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Abstract

The approximate path synthesis of four-bar linkages has been framed and solved with many different opti-
mization techniques. Here we present a polynomial objective that is invariant to the number of approximate
design positions selected, and a solution technique capable of finding all minima. The invariance property
caps compute time despite increasing the size of input task specification data. This is performed by collecting
a variable amount of task data into an invariable number of polynomial coefficients, called moments, before
numerical optimization begins. The minima are found by applying the method of random monodromy loops
to the zero gradient polynomial system of the aforementioned objective. This procedure finds all critical
points, including the local and global minimum, and provides an in-process estimate of the percentage of
critical points found. We applied our methodology to four-bar path synthesis problems of various com-
putational scales by altering dimensional pre-specifications. The most general case was estimated to have
1,820,238 ± 3810 critical points, while pre-specification of one or two ground pivots yielded 26,052 and 503
roots, respectively, as validated by a trace test. The results are applied to a variety of examples.

Keywords: Kinematic synthesis, Optimization, Homotopy continuation
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

The approximate path synthesis of linkages is often formulated and solved as an optimization problem.
Algorithms constructed from the current selection of optimization techniques can be used to find (1) one
design option, (2) several stochastically generated design options, or (3) a Pareto front of design options.
Apart from the choice of optimization technique, the choice in how to construct an objective(s) yields
widely varying results. In this work, we aim to compute nearly complete solutions to approximate kinematic
synthesis problems. That is, we form nonconvex polynomial objectives and then apply polynomial homotopy
continuation to first-order conditions to compute critical points. Our work is primarily advantageous over
past research in that it removes guesswork over the superiority of local minima, can find minima with
small regions of attraction, and, since it aims to find all minima, we can cross-compare them over auxiliary
considerations neglected by the objective.

In a sense, our approach is basic in that we outright compute all stationary points from first-order
conditions. However, such computations have been prohibitive in the past due to the scale of the computation.
The enabling technology is the new algorithms and advances in polynomial homotopy continuation [39],
notably, the method of random monodromy loops [16, 11, 3, 4, 18]. Although computational power has
increased dramatically over the past decades, without the algorithmic advances of homotopy continuation,
there would be no route forward to solving the problems approached in this paper.

The problems solved in this paper are related to path synthesis for the four-bar linkage (schematically
shown in Fig. 2). In such a problem, a planar path is prescribed for a point connected to the coupler link of
a four-bar to trace. The goal is to compute the dimensions of a four-bar which can approximately reproduce
this path. The scale of the computation required to completely solve such an optimization problem can
be varied by installing simplifications in the form of pre-specified dimensions, which essentially reduce the
dimension of the design space. In this vein, we form three different optimization problems: approximate
path synthesis for a four-bar with (1) no dimensions pre-specified, (2) one ground pivot pre-specified, and (3)
both ground pivots pre-specified. The first uses the most computational resources while the last requires the



least. For each of these problems, we conduct an ab initio computation to estimate the generic number of
critical points each optimization problem has. This is performed by forming numerically general versions of
the first-order conditions and solving them with the method of random monodromy loops. The size of these
finite root sets are analyzed statistically to place confidence bounds on its accuracy [18] and, if possible,
certified to be complete using a trace test [17, 8]. The resulting numerically generic finite root datasets can
be applied as starting points with parameter homotopies [27] to solve for practical (not numerically generic)
engineering design problems. Such parameter homotopies track fewer paths and thus use less computational
resources. We demonstrate this functionality for a variety of examples in this paper.

Literature Review
If all dimensions of a four-bar are set to be design variables, then it can be shown that the four-bar

can move a coupler point exactly through nine prescribed points generically. Wampler et al. [43] applied
homotopy continuation to this problem and found the relevant polynomial system to generically have 8,652
finite roots which naturally has a 2-way symmetry from relabeling and a 3-way symmetry from Roberts’ cog-
nates [32]. Hence, there are 1,442 distinct four-bar coupler curves that pass exactly through nine prescribed
points generically thereby solving Alt’s problem [1]. If the two ground pivots of a four-bar are pre-specified
and the rest of the dimensions are set to be design variables, then it can be shown that the four-bar can
move a coupler point exactly through five prescribed points. Several authors [28, 41, 40] applied homotopy
continuation to this problem and found the relevant polynomial system to generically have 36 nondegener-
ate, finite roots. In this work, we address analogous problems but applied to the approximate case, that is,
N -point approximate synthesis.

By alleviating the exactness requirement on the coupler trace, approximate synthesis techniques allow
for a greater number of prescribed task points. These formulations lead to nonlinear optimization problems
with many local minima. Examples of nonlinear programming techniques that find only a single minima
include [13, 22]. As a slight improvement, the initial guess of the nonlinear program could be varied sys-
tematically [7] or randomly [21] to hopefully discover more minima. Similar to this work, other authors [33]
have considered working directly with the first-order necessary conditions, and Rao algorithms [31] explore
the solution population through iterative updates to ultimately find the optimal solution.

Metaheuristic algorithms [37, 20, 26, 10, 12, 9, 34, 36] are less prone to settling on an inferior local
minimum. Additionally, these algorithms need no derivative information, no initial guess (usually), and are
capable of generating a Pareto front to accommodate multiple objectives. Combining heuristics in trajectory
synthesis affords suitable and optimum solutions even in up to 14-bar linkage mechanisms [15].

However, metaheuristic algorithms are stochastic in nature, require hyper-parameter tuning, and do not
necessarily guarantee one will find a global minimum or a complete view of the optimization landscape.

Approximate synthesis techniques accommodate the approximate nature of most practical design prob-
lems. Exact synthesis methods are often criticized as few practical design problems require such exactness.
However, their appeal comes in the form of their deterministic nature and, assuming complete solutions are
obtained, their ability to generate multiple design options of diverse forms. This paper aims to bring that
aspect of completeness to approximate synthesis. Rather than using the approximate points directly in the
formulation, our approach formulates an objective based off the moments of path points. Setting its gradient
equal to zero leads to a square polynomial system in the design variables. Since this polynomial system is
highly nonlinear, it possesses many roots, indicating the locations of critical points and potential minima.
Polynomial homotopy continuation [6] is applied to a numerically general version of this system in order
characterize the size of its solution set and compute start points for later parameter homotopies. Statistical
estimates [18] yield confidence bounds on the root count and, when possible, a trace test [17, 8] is applied
to certify the root counts from the previous step. Our work up until this point is numeric but nonetheless
generic and conclusive. Parameter homotopies are used to compute results for specific design problems.

In the proceeding, we formulate synthesis equations and describe our numerical methods in Section 2.
Next, we approach three four-bar path synthesis problems with various simplifications installed. We consider
approximate path synthesis when no dimensions are pre-specified (Section 3), when one ground pivot is pre-
specified (Section 4), and when both ground pivots are pre-specified (Section 5). In each case, we present
practical design scenarios to showcase the utility of our approach. Section 7 summarizes the contribution.
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Figure 1: Graphical summary of the proposed method for solving the approximate path synthesis design problem.

2. Mathematical Formulation

2.1. Approximate Synthesis Equations
Consider the four-bar linkage shown in Fig. 2. Let A and B be the ground pivots of the linkage, and let

l1, l2, l3 be the moving link lengths as shown with angular displacements, measured counter-clockwise from
the x-axis, as ϕ1, ϕ2, ϕ3, respectively. The coupler trace point is represented as P in the local frame of the
coupler.

We introduce a vector variable Q such that

Q =
P

l2
,

which represents the vector P normalized by the coupler base, l2 in the local frame. The coupler trace
point in the global frame is denoted with the vector X. The use of isotropic coordinates with complex
variable/parameter and its respective conjugate rather than Cartesian scalar coordinates afford simpler
mathematical descriptions among other advantages.

A

B

l2

O x

iy

P

X

l3
l1

Figure 2: Schematic of a four-bar linkage for path synthesis.

However, one can always linearly transform between the two coordinate representations [42]. The trans-
formation of real-valued Cartesian coordinates to isotropic is given by

z = x+ yi, z̄ = x− yi
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Where x and y are real values and z is a complex value and z̄ is its conjugate. The transformation from
isotropic to Cartesian is given by

x =
z + z̄

2
, y =

z − z̄

2i

Denote Φk = eiϕk for k = 1, 2, 3 be the 2D rotation operators. Then, the vector loop equations for the
left and right dyads are, respectively,

A+ l1Φ1 + l2QΦ2 = X, (1a)
B + l3Φ3 + l2(Q− 1)Φ2 = X. (1b)

Since we are working in isotropic coordinates, the conjugate relationship of the vector loops must be
upheld. We denote conjugates with ∗ and note that the conjugate of a rotation operator is its reciprocal.
That is, for a complex value z = a + bi, its conjugate is z∗ = a − bi, and for a rotation operator θ, its
conjugate is θ∗ = 1

θ . Additionally, since the link lengths are real-valued, they have no imaginary component
and l∗k = lk for k = 1, 2, 3. Hence, the conjugate loop equations are

A∗ + l1
1

Φ1
+ l2Q

∗ 1

Φ2
= X∗, (2a)

B∗ + l3
1

Φ3
+ l2(Q

∗ − 1)
1

Φ2
= X∗. (2b)

The rotation operators are not final design specifications, so they can be eliminated from the loop equa-
tions. Eliminating Φ1 between Eq. 1a and Eq. 2a results in the equation

l2Q
∗(A−X) + (XX∗ −A∗X −AX∗ − l1s)Φ2 + l2Q(A∗ −X∗)Φ2

2 = 0, (3)

where l1s = l21− l22QQ∗−AA∗. Likewise, we eliminate Φ3 between Eq. 1b and Eq. 2b to obtain the second
equation

l2(Q
∗ − 1)(B −X) + (XX∗ −B∗X −BX∗ − l3s)Φ2 + l2(Q− 1)(B∗ −X∗)Φ2

2 = 0, (4)

where l3s = l23 − l22(Q− 1)(Q∗ − 1)−BB∗.
To eliminate Φ2, we take note that the operator appears in both Eq. 3 and Eq. 4 quadratically and define

a Sylvester’s matrix representation using the previous two polynomials:

η(d;X,X∗) =

∣∣∣∣∣∣∣∣
Q∗(A−X) g(X,X∗) l2Q(A∗ −X∗) 0

0 l2Q
∗(A−X) g(X,X∗) Q(A∗ −X∗)

(Q∗ − 1)(B −X) h(X,X∗) l2(Q− 1)(B∗ −X∗) 0
0 l2(Q

∗ − 1)(B −X) h(X,X∗) (Q− 1)(B∗ −X∗)

∣∣∣∣∣∣∣∣ (5)

where g(X,X∗) = XX∗ − A∗X − AX∗ − l1s and h(X,X∗) = XX∗ − B∗X − BX∗ − l3s. Note that l2 is a
common nonzero factor to columns 1 and 4, therefore we drop it from the matrix expression. We capitalize
on the further numerical advantages provided by substituting l2s = l22 in the expanded form of Eq. 5.

The determinant of the Sylvester’s matrix eliminates Φ2 and describes a polynomial representation of the
coupler trace of a four-bar linkage with the variables d = {A,A∗, B,B∗, l1s, l2s, l3s, Q,Q

∗}. This determinant
is also known as a tri-circular sextic curve because, in addition to being real-valued, it is of degree six
in (X,X∗). Each X and X∗ only appear with degree up to 3, implying a circularity of three [42].

This tri-circular sextic determinant condition is upheld for all four-bar linkages and their respective
Roberts’ cognates [32]. We denote this determinant condition as η(d;pj) where d is the set of design
variables as previously defined and pj = (Xj , X

∗
j ) are the design parameters, the positions in space through

which we intend our determinant curve to intersect. We intend to minimize the sum of squares of a function
residual rather than the distance between specified and synthesized points. It is important to note there
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are other ways to formulate an objective for approximate synthesis depending on the error one wishes to
minimize [14].

From here on, we will denote the determinant curve with specified design positions as ηj = η(d;pj).
Consider the path generation problem for positions (Xj , X

∗
j ) for j = 1, . . . , N where N is the number of

positions. It is well known that Alt’s problem [1] for N = 9 generic points is equivalent to solving the nine-
dimensional square system ηj = 0 for j = 1, . . . , 9. When N > 9 and the design positions are generic, the
exact path synthesis problem has no solutions; therefore, one must describe a formulation for an approximate
path synthesis.

Our method of approximation minimizes the residuals of the coupler-trace equation previously described
based on an L2-norm measure. This sum-of-squares measure preserves the system’s polynomial nature and
is real-valued. That is, one aims to solve the unconstrained optimization problem min

∑N
j=1 η

2
j by computing

all solutions to the respective first-order optimality conditions:

N∑
j=1

ηj
∂ηj
∂d

= 0. (6)

This problem can, and has been, solved at face value, by preserving the use of design positions as the
system’s parameters [2].

There theoretically is no limit to the specified number N of design positions in this formulation. However,
using as many as up to N = 20 positions introduces additional parameter terms into already verbose expres-
sions, thus increasing computational costs. Since these design positions appear nonlinearly in ηj , we propose
an alternative parameterization that instead works with the essential information of the design positions.

The essential information is captured by the moments of the data. Recall that moments mathematically
provide descriptive measurements of data. For example, the first moment of a probability distribution is
the mean which describes the center of probability mass. By expanding the objective function in (6), and
collecting coefficients on the sum of design positions, one observes that the determinant curve depends
linearly upon 47 moments of the monomials of (Xj , X

∗
j ) for j = 1, . . . , N that appear within the coupler

equation. These moments are of the form
1

N

N∑
j=1

Xa
jX

∗b
j (7)

where 0 ≤ a, b ≤ 6, because, recall that the coupler curve is tri-circular sextic, X,X∗ can be at most degree
six. In theory, there are 7 ·7 = 49 moments; however, (a, b) = (0, 0) is a constant value of 1 and (a, b) = (6, 6)
does not appear in the expansion, so we retain 49− 2 = 47 moments.

Let g = {g1, g2, . . . , g47} be the set of the moment parameters with

g1 =
1

N

N∑
j=1

Xj , . . . , g47 =
1

N

N∑
j=1

X6
jX

∗5
j .

Each moment in g depends on the exponents (a, b) as in (7). For the general case with no pre-specified
dimensions, the 47 moments correspond with the exponents (a, b) in Table 1. When one or both pivot
locations are pre-specified, the 41 moments correspond with the exponents (a, b) in Table 2. Note that the
lesser number of moments between the no pre-specified dimensions and one and two pre-specified dimensions
cases is a consequence of defining a pivot location at the origin, which was assigned to pivot B = B∗ = (0, 0)T

without loss of generality.
In particular, the pre-specification of the B and B∗ pivot location results in the original monomials

corresponding to g5 = (0, 5), g6 = (0, 6), g13 = (1, 6), g35 = (5, 0), g42 = (6, 0), and g43 = (6, 1) vanishing in
this new set of 41 moments.

With this new formulation, one have an equivalent representation of the objective function we denote as

ψ(d;g) =
N∑
j=1

η(d;pj) (8)
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1 = (0,1) 7 = (1,0) 13 = (1,6) 19 = (2,5) 25 = (3,4) 31 = (4,3) 37 = (5,2) 43 = (6,1)
2 = (0,2) 8 = (1,1) 14 = (2,0) 20 = (2,6) 26 = (3,5) 32 = (4,4) 38 = (5,3) 44 = (6,2)
3 = (0,3) 9 = (1,2) 15 = (2,1) 21 = (3,0) 27 = (3,6) 33 = (4,5) 39 = (5,4) 45 = (6,3)
4 = (0,4) 10 = (1,3) 16 = (2,2) 22 = (3,1) 28 = (4,0) 34 = (4,6) 40 = (5,5) 46 = (6,4)
5 = (0,5) 11 = (1,4) 17 = (2,3) 23 = (3,2) 29 = (4,1) 35 = (5,0) 41 = (5,6) 47 = (6,5)
6 = (0,6) 12 = (1,5) 18 = (2,4) 24 = (3,3) 30 = (4,2) 36 = (5,1) 42 = (6,0)

Table 1: Exponents (a, b) for the 47 moments in the general case

1 = (0,1) 7 = (1,2) 13 = (2,2) 19 = (3,1) 25 = (4,0) 31 = (4,6) 37 = (5,6)
2 = (0,2) 8 = (1,3) 14 = (2,3) 20 = (3,2) 26 = (4,1) 32 = (5,1) 38 = (6,2)
3 = (0,3) 9 = (1,4) 15 = (2,4) 21 = (3,3) 27 = (4,2) 33 = (5,2) 39 = (6,3)
4 = (0,4) 10 = (1,5) 16 = (2,5) 22 = (3,4) 28 = (4,3) 34 = (5,3) 40 = (6,4)
5 = (1,0) 11 = (2,0) 17 = (2,6) 23 = (3,5) 29 = (4,4) 35 = (5,4) 41 = (6,5)
6 = (1,1) 12 = (2,1) 18 = (3,0) 24 = (3,6) 30 = (4,5) 36 = (5,5)

Table 2: Exponents (a, b) for the 41 moments when one or both ground pivots are pre-specified

which is linear in g. The first-order optimality conditions yield ∇dψ(d;g) = 0, which are also linear in g.
When moving to a different representation, it is a natural question to consider the image of the map

between the two spaces. Namely, if the number of solutions is preserved between spaces. This can be
addressed using [19, Lemma 3] which yields the following.

Proposition 1. The image of the map from the design positions to the 47-dimensional moment space is full
dimensional for sufficiently large N . In fact, this is guaranteed when 2N > 47.

The image from design positions to the moment space is dense. Hence, a sufficient condition for the generic
number of roots using the moment-formulation and the design position-formulation agree when 2N > 47.

However, it is not a necessary condition. One only needs to ensure N > 9 for optimal synthesis, but
heuristically a lesser N will still admit an equivalent number of solutions between formulations.

Furthermore, by using a moment formulation, one can consider moments defined by discrete design
position points or continuous families of design positions. For example, for a family (X(s), X∗(s)) with
s0 ≤ s ≤ s1, one can replace (7) with ∫ s1

s0
X(s)aX∗(s)bds∫ s1

s0
ds

. (9)

Finally, although the moment parameters bear little physical meaning, their linear appearance improves
both the local conditioning of the system and the solving of the system via random monodromy loops.

2.2. Random Monodromy Loops
A random monodromy loop (RML) is a numerical continuation technique that starts with an initial seed

set of solutions given defined parameters, applies monodromy action, and ends the loop at the original set of
parameters. In our RML method, the solution paths travel to pre-defined intermediary yet generic systems.
The solution paths are not guaranteed to return to the original solution from which their path had started,
so consequently the set of solutions the RML ends with can consist of both previously known solutions and
new, valid solutions. Through iterative applications of RML and compilation of unique starting solutions,
one efficiently computes the the system solutions.

First, we fixed a randomly selected set of moment parameters gs and obtained the respective variable
solutions such that ψ(d; gs) = 0. Since we are aiming to solve for the generic solution set of our system, this
seed solution does not need to satisfy the conjugate relationship. Additionally, such a seed solution can be
obtained using a local method such as Newton’s method or a Newton homotopy. With this seed, we employed
RML along a triangular “loop” in the parameter space with our starting system at the vertex defined by the
parameter set gs and the other two vertices defined by two intermediary generic system parameters, g1, g2,
respectively. Since the parameters are linear, and a triangle is topologically equivalent to a circle, our RML
consists of three applications of a straight-line homotopy along the three vertices of the triangle.
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H1(d; t) = ψ(d; gs)t+ ψ(d; g1)(1− t), t ∈ [0, 1],

H2(d; t) = ψ(d; g1)t+ ψ(d; g2)(1− t), t ∈ [0, 1],

H3(d; t) = ψ(d; g2)t+ ψ(d; gs)(1− t), t ∈ [0, 1].

(10)

Thus we accumulated a solution set to our system as defined by the parameter set gs. Starting from
one seed solution, perfect tracking would leave 2 solutions after completing the first loop, 4 solutions after
the second, 8 solutions after the third, and so on. While this iterative action increases the number of paths
tracked and leads to improved rate of solution set saturation, it comes at a computational cost as we double
the number of paths we track each loop. We note that our formulation, ψ(d; g) and the corresponding
solution paths are invariant under Roberts’ cognates. So we apply a cognate check between loops to ensure
we track only one member per cognate group as the respective Roberts’ cognate designs can be recovered
through known transformations applied in post-processing of the solutions. This provides great efficiency in
computing solutions to larger systems.

2.3. Schnabel Estimator
Since the number of isolated solutions is finite, such a doubling process in the collection of solutions can

not continue indefinitely. Thus, by comparing the number of new solutions obtained with the number of
repeated solutions per RML, one can obtain statistical estimates on the total number of solutions using a
probabilistic “catch and release” model [18]. One such model is the Schnabel model.

When applied to biological populations, the Schnabel model relies on data from previous marks and
captures to yield an estimator on the total number of a wild specie’s population. In this paper, the population
of interest and unknown size is the number of solutions to the ab initio solve of our experiments. We used
a window size of three; the Schnabel estimator of the total solution count is dependent on data from the
current and two previous RML applications.

The expressions of the Schnabel estimator, β, and its variance over the moving window size three as well
as the 95% confidence interval bounds, respectively, are

β =

∑3
k=1 #S

(k) ·#E(k)∑3
k=1 #(S(k) ∩ E(k))

,

var(β−1) =

∑3
k=1 #(S(k) ∩ E(k))

(
∑3

k=1 #S
(k) ·#E(k))2

,(
(β−1 − 1.96

√
var(β−1))−1, (β−1 + 1.96

√
var(β−1))−1

)
.

(11)

Where #S is the number of solutions with which we start one RML application, #E is the number of
solutions with which we end the RML application, and #(S ∩ E) is the number of “repeat” solutions that
belong to both sets S and E.

2.4. Trace Test
Although the number of compiled solutions and the Schnabel estimate provide confidence on the total

number of solutions, one may wish to verify that all solutions have indeed been found. This can be accom-
plished via a 2-homogeneous trace test [17]. The 2-homogenity arises from the design variables d and the
moment parameters g. With such a test, one needs to collect two solution sets. The first set is computed as
described previously with the moment parameters fixed. In the second set, one selects a design variable to
be a parameter and selects a moment parameter to be a variable, and repeats the solving process as above.
By using these two solution sets, the 2-homogeneous trace test [17] can determine if the solution sets are
complete or not.

For the computations in this paper, we employed the second derivative trace test from [8, § 2.3] to avoid
tracking additional paths. In particular, this local trace test approach simply relies upon computing local
Jacobian and Hessian information of ψ to perform the trace test.

The following three sections utilize the aforementioned techniques on three formulations: the general case
with no pre-specified dimensions, pre-specification of one ground pivot, and pre-specification of both ground
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pivots, respectively. Each problem was first solved in an ab initio run using random monodromy loops with
the size of the solution set tested using either a statistical probabilistic model on the RML iterations or
a trace test computation, or both. Finally, in each of these three formulations, we present a real-world
example application. All computations were run using Bertini[5] in parallel mode on a four node dual 192
core machine at the University of Notre Dame’s Center for Research Computing.

3. The General Case (No Pre-specification of Dimensions)

3.1. Ab Initio Computation
Following Section 2, the general case has design variables d = {A,A∗, B,B∗, l1s, l2s, l3s, Q, Q

∗} and
moment parameters g = {g1, . . . , g47} as listed in C.5. With Roberts’ cognates and relabeling, the solutions
arise in groups of 6 with formulas listed in Appendix A. With this setup, the RML procedure was used to
determine the generic root count. Figure 3 shows the ratio of repeated solutions for the iterations and the
Schnabel estimates with the 95% confidence interval based on groups of solutions, i.e., one-sixth of the total
number.

We note that to further improve the conditioning of the system when performing the random monodromy
loops, we redefined the grouping of the system’s variables for the homotopy. Additionally, for paths that
failed between intermediary systems, we applied cognate transformations and reran the homotopy on those
paths until we achieved a 100% path success rate or we exhausted each of the cognate transforms. This
resulted in improving path success rate of approximately 95-97% per iteration. However, this came at an
increase in the computational cost with the total time taking approximately 174 hours (7.25 days) for the
ab initio solve.

Figure 3 shows 26 iterations of RML for the moment-parameterized system. The final count of distinct
solution groups after the 26 RML iterations was 303,387 yielding 6 · 303,387 = 1,820,322 solutions in total.
One can see in Fig. 3a that the initial RML iterations find almost exclusively new points while later iterations
find almost no new points. For example, iterations 23-26 only produced 87 new solutions, hence there is
strong confidence we have found ∼ 99.8% of the solution set.

3.2. Solution Set Validation
From Fig. 3b, one observes that the 95% confidence interval shrinks quickly for the Schnabel estimate

with a moving window of size 3 as the number of iterations increases. In particular, at iteration 26, the 95%
confidence interval for the Schnabel estimate is 6 · (303,373 ± 635) = 1,820,238 ± 3,810 solutions. This is
within a rather tight bound when regarding the size of the system, and the RML computation count from
the previous section lies within this bound. The total isolated solution count is estimated to be upwards of
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approximately two million solutions, cognate transformations included [2].
We did not employ a trace test on this system for two reasons. First, the set of known solutions is probably

not complete and thus more iterations would be needed. Also, solving for the switched variable-parameter
systems poses an equally arduous challenge. Therefore, for this problem, we rely upon the statistical estimates
to provide that the solution set is nearly complete.

3.3. Applied Example
As an illustration of using this ab initio computation to solve an applied problem, we consider approxi-

mately replicating the curve in [35, Fig. 6]. This curve is traced by a Stephenson III six-bar mechanism with
a torsion spring link. The mechanism is a locomotive hopping machine with three main trajectory phases:
stance phase without spring activation, stance phase with spring activation, and swing phase.

The mechanism consists of three ground pivots, A,B,O, where the remaining pivot locations, C,D,E, F, P
are described by the leg lengths OC,AD,CE,DE,EF,BF,EP, and FP . The torsion spring has an addi-
tional link OS, but, for simplicity, we assumed the torsion spring leg, described by the parameter OC, to
be a constant length. The triangle formed between the pivots OCAD that describes the location of pivot E
has an internal angle of κ1 = −59.46◦ and the triangle formed between the links OCFB that describes the
location of the coupler point P has an internal angle of κ2 = −18.63◦.

The six-bar mechanism and coupler curve from which we extracted design positions to compute the 47
continuous moment parameters is shown in Fig. 4.

κ1 A

O
C

F

E

D

Xo x

iy

κ2

B

Figure 4: The six-bar mechanism and coupler curve used for the applied example of the general case.

Using the following parameters for the mechanism, we computed the 6-bar kinematics and obtained the
coupler curve from [35, Fig. 6]. Note the pivot O is at the origin, so O = O∗ = 0 + 0i.

A = −3.81− 2.02i, A∗ = −3.81 + 2.02i,
B = −4.67 + 2.91i, B∗ = −4.67− 2.91i

|OC| = 2.8, |AD| = 6.25, |CE| = 6.40, |DE| = 4.50
|EF | = 6.10, |BF | = 4.46, |EP | = 12.71, |FP | = 18.34

We then extracted over a hundred sample points from the computed curve that belonged to the stance
phases with and without spring activation as well as a subset of the swing phase to mimic the lift-off
trajectory of the mechanism foot’s from the ground. We re-parameterized the sample points to be equally
spaced, rescaled them to the unit plane, generated an interpolating function, and used numerical integration
to compute the continuous form of the 47 moment parameters needed for our parameter homotopy, as defined
by Eq. 9. The numerical values of the continuous moments are given in Table C.5 in Appendix C.

The parameter homotopy tracked 303,387 paths from the generic parameters of the ab initio solve to the
physically meaningful system. Using only double precision path tracking in about 26 hours of computational
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time, 108,008 successfully tracked to nonsingular solutions. Of these, 71 corresponded to physically mean-
ingful designs. Due to cognate transformations, listed in Appendix A, we computed the cognates of the 71
unique solutions and filtered for duplicate designs. As there were no duplicates, this resulted in a total of
6 · 71 = 426 potential physically meaningful solutions. Of the 71 distinct solutions, 2 are local minima and
69 are saddle points.

Target path
Synthesized path

A
B

X

(a)

Target path
Synthesized path B

X

A

(b)

Target path
Synthesized path

B

A

X

(c)

Target path
Synthesized path

B

A

X

(d)

Figure 5: Example solutions of applied problem for the general case formulation that exhibit branch and circuit defective
behavior.

Of the physically meaningful coupler curves, many had sections of their coupler curve that traced the
design positions extremely well. However, these solutions faced either the issue of branch defects in the
curve based on which pivot was actuated or impractical cognate design dimensions. One can see such
cognate designs in Figs. 5. The synthesized coupler curve is shown in blue. Note that different actuation
on pivots can result in branch defects on the coupler curve. Therefore, we present visualizations of only the
curve and a cognate group member solution.

Table 3 gives the dimensions of the solutions presented in Fig. 5 as well as two error metrics - the value
of the cost function and the maximum Euclidean distance, or maximum deviation (Max Dev in solution
tables), between target points and their respective nearest point on the synthesized path. This example and
the results suggest that the general case formulation is not computationally effective and one would benefit
from working with a smaller problem, such as the system resulting from the designation of specifications on
one or both ground pivots on the four-bar final design.

4. Pre-specification of One Ground Pivot

4.1. Ab Initio Computation
Consider the approximate synthesis problem obtained by specifying the ground pivot B = B∗ = 0 with

design variables d = {A,A∗, l1s, l2s, l3s, Q,Q
∗}. Due to the designation of the one ground pivot at the

origin, some moments have a zero coefficient and thus disappear within the computation. Thus, with this
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Fig 5a Fig 5b Fig 5c Fig 5d
A -0.04055-0.3039i -0.2168-0.3701i 0.3065-0.2725i -0.01113-0.2719i
A∗ -0.04056+0.3039i -0.2168+0.3701i 0.3065+0.2725i -0.01113+0.2719i
B -0.2985-0.1947i 0.08195-0.1943i -0.08198-0.4600i -0.3620-0.1379i
B∗ -0.2985+0.1947i 0.08195+0.1943i -0.08198+0.4600i -0.3620+0.1379i
l1 0.1897 0.1102 0.5006 0.2054
l2 0.1594 0.1802 0.1981 0.2222
l3 0.06938 0.2866 0.2086 0.05237
Q -0.6140+2.3195i -1.2155-1.1248i 2.2589+0.4626i -0.3771+1.8417i
Q∗ -0.6142-2.3195i -1.2155+1.1248i 2.2589-0.4626i -0.3771-1.8417i

Cost 4.9846·10−8 2.008746·10−8 2.8040·10−7 7.3460·10−8

Max Dev 0.1149 0.2075 0.1813 0.09704

Table 3: Table of Fig 5 solutions and their dimensions and error metrics.

pre-specification, the system admits 41 moment parameters which are provided in in Table 2. Note that
Proposition 1 still holds when 2N > 41 for this reduced list of moments.

Using the RML procedure as previously described, the system reached convergence in 22 iterations to a
final total solution count of 26,052 solutions as shown in Fig. 6 with a computation time of approximately 8.5
hours. The long computation time is attributed to the lack of stopping criteria on the RML code. The RML
terminated after a set number of 30 iterations to ensure the total solution set was computed. Hence, there
are superfluous iterations that were not essential to recovering the solution set. Had a different termination
criteria be utilized, the computation time would be much faster.

Due to the specification of one ground pivot, solutions to this system come in cognate member groups
of size 2 for 13,026 distinct solution groups with formulas listed in Appendix B. When using this cognate
reduction to only track one path in each group as a check on our RML procedure and resulted in the same
number of solutions, 2 · 13,026 = 26,052, that took approximately 100 minutes to compute.

4.2. Solution Set Validation
As observed in Fig. 6b, the Schanbel estimates with a moving window of size 3 quickly tighten with the

estimate after the 23rd iteration being 26,052±193 solutions. With the tight Schnabel confidence interval
and multiple runs that admitted the same number of solutions, this prompted using a trace test validation.

To utilize the 2-homogeneous trace test as summarized in Section 2.4, one needs to perform another
solve where we switched the variable-parameter pair l1s and g1. The resulting system produced 14,792
solutions and the 2-homogeneous trace test was then successfully applied to a total of 26,052+14,792 =
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(a) Ratio of repeat solutions per RML iteration
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Figure 6: Computational summary of the ab initio solving when one ground pivot is pre-specified.
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(a) Contact with work surface (b) Contact force pushes end into workpiece

(c) A gripper composed of two pairs of opposing halves

Target path

Synthesized path

Figure 7: A candidate design from the pre-specification of one ground pivot computation. (a) After making contact with the
work surface, (b) said surface pushes the gripper end up, relative to itself, and into a workpiece to be gripped. Contact with
the work surface actuates the gripper, and the four-bar linkage guides its end into the workpiece. (c) Such a gripper might
comprise of two pairs of opposing halves.

40,844 solutions. Thus, this trace test confirmation shows that 26,052 is indeed the precise solution count.

4.3. Applied Example
This system was applied to a gripping mechanism inspired by the solution present in [30, Fig. 5]. The

original positions were chosen from [30] and fitted to a polynomial interpolation in order to define additional
points for a total of N = 20 positions. The original pivot locations of the applied example are

A = −3.0432 + 4.5214i, B = −0.5609 + 3.1702i

The other two joint dimensions are C = 0.8155+2.008853i and D = 1.09927+1.6694i.To align this solution
design with our pivot specification that B = B∗ = 0, the B pivot of [30] was translated to the origin, and each
real design position, including the additional interpolated points, was shifted by a difference of −0.56−3.17i
for B and −0.56+3.17i for B∗. The shifted points were then divided by 3 so that their moments were within
approximately unit magnitude. The shifted design positions are provided in Appendix C. After computing
the corresponding moments, a parameter homotopy tracked 26,052 solutions in adaptive precision to the new
system. The total computation time for this parameter homotopy was approximately four hours and resulted
in the successful path tracking to 25,540 nonsingular solutions. Of those nonsingular solutions, 216 obeyed
the physically meaningful complex-conjugate condition. Recall that in addition to these real solutions, their
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Target path
Synthesized path A

X

B

Figure 8: The solution design exhibiting preferred design characteristics for the one dimension pre-specified example.

respective cognates are also solutions. Since the B and B∗ pivots are fixed at the origin, the valid cognate
transformations must obey this pivot specification with formulas presented in Appendix B. We computed
the cognates of these solutions, filtered for repeats, and filtered to retain one member per cognate group.
This resulted in a total of 110 distinct coupler curves corresponding to physically meaningful solutions, or
2 · 110 = 220 total solution designs. Within these 110 distinct solutions, 20 are classified as minima and 90
are saddle points.

One such solution design and its respective synthesized path is presented in Fig. 8, the protoype mech-
anism based on that design is presented in Fig. 7a and Fig. 7b. A model of the prototype of the gripping
mechanism using legs with the selected four-bar design to pick up a small block is shown in Fig. 7c.

The solution dimensions for this chosen design are given in Table 4. Note that this design is an saddle

A 0.8773 + 0.4991i
A∗ 0.8773 − 0.4991i
B 0
B∗ 0
l1 0.4931
l2 1.01719
l3 0.3090
Q 1.1648 + 0.8395i
Q∗ 1.1648 − 0.8395i
Cost 12.6198
Max Dev 0.1322

Table 4: Numerical values of the final chosen design solution for the one dimension pre-specified applied example.

point, and this solution was chosen qualitatively through a visual inspection of the solutions. The coupler
solution and mechanism dimensions exhibited potential use that was not seen in solutions pertaining to
the lowest objective costs. For reference, the ten solutions with the lowest costs are provided in Table D.9
in Appendix D.

5. Pre-specification of Both Ground Pivots

5.1. Ab Initio Computation
The last problem under consideration is when both ground pivots are pre-specified. Consider fixing

A = A∗ = 1 and and B = B∗ = 0 so that the resulting variable list is d = {l1s, l2s, l3s, Q,Q∗}. Since we
retain B,B∗ at the origin like the pre-specification of one ground pivot formulation in Section 4, this system
also has 41 moment parameters listed in 2. For this simplified system, the RML procedure computed all 503
solutions within 13 iterations and the path tracking success rate using double precision was 99%. Using only
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a single processor, the total computation time was approximately three minutes. Figure 9 shows the ratio
of number of repeats per iteration.

Since this system is small, it can be solved directly using standard homotopy continuation techniques
without the use of RML in Bertini, a method not feasible for the other systems. This direct solve also
resulted in 503 solutions from 7,362 tracked paths and took approximately ten minutes on a single processor.
These 503 solutions are all distinct as the designs come in cognate groups of size one due to the pre-
specified pivots.

5.2. Solution Set Validation
With such a small system that can be solved repeatedly and consistently reported 503 solutions, a

statistical validation of the RML iterations was not necessary. Moreover, this solution count can be confirmed
using the 2-homogeneous trace test summarized in Section 2.4. By switching the variable-parameter pair l1s
and g41, the resulting system produced 129 solutions which can be directly computed with Bertini. The
2-homogeneous trace test was then successfully applied to a total of 503 + 129 = 632 solutions confirming
that 503 is indeed the precise solution count.

5.3. Applied Example
We consider the application of a wing folding mechanism as shown in Fig 11. The wing is made up of

a planar 2R chain OCD with a proximal link OC and a distal link CD. The proximal link is connected
to the fuselage using a rotary joint at O. Note that the 2R chain is by itself a two DoF system. For the
folding this wing, three design configurations must be met, namely, a stowed configuration, an intermediate
configuration, and a deployed configuration. The objective of this design challenge is to size a four-bar
linkage (shown in black) with given ground pivot locations A and B, respectively, such that a chosen guide
point X in the distal link of the 2R chain is guided approximately along the design positions, indicated in
starred points, in a constrained manner.

We used the following specifications:

O = 0, A = 0.01 + 1.051i, A∗ = 0.01− 1.051i,
B = 0.137− 0.211i, B∗ = 0.137 + 0.211i, |OC| = 2.563, |CD| = 3.4, |CX| = 0.34.

The design positions to be met approximately are as listed in Appendix C. Note that the design positions
specified are largely restricted to be within the reachable workspace of the guide-point X defined by the
annular region as shown in Fig. 11. The desired curve is expected to intersect the workspace boundary in
the stowed configuration and be tangential to it in the intermediate and deployed configurations.

Starting from 503 start points found during the ab initio run, a parameter homotopy run is carried out
to the target system which represents the design problem of deployable wing mechanism. The successful
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Figure 9: Ratio of repeat solutions per RML iteration when both ground pivots are pre-specified.
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Figure 10: The chosen solution from which the final design was derived.
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Figure 11: Three snapshots, namely, a stowed configuration, an intermediate configuration and a deployed configuration, of
deployable aircraft wing mechanism.

paths yielded a subset of 27 physical solutions, of which 7 are local minima and 20 are saddle points. One
of the local minima is found to be particularly effective in terms of packaging the system in the stowed
configuration, which is shown in Fig. 11 at the three significant configurations of interest. For this plot,
some minor corrections to the link dimensions of the overall system was made to ensure that the tangency
conditions between the four-bar coupler curve and the workspace boundary of the wing guide-point X are
met exactly at the intermediate and deployed configurations. The original solution computed from the
parameter homotopy, before minor corrections, is presented in Fig. 10. This solution is the ninth-lowest cost,
the dimensions are shown in Table D.11, with a cost value of 146.1838 and a maximum deviation of 0.7273.

6. Discussion

The approach used in this paper forms stationarity conditions for unconstrained kinematic optimization
problems and deploys a root-finding algorithm that strives for completeness in finding the zeros (critical
points) associated with these conditions. The concept of solving optimization problems this way is not
new, but the contribution of this paper stems from the scale of the problems confronted. Specifically, this
paper computes an unconstrained problem of ≈1,820,238 roots, pushing the limits the authors’ available
compute power.

In this paper, we did not consider optimization constraints. Equality constraints were handled in the past
with homotopy-based optimization [29], but we foresee the combinatorics associated with active/inactive in-
equality constraints posing a challenge in computational tractability. Solving the fully generic (no pivots
specified) approximate four-bar path synthesis problem alongside several inequality constraints would not
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be tractable with the computers used in this paper. Today’s current methods already easily incorporate
inequality constraints using local [13, 22] or stochastic [9, 10] optimization techniques. Our approach is nei-
ther local (sensitive to initial guess) nor stochastic (non-deterministic), laying the groundwork for potentially
more complete design space exploration. Inequality constraints conveniently enforce design requirements,
such as ensuring that a pivot stays within a certain region or that a link stays less than a certain length.
To incorporate inequality constraints using the methods of this paper, simplifying assumptions would need
to be made, such as assuming the location of one (Section 4) or two (Section 5) ground pivots. This lack
of inequality constraints does not prevent our solution set from admitting branch or circuit defective solu-
tions. In the meanwhile, filtering the solutions after the computations adequately satisfies the requirements
a designer may enforce on pivot locations and linkage lengths as well as remove the defective solutions.

This paper did not investigate the incorporation of inequality constraints. However, before such a chal-
lenge can be surmounted, the unconstrained problem needs to be investigated and characterized, which is
the contribution of this paper. Our investigation discovered that the largest problem, the general case,
required a large amount of computational resources, diminishing its practicality. Therefore, we included in
our investigation two simplified cases (Sections 4 and 5) which trade-off generality for tractability, yielding
more practical methods. Scaling up the methods of this paper to more complex multi-loop linkages, like a
six-bar linkage, would not be tractable when considering the fully general (all dimensions unknown) synthesis
problems. However, with the right pre-specifications, the unconstrained methods of this paper are extensi-
ble, e.g. consider converting the modular RR chain synthesis methods of [38] from exact to approximate.
Furthermore, the coupler curve of any four-bar path generator can be translated anywhere in the plane by
the inclusion of two more links [24, 23, 25], converting it into a six-bar. If this concession is made, the utility
of inequality constraints discussed above diminishes.

7. Conclusions

Approximate kinematic synthesis is an appealing technique to find optimal designs of linkages. Previous
optimization frameworks and solvers face the problem of settling on inferior local minima that may or may
not depend on the initial solution guess and do not present a full set of the minima. Essentially, these
methods fail to identify the landscape of the optimization problem. This paper presents a polynomial
objective formulation to the approximate synthesis problem that can be solved via the polynomial homotopy
continuation technique of random monodromy loops. The one-time solve for the critical points of this
formulation, known as the ab initio solve, provides a starting solution set for which parameter homotopies
can be applied to physically meaningful systems of interest. To produce a linearly parameterized system,
we employed a first-moment formulation of the design parameters. The resulting system was solved for
three cases: no pre-specifications on design dimensions (general case), a pre-specification on one ground
pivot, and a pre-specification on both ground pivots. In each case, the resulting solutions sets were used
as the basis from which we computed parameter homotopies to real design application examples. The
resulting total generic solution set count for the general case, pre-specification of one ground pivot, and
pre-specification of both ground pivots formulations are approximately 1,820,238 ± 3810, and exactly 26,052
and 503 points, respectively.
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Appendix A. Cognate Transformations for the General Case Formulation

For the four-bar represented in Fig. 2 with design variables v1 = {A,A∗, B,B∗, l1, l2, l3, Q,Q
∗}, the two

other Roberts’ cognates can be computed with the following cognate transformations:

v2 =

{
B,B∗, A+Q(B −A), A∗ +Q∗(B∗ −A∗), l2

√
(1−Q)(1−Q∗),

l3
√

(1−Q)(1−Q∗), l1
√

(1−Q)(1−Q∗),
1

1−Q
,

1

1−Q∗

}
,

v3 =

{
A+Q(B −A), A∗ +Q∗(B∗ −A∗), A,A∗, l3

√
QQ∗, l1

√
QQ∗,

l2
√
QQ∗,

Q− 1

Q
,
Q∗ − 1

Q∗

}
.

Additionally, symmetric representation arising from relabeling of v1 is

v′
1 = {B,B∗, A,A∗, l3, l2, l1, 1−Q, 1−Q∗}.

The three Roberts’ cognates and their symmetric representations yield 3 · 2 = 6 members to a group.

Appendix B. Cognate Transformations for the Pre-specification of One Ground Pivot

For the four-bar represented in Fig. 2 design variables v1 = {A,A∗, B,B∗, l1, l2, l3, Q,Q
∗} such that

B = B∗ = 0, the Roberts’ cognate that preserves the location of the fixed pivot can be computed as v′
2 via

Appendix A. Thus, there are 2 members to a group.

Appendix C. Design Positions and Parameters for the Applied Examples

The applied example for the general case used the continuous form of the moment parameters. The
values used for the computation of the moments were derived from a recreation of the 6-bar kinematics and
an interpolated and integration of the coupler curve. The resulting moments as described in Section 3 are
given in Table C.5

g1= -0.201259+0.571471i g17= -0.071325+0.12864i g33= -0.027377+0.043139i
g2= -0.250705-0.262911i g18= -0.051786-0.093304i g34= -0.016288-0.036071i
g3= 0.223860-0.038956i g19= 0.078593+0.006491i g35= -0.047476+0.101637i
g4= -0.0713+0.136836i g20= -0.037522+0.045931i g36= -0.05444-0.078008i
g5= -0.047476-0.101637i g21= 0.223860+0.038956i g37= 0.078593-0.006491i
g6= 0.082306+0.016350i g22= -0.106001+0.154873i g38= -0.028084+0.057493i
g7= -0.201259-0.571471i g23= -0.071325-0.12864i g39= -0.027377-0.043139i
g8= 0.416777+0.000000i g24= 0.112046+0.000000i g40= 0.040403+0.000000i
g9= -0.118802+0.25215i g25= -0.043775+0.07234i g41= -0.017369+0.026629i
g10= -0.106001-0.154873i g26= -0.028084-0.057493i g42= 0.082306-0.016350i
g11= 0.130889-0.001074i g27= 0.048331+0.006554i g43= -0.023841+0.066922i
g12= -0.05444+0.078008i g28= -0.0713-0.136836i g44= -0.037522-0.045931i
g13= -0.023841-0.066922i g29= 0.130889+0.001074i g45= 0.048331-0.006554i
g14= -0.250705+0.262911i g30= -0.051786+0.093304i g46= -0.016288+0.036071i
g15= -0.118802-0.25215i g31= -0.043775-0.07234i g47= -0.017369-0.026629i
g16= 0.204155+0.000000i g32= 0.065930+0.000000i

Table C.5: Numerical values of the 47 continuous moments of the general case applied example.

Tables C.6 and C.7 list the design positions for the applied examples in Section 4 and 5 with one ground
pivot and both ground pivots pre-specified, respectively. In these tables, x is the real part and y is the
imaginary part of the design positions. Note the points’ respective complex conjugates are similar except
for an opposite sign on the imaginary component.
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# x y # x y
1 0.364598 -1.05667 11 0.341038 -0.838013
2 0.365320 -1.03455 12 0.331590 -0.818017
3 0.365531 -1.01242 13 0.319373 -0.799592
4 0.365220 -0.990290 14 0.304292 -0.783430
5 0.364353 -0.968177 15 0.286853 -0.769836
6 0.362873 -0.946096 16 0.267863 -0.758491
7 0.360690 -0.924074 17 0.248001 -0.748736
8 0.357669 -0.902152 18 0.227699 -0.739930
9 0.353605 -0.880400 19 0.207204 -0.731578
10 0.348201 -0.858944 20 0.186667 -0.723333

Table C.6: Design positions of the applied example for the pre-specification of one ground pivot formulation.

# x y # x y
1 -0.207019 -2.182090 11 2.063340 -0.938363
2 0.0687999 -2.239100 12 2.153400 -0.674308
3 0.347610 -2.240690 13 2.191820 -0.401537
4 0.624026 -2.193040 14 2.178680 -0.111425
5 0.892661 -2.102330 15 2.187730 0.167889
6 1.147710 -1.975820 16 2.302040 0.424395
7 1.383080 -1.821450 17 2.547380 0.549207
8 1.596310 -1.638030 18 2.771820 0.399482
9 1.783540 -1.427380 19 2.881780 0.093067
10 1.940770 -1.192140 20 2.896430 -0.145470

Table C.7: Design positions of the applied example for the pre-specification of both ground pivots formulation

Appendix D. Solution Values for the Applied Examples

The applied example solutions were evaluated by varied metrics. As the most optimal solution in cost
may not always give the optimal design in terms of feasibility or aesthetics, it is important to consider other
solutions, including saddle point solutions. The tables given in this section display the ten solutions with
the lowest cost value. The real-value leg length variables are provided, one can employ the transformations
given in Section 2.1 to compute the transformed variables. Additionally, maximum deviation between the
design positions and solution path is provided as another metric to assess the solution goodness.

Appendix D.1. The General Case (No Dimensions Pre-specified)
The table D.8 gives the 10 solution values of the general case applied example based on lowest absolute

cost value. Figure 5b, with Fig. 5a and Fig. 5d are among the lowest costs.
Figure D.12 shows the computed corresponding to the lowest absolute cost value. This solution is the

global minimum, the other local minimum corresponds to the eighth solution of Table D.8. The other
solutions in the table are saddle points. Cognate transformations for these solutions can be computed using
the formulations given in Appendix A.

Appendix D.2. One Dimension Pre-specified
A challenge to choosing the solution with the lowest cost value in this situation is that the solution

cognates are constrained to those only satisfying the dimension pre-specification. Usually, as in the general
case, one may refer to a cognate solution from the group of six. However, in this scenario, we only have one
other cognate that satisfies our dimension pre-specification.

Our computations recovered designs similar to the reference, [30], which was the inspiration for this
example.

In fact, when sorting the solutions based off different error metrics, such as minimum nearest distance
to the curve from a specified position, we can find designs such as this. This metric, as well as the max
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1 2 3 4 5
A -0.08538 – 0.04607i -0.07627 – 0.06924i -0.21686 – 0.3701i -0.4184 + 0.04442i -0.0406 – 0.3039i
A∗ -0.08538 + 0.04607i -0.07627 + 0.06924i -0.2168 + 0.3701i -0.4184 – 0.04442i -0.04056 + 0.3039i
B -0.2767 – 0.8952i -0.3427 – 0.1429i 0.08195 – 0.1943i -0.09627 – 0.8621i -0.2985 – 0.1947i
B∗ -0.2767 + 0.8952i -0.3427 + 0.1429i 0.08195 + 0.1943i -0.09627 + 0.8621i -0.2985 + 0.1947i
l1 0.5907 0.1587 0.1102 0.6791 0.1897
l2 0.4982 0.1815 0.1802 0.1415 0.1594
l3 0.2158 0.06298 0.2866 0.4089 0.06938
Q 0.1850 – 0.2617i 1.4693 + 2.7634i -1.2155 – 1.1248i 0.3656 + 0.2638i -0.6141 + 2.3195i
Q∗ 0.1850 + 0.2617i 1.4693 – 2.7634i -1.2155 + 1.1248i 0.3656 – 0.2638i -0.6141 – 2.3195i
Cost 1.1568·10−8 1.7884·10−8 2.008746·10−8 3.6472·10−8 4.9846·10−8

Max Dev 0.1676 0.09705 0.2075 0.4101 0.1149
6 7 8 9 10

A -0.3992 + 0.006783i -0.1787 – 0.5307i -0.1420 – 0.9623i -0.01113 – 0.2719i -0.3533 + 0.03082i
A∗ -0.3992 – 0.006783i -0.1787 + 0.5307i -0.1420 + 0.9623i -0.01113 + 0.2719i -0.3533 – 0.03082i
B -0.07725 – 0.2247i -0.3854 – 0.7724i -0.3883 – 0.1276i -0.3620 – 0.1379i -0.2093 – 0.06891i
B∗ -0.07725 + 0.2247i -0.3854 + 0.7724i -0.3883 + 0.1276i -0.3620 + 0.1379i -0.2093 + 0.06891i
l1 0.05930 0.1953 0.4462 0.2054 0.07326
l2 0.2776 0.1412 0.1023 0.2222 0.1978
l3 0.1761 0.3856 0.5249 0.05237 0.09384
Q 1.9027 – 1.3375i -1.1002 + 0.5747i 0.7603 – 0.3845i -0.3771 + 1.8417i 1.9547 – 2.6906i
Q∗ 1.9027 + 1.3375i -1.1002 – 0.5747i 0.7603 + 0.3845i -0.3771 – 1.8418i 1.9547 + 2.6906i
Cost 5.1537·10−8 6.134·10−8 6.7082·10−8 7.3460·10−8 1.6215·10−7

Max Dev 0.1181 0.2304 0.4867 0.09704 0.1153

Table D.8: The dimensions of the top ten solutions as per lowest absolute cost value for the General Case example. Note that
Fig. 5b, Fig. 5a, and Fig. 5d are the third, fifth, and ninth lowest costs, respectively.

1 2 3 4 5
A 0.1368 – 0.9734i 0.1345 – 0.9736i 0.1481 – 0.9355i 0.1696 – 0.9191i 0.1035 – 0.9839i
A∗ 0.1368 + 0.9734i 0.1345 + 0.9736i 0.1481 + 0.9355i 0.1696 + 0.9191i 0.1035 + 0.9839i
B 0 0 0 0 0
B∗ 0 0 0 0 0
l1 0.2385 0.2410 0.3127 0.3334 0.2710
l2 0.1303 0.1392 0.6836 0.7303 0.2445
l3 0.9854 0.9774 0.4179 0.3803 0.9945
Q -0.04980 + 0.05351i -0.04520 + 0.05358i -0.01631 + 0.1466i -0.01317 + 0.1997i 0.006638 + 0.05778i
Q∗ -0.04980 – 0.05351i -0.04520 – 0.05358i -0.01631 – 0.1466i -0.01317 – 0.1997i 0.006638 – 0.05778i
Cost 0.1900 0.2004 0.2739 0.2846 0.4313
Max Dev 0.4474 0.4492 0.2951 0.2718 0.4426

6 7 8 9 10
A 0.3355 – 0.9478i 0.08979 – 0.9890i 0.3475 – 0.9477i 0.5021 – 1.1832i 0.006582 – 1.0334i
A∗ 0.3355 + 0.9478i 0.08979 + 0.9890i 0.3475 + 0.9477i 0.5021 + 1.1832i 0.006582 + 1.033i
B 0 0 0 0 0
B∗ 0 0 0 0 0
l1 0.1390 0.2858 0.1154 0.1845 0.2737
l2 0.3832 0.2056 0.3245 2.1177 0.9582
l3 1.2595 0.9595 1.2456 1.0345 0.1889
Q -0.2708 – 0.03743i 0.02692 + 0.04182i -0.2573 – 0.09534i 0.1714 + 0.01781i 0.04203 – 0.1141i
Q∗ -0.2708 + 0.03743i 0.02692 – 0.04182i -0.2573 + 0.09534i 0.1714 – 0.01781i 0.04203 + 0.11419i
Cost 0.4477 0.4732 0.5072 0.5372 0.5447
Max Dev 0.09572 0.5198 0.1414 0.05264 0.2220

Table D.9: Table showing the dimensions of the ten lowest absolute costs values for the one dimension pre-specified applied
example.
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Figure D.12: The computed solution, the global minimum, with the absolute smallest cost function for the zero dimensions
pre-specified example.
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Figure D.13: The computed solution with the absolute smallest cost function for the one dimension pre-specified example.

distance between specified points and their nearest point on the solution curve (maximum deviation), is one
such way to sort solutions. The design and design dimensions are presented in Fig. D.14. This solution is a
saddle point and, although it bears a strong resemblance to the reference mechanism, it has too high a cost
function for it to appear among desirable solutions when sorted by cost.
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A -0.6836 + 0.3376i
A∗ -0.6836 − 0.3376i
B 0
B∗ 0
l1 1.3570
l2 0.1448
l3 0.7440
Q 0.4299 − 3.1614i
Q∗ 0.4299 + 3.1614i
Cost 2393.3919
Max Dev 0.4487

Table D.10: Numerical values of the one dimension pre-specified solution shown in Fig. D.14 that bears the highest resemblance
to the reference path.

X

B

A

Target path
Synthesized path

Figure D.14: The solution design, dimensions given in D.10, that bears the highest similarity to the reference design.

Appendix D.3. Two Dimensions Pre-specified
Since these values exhibit cognate groups of one member, these solution dimensions are the only designs

available for the respective coupler curve.
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