faugeras and Quang-Tuan Luong. The Geometry of
Multiple Images. MIT Press, Cambridge, MA, USA, 2001.

[22] O. D. Faugeras, Q. T. Luong, and S. J. Maybank. Camera
self-calibration: Theory and experiments. In G. Sandini, ed-
itor, Computer Vision — ECCV’92, pages 321–334, Berlin,
Heidelberg, 1992. Springer Berlin Heidelberg.

[23] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and ro-
bust multiview stereopsis. IEEE Trans. Pattern Anal. Mach.
Intell., 32(8):1362–1376, Aug. 2010.

[24] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2nd edition,
2004.

[25] Jonathan D. Hauenstein and Margaret H. Regan. Adaptive
strategies for solving parameterized systems using homotopy
continuation. Appl. Math. Comput., 332:19–34, 2018.

[26] A. Heyden. Reconstruction from image sequences by means
of relative depths. In Proceedings of the Fifth International
Conference on Computer Vision, ICCV ’95, pages 1058–,
Washington, DC, USA, 1995. IEEE Computer Society.

[27] Robert J. Holt and Arun N. Netravali. Motion and structure
from line correspondences: Some further results. Interna-
tional Journal of Imaging Systems and Technology, 5(1):52–
61, 1994.

[28] Robert J. Holt and Arun N. Netravali. Number of solu-
tions for motion and structure from multiple frame corre-
spondence. Int. J. Comput. Vision, 23(1):5–15, May 1997.

[29] Robert J. Holt, Arun N. Netravali, and Thomas S. Huang.
Experience in using homotopy methods to solve motion es-
timation problems. volume 1251, 1990.

[30] B. Johansson, M Oskarsson, and K. Astrom. Structure and
motion estimation from complex features in three views. In
Proceedings of the Indian Conference on computer vision,
graphics, and image processing, 2002.
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Wallis, Zuzana Kukelova, and Tomás Pajdla. Beyond grob-
ner bases: Basis selection for minimal solvers. In 2018
IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018, pages 3945–3954, 2018.

[40] S. Leonardos, R. Tron, and K. Daniilidis. A metric
parametrization for trifocal tensors with non-colinear pin-
holes. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 259–267, June 2015.

[41] Anton Leykin. Numerical algebraic geometry. J. Softw. Alg.
Geom., 3:5–10, 2011.

[42] Q.-T. Luong. Matrice Fondamentale et Calibration Visuelle
sur l’Environnement-Vers une plus grande autonomie des
systemes robotiques. PhD thesis, Université de Paris-Sud,
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A. Other formulations

Along with the two minor based formulations described
in the main manuscript, two alternate formulations of both
Chicago and Cleveland were explored, as outlined below.
Experimental results using synthetic data for these two al-
ternate formulations of Chicago and Cleveland, as well as
the minor formulation of Cleveland are discussed below in
Section C.

In addition, other “non-minor” formulations of Chicago
were explored and implemented in MINUS for optimization
and testing. Two important formulations are worth mention-
ing. The first is obtained by eliminating depths and other
scalars from the original equations from Section 2.1 of the
main paper, ending with an 11 × 11 system of equations
only in the relative poses R2, R3, t2, t3 modulo global scale
– embodying the calibrated trifocal tensor in different forms
depending on the representation employed. The second re-
duction occurs after further eliminating translations to ob-
tain a 6 × 6 system of equations in R2, R3, which can give
better performance for the linear solves within Algorithm 1.
The results of using these formulations and other more ag-
gressive optimization strategies within MINUS are outlined
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below in Section D.

Alternate Chicago The first set of vector equations, (1) in
the main paper, is associated to viewing points p = 1, 2, 3
from cameras v = 1, 2, 3. Eliminate tv using one such
equation for p = 3 and rearrange to:

αpvxpv − α3vx3v = Rv(αp1xp1 − α31x31), (1)

for v = 2, 3 and p = 1, 2, 3. The second set of vector
equations used by this formulation is associated to viewing
tangents from cameras v = 1, 2, 3, which is (5) in the main
paper. Together, (1) above and (5) of the main paper are a
set of 24 scalar equations with the following unknowns:

(Rv, tv), v = 2, 3; αpv, v = 1, 2, 3, p = 1, 2, 3;
(εpv, µpv), v = 1, 2, 3, p = 1, 2,

which are used with our additional Bertini solver in regards
to the non-minor (i.e., without using determinantal “visi-
ble lines” formulation of Section 3.1 of the main paper)
Chicago formulation and experimentation.

Alternate Cleveland The three labeled points are the
same, therefore (1) still applies. With the description in the
main manuscript, for the free 3D line L, we let (pv,qv) be
two distinct points in three views. The back-projection of
the image line is a plane whose equation in local coordi-
nates is given in terms of a vector nv normal to the plane:

n>
v x = 0, where nv = pv × qv .

Point P chosen as P = αqp1, must lie in the back-projection
planes in the other two views, giving

n>
v (Rvαqp1 + tv) = 0, (2)
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for views 2 and 3. Eliminating the translations and rear-
ranging we have:

α3vn>
v x3v = n>

v Rv(α31x31 − αqp1). (3)

In addition, L must lie in all three back-projection planes,
thus

n>
1 v = 0, n>

2 R2v = 0, n>
3 R3v = 0. (4)

The additional solver referenced below for this non-minor
Cleveland formulation is defined by the polynomial system
of (1), (3), and (4) with the following unknowns:

Rv, v = 2, 3; αq; v;
αpv, p = 1, 2, 3, v = 1, 2, 3.

Of course, we note that the above equations can partially be
represented as determinants equal to zero; by non-minor we
simply mean it is not focused on minors, but that they are a
by-product of another type of geometrical reasoning.

B. Clarifying the proof of degrees
In the main paper, a proof regarding the number of 312

degrees and 216 for Chicago and Cleveland, respectively,
was provided focusing on numerical arguments. These ar-
guments are mathematically sound due to guarantees on the
behavior of polynomial systems for these numerical meth-
ods given our assumptions listed within Section 2.2 of the
main manuscript. In our main manuscript we also sketched
how the proof would proceed by means of symbolic tech-
niques. We now provide details on such a procedure, which
is standard practice [2, 3].

To obtain the degree of the system, it is enough to give
random values to all symbolic parameters (or coefficients),
and then compute the degree of the resulting (specialized)
system. This can be performed over Q, as briefly described
in the paper, or it may be more feasible to carry out compu-
tations modulo p, for a suitable prime number p. By making
sure that the random values of the parameters are generic
enough to be a representative of the general ones, and that
the prime that we use is not a bad prime (for example that
the modulo p operation does not kill terms of the polyno-
mials), the computation of the degree is as mathematically
sound as an analytic-geometric proof by hand (which would
be very hard for this problem size).

Once we compute, over Q, a lexicographical Gröbner ba-
sis, its last polynomial is a univariate polynomial of degree
D, which is the problem degree. For Chicago, D = 312 is
obtained, and for cleveland D = 216. Let the single vari-
able of this last univariate polynomial be x. By solving this
polynomial by usual means, one backsubstitutes x and thus
finds a solution for the system. The procedure over the ra-
tionals is time consuming (several hours to days), so as a
solver, this generic symbolic method as such is not useful
in practice beyond proofs and other analysis.

Figure 1. Errors of computed parameters with respect to the
ground truth are small showing that the solver is numerically sta-
ble for the minor formulation of Cleveland.

Figure 2. Errors of computed parameters with respect to the
ground truth are small showing that the solver is numerically sta-
ble for the alternate formulation of Chicago.

Figure 3. Errors of computed parameters with respect to the
ground truth are small showing that the solver is numerically sta-
ble for the alternate formulation of Cleveland.

C. Additional Synthetic Experiments

Synthetic experiments were completed for the minor for-
mulation of Cleveland discussed in Section 3.1 in the main
manuscript, as well as the other formulations outlined above
in Section A. These experiments are equivalent to those out-
lined in Section 4 in the main manuscript under the heading
synthetic experiments.

For the three separate formulations, minor Cleveland and
alternate Chicago and Cleveland, it was found that pose esti-
mation errors are negligible as shown in Figures 1, 2, and 3,
respectively.

The next set of experiments show the behavior when the
correspondences are correct, but noisy. Using the same pro-
cess as described in detail in Section 4 of the main paper.
The result of the minor formulation of Cleveland and alter-
nate formulations of Chicago and Cleveland are shown in
Figures 4, 5, and 6, respectively. For each formulation, the
median of the translation and rotation error are low, but due
to the relatively high failure rate of these three formulations,
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there are several failures that effect the data. However, these
failure cases can be detected and resolved by thresholding
the maximum inlier ratio in RANSAC. In addition, the aver-
age reprojection error with respect to the ground truth point
correspondences, also in Figures 4, 5, and 6, shows that for
most of the test cases we have a stable and reasonable re-
projection error. Again, the cases with large reprojection
error can be ignored by thresholding maximum inlier ratio
in RANSAC.

Figure 4. Distribution of trifocal pose error for the minor formula-
tion of Cleveland in the form of translational and rotational error
between cameras 1 and 2 (blue) and cameras 1 and 3 (green), as
well as the reprojection error, plotted against the level of feature
localization noise (left) and orientation noise (right).

Figure 5. Distribution of trifocal pose error for the alternate formu-
lation of Chicago in the form of translational and rotational error
between cameras 1 and 2 (blue) and cameras 1 and 3 (green), as
well as the reprojection error, plotted against the level of feature
localization noise (left) and orientation noise (right).

These results on synthetic data sets, paired with the com-
putational efficiency of the solvers for various formulations,
highlight the efficacy of the homotopy continuation meth-
ods and their ability to solve these trifocal problems in a
competitive nature.

Computational efficiency For the minor formulation of
Cleveland, each run of our more general purpose solver us-

Figure 6. Distribution of trifocal pose error for the alternate for-
mulation of Cleveland in the form of translational and rotational
error between cameras 1 and 2 (blue) and cameras 1 and 3 (green),
as well as the reprojection error, plotted against the level of feature
localization noise (left) and orientation noise (right).

ing Bertini takes about 8.97 seconds on average with a fail-
ure rate of about 17.9%. For the alternate formulation of
Chicago, each run takes about 19.69 seconds on average
with a failure rate of 12.4% and for the alternate formula-
tion of Cleveland, each run takes about 11.46 seconds on
average with a failure rate of 3.2%. All of these tests were
done on an AMD Opteron 6378 2.4 GHz processor using
12 threads.

Implementation The minor formulation of Cleveland
and the alternate formulations of both Chicago and Cleve-
land were implemented within a more general purpose
solver involving Bertini, which utilizes the parameter ho-
motopy method described in Algorithm 1 in the main pa-
per. They were not implemented in MINUS since this triv-
ial operation would only change speed, and Chicago was
the focus of the paper exemplifying this process of tran-
scribing a solver to an optimized C++ version. There are
improvements that can be made to precision and error anal-
ysis using adaptive multiprecision path tracking [1], yet this
comes at the expense of speed. In addition, other settings
within Bertini can be employed, at the expense of reliability
and causing a potential increase in failure rate. There is po-
tential for other optimization, but that has not been explored
here.

D. Tuning of the main solver MINUS
As stated in the main manuscript, MINUS can run at the

milisecond scale with the 14 × 14 formulation, at the cost
of increased failure rate. We have observed that in practice
such failure rate might not be important for RANSAC, and
can be controlled by performing tests to the input points and
lines to rule out near-coplanar or near-collinear configura-
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tions, which make the system close to underconstrained.
In optimizing MINUS, one can constrain the number of

iterations per solution path, which would yield the most
effective speedup. In fact, in carrying extensive experi-
ments with the synthetic data reported in the paper, after
10000 random solves, the maximum number of iterations
for paths leading to ground-truth solutions was 1119, and
for the other paths this was 253787. The discrepancy is
very large. Given that the solve is about 1 microseconds per
iteration, this leads to very good prospects.

Another important study is regarding the conditioning of
the linearized homotopies (Jacobian matrices) as one varies
the formulation. Yet another very promising idea is to vary
the start system. Presently, the start system is precom-
puted from random parameters for the equations using mon-
odromy. The start system can instead be sampled from the
view-sphere for our synthetic data, and the closest camera
could be selected matching a similar configuration of point-
tangents.

In practice, we observed the following effective opti-
mizations to the current code. First, the most important pa-
rameter to vary is the maximum number of correction steps
(see Algorithm 1 in the paper); a maximum of 3 is the safe
default. Increasing it to anywhere from 4 to 7 gets the run-
time down to 464ms. Another is the corrector tolerance:
by increasing it 10000x, MINUS will run in 200ms. This
parameter can be seen by inspecting our published source
code. It affects how many correction iterations are per-
formed. The error rate for these extreme cases of 200ms
can be as high as 50%. However, we believe that by per-
forming less strict tests on reprojection error, the failure rate
can be significantly lowered.

The next step for optimizing MINUS is to determine
how to prune paths that take a significant length of time
to track. Acceleration using SIMD has been studied, but by
analyzing assembly output, most operations (complex vec-
tor multiplications and additions) are currently auto vector-
ized. Our tests point to the fact that reducing the represen-
tation to, say 6 × 6, would provide strong improvements
if ill-conditioning is taken care of. They also indicate that
this would improve linear-algebra solves, evaluator lengths,
and instruction cache misses. These implementations are
currently ongoing.

E. Creation of Mug Dataset
In this work, we created a feature-less mug dataset in-

spired by Nurutdinova et al. [5]. The reason we didn’t
use the original dataset from [5] is because the occlusion
between mug and calibration pattern makes removing the
calibration pattern cumbersome. Ten camera poses are set
to capture 10 images where the calibration pattern is not
occluded. After capturing images, the MATLAB calibra-
tion toolbox was used to generate the ground-truth cam-

Figure 7. In construction of the mug dataset, a calibration pattern
was first placed to generate the ground truth configuration of cam-
eras. Next, the calibration pattern was removed using image in-
painting for testing.

Figure 8. Trifocal relative pose estimation for additional cases
from the EPFL dataset. For each row, image triplets samples are
shown. The estimation results are shown on the right. Ground
truth poses are in solid green and estimated poses are in red.

era pose with manually marked correspondence points on
the checkerboard. Once the ground-truth was extracted, the
checkerboard area was marked and deleted manually, fol-
lowed by image inpainting to fill the gap in the image, as
shown in Figure 7.

F. Additional Real Experiments
More real experiments that were not shown in the main

paper are shown in this section. First, for texture-rich im-
ages, more cases from the EPFL dataset are shown in Fig-
ure 8 for the Chicago problem. Second, we include a quan-
titative comparison to other trifocal methods reported in [4]
for the Chicago problem, as shown in Table 1. As in [4], we
compare using the two datasets Fountain P-11 and Herz-
Jesu-P8, illustrating that our method is comparable to or
better than other trifocal methods.
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Methods R error (deg) T error (deg)
TFT-L 0.292 0.638
TFT-R 0.257 0.534
TFT-N 0.337 0.548
TFT-FP 0.283 0.618
TFT-PH 0.269 0.537

MINUS (Ours) 0.137 0.673
Table 1. The pose error comparison between our method with other
trifocal methods. Observe that our method has better rotation error
and comparable translation error.
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