Sampling smooth points on real algebraic sets using perturbations
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Abstract

Many algorithms in computational algebraic geometry for understanding properties of real al-
gebraic sets depend upon computing smooth sample points, most notably algorithms for com-
puting the dimension of a real algebraic set. An approach by the first two authors and Agnes
Szanto (1966-2022) obtained smooth sample points by computing the critical points of a pos-
sibly high degree polynomial that vanishes on the singular set and but does not vanish on the
real algebraic set identically. This paper shows that smooth sample points can be obtained
by using limits of perturbations thereby reducing the degree of the objective polynomial under
consideration. This approach is then applied to computing the dimension of a real algebraic set.

Keywords. Smooth points, real algebraic sets, polynomial systems, perturbations, real numer-
ical algebraic geometry, homotopy continuation, numerical algebraic geometry

1 Introduction

Let Y < C” be a complex algebraic set and let X < R" be the corresponding real algebraic set,
that is, X = Y nR™. A common approach to studying the real algebraic set X is to compute
smooth sample points in each connected component of X. Our initial motivation for computing
smooth sample points came from a long standing open challenge (originally stated in [44] in 1999) to
close the complexity gap between computing the real and complex cases of the dimension problem,
i.e., determining if the dimension of the real algebraic set X could be computed with the same
complexity as computing the dimension of the associated complex real algebraic set Y.

The approach in [20] considered the case when X was compact and found smooth sample points
by computing the critical points of a polynomial g € R[z1,...,x,] on X where g was chosen such
that it vanishes on every singular point of X but it does not vanish on X identically. To ensure
that ¢ did not vanish on X identically, isosingular deflation |23] was used in [20], which potentially
resulted in a high degree polynomial g. In this paper, using perturbations and a limiting approach,
we show that smooth sample points can be computed without needing deflation, thereby reducing
the degree of g under consideration.

Due to the ubiquity of computing real solutions to systems of polynomial equations, many
approaches have been proposed. Symbolic approaches for the related problem of determining
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if X is empty and computing sample points in each connected component of X can be found
in [14,/18,{26,133]. The current state of the art deterministic real sampling algorithm is given
in [9, Alg. 13.3]. Symbolic methods computing critical points or generalized critical points of
functions utilizing infinitesimals and randomization can be found in [1,/16,34,35,|37]. Sampling
algorithms utilizing polar varieties, which will also be used below, are introduced and developed
in [2,3,[5H7,31,36]. Numerical approaches based on homotopy continuation are presented in [21,/45].

The difficulty of finding smooth points in each connected component of a real algebraic set was
pointed out in [31] where they constructed a singular plane curve with four real connected compo-
nents such that critical points of the distance function from any point in R? does not simultaneously
yield smooth points on all components. More recently, [3839] give the state of the art randomized
symbolic algorithm to compute the real radical of an algebraic set with their method also including
a subroutine that computes smooth points on real algebraic sets. For finding the dimension of X,
the current state of the art deterministic algorithms are in [10,29] and [9, Alg. 14.10]. Similarly,
the best known probabilistic algorithms are [8,30] and these algorithms work better in practice.

The remainder of the paper is structured as follows. Section [2| provides a precise statement of
the problem that will be tackled while Section [3] provides preliminary but essential items needed for
developing our proposed approach. Section[4]develops the approach for the compact cases. Section[5]
generalizes the approach to arbitrary cases (including unbounded cases). Section @ summarizes the
findings in the previous sections into an algorithm for computing smooth sample points, determining
the real dimension, and illustrating the algorithm on a few examples. Section [7] provides bounds
on total number of points which need to be computed by the algorithm. The paper ends with a
short conclusion in Section [l

2 Problem statement

The following formulates the problem under consideration throughout this paper. Suppose that
fiy--o, fr € Rlxq, ..., z,] are non-constant polynomials and Let

X=V(fi,.... fi) nR" ={z e R" | fi(z) = --- = fr(z) = 0},

As stated in Introduction, the overall goal is to compute smooth sample points in each connected
component of X. Furthermore, we would like to use the computed sample points to determine
the dimension of X. Thus, we would like to organize smooth sample points in a manner that
facilitates the determination of the dimension of X. The following problem statement provide such
an organization.

Problem: Devise an algorithm for the following specification:
Input: Non-constant polynomials fi,..., fr € Rz, ..., x,]
Output: Z,...,2,-1 < R” such that, for each j =0,...,n—1,
1. Z; consists of finitely many real points in X;
2. each point in Z; belongs to a component of X having dimension at least j;

3. Z; contains at least one smooth point on every j-dimensional component of X.

The following are some immediate observations from these three conditions. First, the union of the
output sets is a finite list of real points in X, which is common among the real sample algorithms as



mentioned in the Introduction. Second, such an organization facilitates computing the dimension of
X, ie., dimX = max{j | Z; # J}. Finally, there is a smooth point computed of every component
of X so that, in particular, Z; = & implies that X has no connected components of dimension j.

3 Preliminaries

In this section, we will provide preliminary but essential items needed for developing our proposed
approach to solve the problem stated in Section [2| Let fi,..., fx € R[z1,...,z,] be non-constant
polynomials. To avoid triviality, we assume that £ > 1 and n > 2.

We will always reduce down to the single nonnegative polynomial case by replacing fi,..., fx
with f =f2+. -+ f,f This does not change the real algebraic set under consideration as

A

V(fi,- o fe) "R = V(f) nR".

The next simplification is to assume that the coordinates are in general position by replacing x
by Ax for generic A € R"*"™. Thus, we will consider X = V(f) n R"™ throughout where

f@) = f(Az) = fi(Az)® + - + fr(Az)? € R[z1,. .., 2] (1)

is a nonnegative polynomial of even degree d > 2 with coordinates in general position.
Fori=1,...,n,let 0;f be the partial derivative of f with respect to z;. The key sets of interest
are the polar varieties

‘/e,j:V(f_eaaj+2f7"'aanf)ccn (2)

for 5 =0,...,n — 1 where € € C. Trivially, we define V, _; = (.

For an algebraic set Y = V(hy,...,hy) < C", Y is said to be smooth pure-m-dimensional if
every irreducible component of Y has dimension m and the dimension of the null space of the
Jacobian matrix of hi,..., hy evaluated at every y € Y is m.

Proposition 3.1 For j =0,...,n—1 and for all but finitely many values of € € C, V¢ ; is either
empty or is a smooth pure-j-dimensional algebraic set.

Proof. By Sard’s theorem, V(f — ¢€) is a smooth hypersurface for all but finitely many values
of € € C. The result then follows from polar varieties of a smooth hypersurface, e.g., see |4, Prop. 3]
and |20, Cor. 6.4]. n

If one treats € as an infinitesimal, V; = lim._,o V, ; is well-defined and is either empty or pure-
j-dimensional. Of course, V; need not be smooth, e.g., V;,_1 = V(f) need not be smooth.

Alternatively, we can compute V; by treating € € C. For example, this can be accomplished by
by tracking along rays emanating from the origin, say €y(t) = te?V=1 where 6 € [0,27) and ¢ = 0.
The infinitesimal limit shows that, for every ¢ € [0,27), V; = lim,_,g+ V(1) ;- Moreover, for all but
finitely many 6 € [0, 27), Veo(v),; is either empty or is a smooth pure-j-dimensional algebraic set for
all £ > 0. Hence, one is able to track along all but finitely many rays emanating from the origin
from any point on the ray and limit to 0 to compute V.

Another equivalent description of V; arises from treating € as a variable. Suppose that B; is a
finite set so that, for every e € C\Bj, V¢ ; has the same behavior as in Proposition Thus,

;= [J VigeCt! (3)
EE(C\B]'



is a flat family in (z,¢) € C**! and
V; x {0} = Y; nV(e) c C"M1. (4)
Hence, defining equations for V; can be computed algebraically via

(f —€djq2f,- -, 0nf): €2+ {e)) nR[x], (5)

that is, computing the saturation of the ideal {f —€,d;j4af,...,dnf) with respect to e, setting e
to 0, and eliminating e.

Example 3.2 Consider fi(z) = 23 — 22 + o1 which defines the leminscate of Gerono that will be
considered again in Ezample|3.8. For illustration purposes, we take f(z) = f1(2)? and

f(z) = f(Az) = ((3z1 + 222)* — (3z2 — 1) + (322 — 561)4)2 where A = [ _31 2 } :
For generic e € C, Vi is zero-dimensional and smooth consisting of 12 points in C2%. The set
By < C where this statement does not hold is

1 225625
By =10, —, 22
16’ 76527504

Therefore, for every ray not along the positive real direction, i.e., for every 6 € (0,27) and t > 0,
Veo(t),0 i smooth and consists of 12 points. Moreover,

Vo = lim Ve,

consists of 5 points, four as the limit of 2 paths each and the origin as the limit of 4 paths. Using
Macaulay?2 [17] to perform the computation in yields the following defining equations for Vj:

623 — bdaize + 1622123 — 162235 — 971 + Srg =
5149762223 — 18759842123 + 204732023 + 974723 + 1083007129 — 6317523 = 0.

These equations define a zero-dimensional ideal of degree 12 whose radical is a zero-dimensional
ideal of degree 5 defined by

—1672z122 — 1095623 + 28529 =
—167223x9 — 109562173 + 28571 =
—36784x3xy — 2410322323 + 3310562123 + 216928873 — 83602179 — 5478023 = 0.

For pe X = V(f) nR", let dimg(f,p) denote the real local dimension of p with respect to X.
For y € R, define ||ly|? = y} + -+ + y2. For r > 0, let

B(p,r) = {z e R | |a — p|? < ).

Thus, dimg(f,p) is the dimension of X n B(p,r) for all sufficiently small » > 0. Moreover, when
X # J, the dimension of X is

dimg X = maxdimg(f,p).
peX

If X = &, we take dimp X = —1.

Treating V; = C" as a set, let Ty, (p) be the tangent space of V; at p € V;. A point p € V
is smooth if V; and Ty, (p) have the same dimension. Otherwise, p is singular and the dimension
of Ty, (p) is larger than the dimension of V;. Let SingV; denote the set of singular points of Vj.
The following shows that V; n R" must contain all points with real local dimension at most j and
Sing Vj is contained in Vj_i.



Proposition 3.3 For j=0,...,n—1:
o if pe V(f) nR"™ with dimg(f,p) < j, thenpe V; nR", and
o SingV; < V;_1 where V_1 = (.

Proof. Trivially, Veg < Vo1 < -+ < Vp—1 implies Vo < V; < --- < V,_1. Suppose that
je{0,...,n—1} and p e V(f) n R"® with 0 < m = dimg(f,p) < j. The first result immediately
follows by showing p € V,,,. The key additional property is f = 0 on R since f is a sum of squares.
Let £,,, be a codimension m linear space passing through p defined by the vanishing of m linear
polynomials #o, ..., fy+1 with real coefficients such that p is an isolated point of

Xn Em,p = V(f,gg, s ,£m+1) N R™.

Note that such a transverse intersection is a general property. Hence,
p is a strict global minimum of f along the codimension m linear
space {p, , so that f is strictly convex at p along ¢, ,. For an in-
finitesimal € > 0, this implies that there is a smooth and bounded
connected component of the level set f —e = 0 on £, ; of dimension
n — 1 — m infinitesimally close to p as illustrated by the figure on the right, that shows a surface
plot of a strictly convex function with a smooth and bounded level set (green loop) near the strict
global minimum (red point).

The addition of n — 1 — m critical conditions applied to a smooth and bounded connected
component of dimension n — 1 — m ensures that there is a point infinitesimally close to p in

Vern 0 lmp =V (f — €02, ..., bi1, Omiaf,...,0nf) sothat pe lin% (Vern 0 lmp) € Vi

If j = 0, one trivially has Sing Vo = J = V_1. Thus, assume that 1 < j <n—1 and p € Sing V.
Since Sing V;_1 has codimension at least one in Vj;, we can take £;_1, to be a codimension j — 1
linear space passing through p defined by the vanishing of j — 1 linear polynomials ¢, ..., {; with
real coefficients such that ¢;_; ;, intersects V; and V;_; transversely at p, i.e., V; n {;_1, is a curve
containing p such that p is an isolated point in SingV; n ¢;_1, and, if p € V;_1, then p is an
isolated point in V;_1 n¢;_1,. Thus, as an isolated singularity of a curve, it follows from that
Ve,j N lj—1,p has a “bouquet of spheres” infinitesimally close to p that surround p expect possibly
along the finitely many tangent cone directions of V; at p. Thus, when p is a general point on
an irreducible component of Sing V;, general position of the (j + 1) coordinate shows that there
must be a point on the “bouquet of spheres” when applying one additional critical condition which
yields a point in V, ;_1 n¢;_1 ;, infinitesimally close to p and thus p € V;_;. Hence, the second result
follows since V;_1 is an algebraic set by looping over each irreducible component of Sing V. O

Exa{nple 3.4 Consider fi1(zx) = x? — x3 which defines a pair of lines passing through the origin.
Let f(x) = f1(x)? and

f@) = f(Ax) = (21 — twa)® — (w2 + t21)?)* where A= [ 1 _1t ] .

Locally at the origin, Vi = V(f) = V(f1) is described by the pair of lines

(1—t)z1 + (L +t)xe =0,
(14+t)z1 + (1 —t)xe = 0.



t = 1 plotted using € = 1073. In particular, the first two
have two real (red points) and a pair of complex conjugate
points infinitesimally close to the origin while the last has no points as expected.

Hence, for all t # +1, there will be at least one point
in Veo infinitesimally close to the origin. In this case,
there will be four such points with the figure on the right
considering the cases for (a)t =0, (b) t = 3/4, and (c)
(a) (b) (c)

Example 3.5 Consider fi (z) = 22 — 2323 which defines the Whitney umbrella. For illustration
purposes, we take f(z) = fi(x)? and
-3 ]

=W N
NN =

f(x) = f(Az) = (221 — 332 + 23)? — (321 + 22 + 223)%(x1 + 322 + 25(:3))2 where A = [ 2
3
The figure on the right illustrates X = V(f) n R3, which

one observes that X has a singular set, namely the “han-
dle” of the Whitney umbrella defined by

{reR® | 221 — 319 + 23 = 321 + 222 + 223 = 0},

and points with both local dimension 2 and 1. In partic- ) |

ular, the points on the “handle” with x1 + 3x9 + 2z3 < 0

have local dimension 1. Proposition shows that Vi must contain the “handle.” By using
Macaulay2 (17 with , one obtains that Vi indeed contains the “handle” along with a cubic
curve.

Example 3.6 Consider fi(z) = z2 — 22 and fo(x) = 23 — m123 which together define a curve
having a cusp at the origin. Let f(z) = f(Az) = f1(Az)? + fo(Az)? for a general A € R3*3.
The set Vo = V(f) is a hypersurface of degree 6, while V1, as a set, is a curve of degree 15 with
an isolated singularity at the origin. Moreover, V.o contains 10 points infinitesimally close to the
origin so that Vo contains the origin. There are also 15 other points in Vj.

Proposition yields the following result regarding dimg X.
Corollary 3.7 Let X =V (f) nR" and note that V_1 = . Then,
o X =@, ie,dimpr X = —1, if and only if V; nR" = & for all j =0,...,n—1; and
o dimpr X =m=0ifand only if Vi(po1 nR* <V, nR* =V, 1 n R =--. =V, 1 nR*" = X.

Proof. Since V; nR" < X, X = & implies V; nR" = J for j =0,...,n— 1.
Conversely, if X # (7, Propositionshows there must exist j € {0,...,n—1} with V;nR" # (4.
Suppose that dimg X = m > 0. By Proposition[3.3) X = V; nR" for j =m,m+1,...,n— 1.
Since the dimension of V,,,_1 is at most m — 1, it can not contain X.
Conversely, suppose that m € {0,...,n — 1} such that

V1 n RV nR" =V, 1 nR"=--. =V, 1 nR" = X.

Hence, V,,, is not empty so that it must have dimension m yielding dimg X < m. If dimgr X < m,
then Proposition yields X = V;,,_1 n R™ which is a contradiction. Hence, dimgr X = m. O

The following two examples consider a compact and unbounded real variety, respectively.



Example 3.8 For a compact example, reconsider Example . For genericee C, Vg1 =V (f —e€)
is a smooth curve of degree 8 and V.o = V(f —€,02f) consists of 12 points.

For the figure on the right, the solid blue curve is X = V(f) n R2.
For e = 3/20000, Ve 1 N R? is the dotted black curve while Veon R2 con-
sists of the 10 green points (the other two points are complex conjugates
near the origin) in the figure. Now, Vi =limeo V1 = V(f) is a curve
of degree 4 and multiplicity 2 with respect to f (which is not smooth in
this case) while Vo = lime_o Ve o consists of 5 points (4 are the limit of
two paths and the origin is the limit of 4 paths), which are the red points
in the figure. Thus, Vo nR?2 < Vi nR? = X showing dimgp X = 1.

Example 3.9 For an unbounded example in ]Rf’, consider fi(x) = x1+1 and fa(x) = x2 — 1 which
collectively defines a line in R3. Thus, we take f(x) = fi(x)?+ f2(x)? and, for illustration purposes,

f(x):f(AJU):(961—:E2+23:3+1)2+(—561+2m2—x3—1)2 where A= -1 2 -1
2 1 2

For generic e € C, Vo = V(f —€) is a smooth surface of degree 2, Vi1 =V (f —€,03f) consists of
two lines, and Veo = .

Look at the figure on the right. The solid blue line in the figure on <

the right is X = V(f) nR3. For e =1, Voo n R3 is the surface and <

Vein R3 is the union of the two dotted black lines. Since o \
X=WmnR=VnR21nR =g, >

dimg X = 1. Of course, Vo = V(f) is a union of two complex hyperplanes that intersect in the
real line X. Since X is smooth and dimg(f,p) = 1 for every p € X, Proposition provides no
information regarding Vo n R® which, in this case, is empty (cf., [36]).

As mentioned above, defining equations for V; can be computed using and thus one can
test membership in V; by simply evaluating the defining equations to determine if they vanish
or not. On the other hand, numerical algebraic geometry also provides a membership test [41].
Given a point ¢ € C", let £; , © C" be a general linear space of codimension j passing through g.
Thus, g € V; if and only if ¢ € V; n {; , where V; n {; , contains at most finitely many points with
Vindjq =lime,o (Ve n{j,q) facilitating computation via homotopy continuation. Moreover, [24]
shows how one can apply isosingular deflation [23] to to restore local quadratic convergence of
Newton’s method to compute the points in V; n ¢; , to arbitrary precision.

Example 3.10 The symbolic computation of Vi in Example has a numerical counterpart with
Vo = lime o0 V(f—¢,daf). Tracking 12 paths yield the 5 points in Vi, which, to 4 decimal places, are:

(0,0), (0.2772,—0.1838), (—0.2772,0.1838), (0.0278,0.1592), (—0.0278,—0.1592).

As mentioned in Example the origin is the limit of 4 paths and the other 4 points are the limit
of 2 paths each with 12 =1-4+4-2.



4 Smooth points on compact real algebraic sets

We consider the problem stated in Section for the compact case with the arbitrary case (including
the unbounded case) considered in Section Following Section suppose that f € R[z1,...,x,] is
a sum of squares polynomial of degree d > 2 with coordinates in general position and X = V(f)nR"
is compact. The key of the proposed approach to compute smooth points is to utilize limits
of perturbations together with an adaptive objection function dependent upon f. That is, for
j=0,...,n—1,let C.; be the set consisting of

critical points of 011 f(x) with respect to Vi ; =V (f —¢€,0j42f,...,0nf). (6)

Note that 0j;1f has degree d — 1 while the objective function used in [20] has degree at most
n*+t1d where k is the number of iterations of isosingular deflation needed, which is dependent on
the multiplicity structure. Let Vh denote the gradient of h. Using the Fritz John condition [28],

flz) —e
di+2f(x)
Cej=<{xeC" |INeP" such that : =0

0.1 (@)
AV(x)+ MVojrif(x) + AeVojpaf(x) + -+ + A Von f(x)

Note that, since V¢ is either empty or zero-dimensional, it is easy to see that Cco = V0. In fact,
forall j =0,...,n—1, C¢; is generically zero-dimensional.

Proposition 4.1 For each j = 0,...,n — 1 and for all but finitely many values of e € C, C; is
zero-dimensional.

Proof. The result follows from Proposition O

As with V. ; limiting to Vj, similar statements hold with C; = lim._,q C¢ ; being well-defined.

Example 4.2 Continuing with the setup from Ezamples and Cer
generically consists of 16 points while Ceg = Veo has 12 points. Look at
the figure on the top right. It illustrates the critical points for e = 3/20000.
The dotted black curve is V1 N R2 while the solid blue curve is Vi n R2.
The 14 magenta points form Ce 1 ~R?2 (other two points in Ce 1 form a complex
conjugate pair near the origin) while the 7 yellow points form C1 N R2.

Look at the figure on the bottom right. It is a copy of the figure already
shown in Example 3.8, shown here again for convenience. Since Vo = Cj,
which are the five red points in the figure, one observes that the origin, which
is the singular point of the lemniscate, is contained in both C1 and Vg, while
(C1\Vo) N R? consists of 6 smooth points.

The following shows Z; = (C;\Vj—1) n R™ solves the problem in Section [2|in the compact case.

Theorem 4.3 For j =0,...,n—1, the set Z; = (C;\Vj—1) nR" satisfies the following conditions:

1. Zj < X consists of finitely many real points;



2. for each p € Z;, dimg(f,p) = j;
3. Z; contains at least one smooth point on every j-dimensional component of X.

Proof. The first statement follows from Proposition [4.] The second statement follows from
Proposition[3.3] Since the third statement is trivial if X does not have a j-dimensional component,
let’s assume that X has a j-dimensional component. If a polynomial g vanishes on the singular set
of V; and does not vanish identically on Vj, then [20] shows that the third statement holds for the
limit of

critical points of g(x) with respect to Vi ; = V(f —€,0j12f,...,0nf).

Let 0 € Q=0 and consider

9.
critical points of M (7)
€

with respect to V' <f_€, M, ce a"f> .

€° €° €°
Since the critical points of satisfy the same conditions as C ; for any o € Qx, all that is left
to show is that there exists an appropriate exponent o for each j-dimensional component of X.

Let Y be as in , which is not empty by assumption above. Let W be an irreducible component
of V; and let z* € W be a general point. Hence, (z*,0) € Y; and we want to consider the behavior
of gjo(x) := aj%f(x) for (z,€) € Y; in a neighborhood of (z*,0).

Let Gj g+ be an irreducible germ of Y; at (2*,0). Hence, G;+ is topologically unibranched
at (z*,0) and dim G+ =n —j + 1. Let 7 : C"+*!l — C"7+*! be a general linear projection such
that 7(2*,0) = 0. Thus, 7 is a proper branched covering from G; .+ to a local neighborhood of
the origin with, say, p > 1 sheets. In particular, the Fundamental Openness Principal |32, pg. 43]
shows that 7 is an open map at (z*,0). Let Gr(1,C"7*!) be the Grassmaninan of lines in C*~/*!
through the origin. Since 7 is an open map, the local behavior of the polynomial dj41f(x) on the
irreducible germ G .+ can be completely characterized by computing dj41f(x) on G+ n 7= (¢)
for general £ € Gr(1,Cn—7+1).

For a general ¢ € Gr(1,C" 1), G, .+ n 7w !({) is a one-dimensional germ at (z*,0) such that €
is nonconstant on each irreducible component of G; .+ n 7w~ 1(¢). In particular, Gj.x n 7 1(¢)
consists of precisely p paths, say, pi(€),...,pu(€), such that, for each k = 1,..., 1, 0j41f(pr(€)) has
a well-defined order in € at 0, say o € Q>g. That is, o = 0 is the smallest number such that

O
lim O5+1f (r(e)) C\{0}.
e—0 €%k
Therefore, one can take the minimum of o for k = 1,..., u resulting from G;,+ and then take

the minimum over the irreducible germs G ;+ of Y; at (2*,0). Since this is a minimum of a finite
number of rational numbers, this yields a rational number oy = 0. Since x* € W was general, this
process shows that the limit of g;,, is generically nonzero along W. The result now follows by
repeating this process for each irreducible component W of V. ]

Remark 4.4 The key aspect of this proof is the exploitation of local irreducibility to obtain a proper
branched covering over an affine space defined by an open map. If one does not have an open map,
then such a minimum need not exist, e.g., for 0 < k < 1, xz(e) = (€"/2,€'=%) limits to the origin
and satisfies x3x9 — e = 0, but 2179 = 2e'%/2 has no minimum order for k e (0,1). An open map
does exist at generic points along the two components arising in the limit, say at (c,0) and (0, 3)
for a,, B # 0, and thus yield a minimum order, namely 1 and 1/2, respectively.



Example 4.5 Continuing with Example Y1 as defined in is irreducible of degree 8§ and
Vi = V(f) is irreducible of degree 4. For simplicity of presentation, let x* = (2/11,—-3/11) € V1,

m(z,€) = (2(z) — 2/11) — 5(wa + 3/11) + 26, —3(z1 — 2/11) + (29 + 3/11) + 3e¢),

and ¢ = {(—a,2a) | a« € C}. Hence, m(z*,0) =0 € L.
Look at the figure on the top right. It provides an illustration of

Gl,x* N W_l(f)

with each of the p = 2 paths p1(€) and p2(€) colored differently. In partic-
ular, the order of Oaf (pr(€)) is 1/2 for k = 1,2. Hence, we can replace €
by t? and, for paths p(t) € Cyz1, we can compute v = limy_ 01 f(p(t))/t.
Look at the figure on the bottom right. It is a copy of the figure already
shown in Example[.9 and provided again for convenience. For the siz yel-
low dots not at the origin, each is obtained as a limit of two different paths
for which the corresponding values of v are nonzero and negatives of each
other. For the four paths leading to the origin, one has v = 0 as expected.

5 Smooth points on real algebraic sets

The following generalizes Theorem for the compact case to arbitrary case (see Theorem [5.4)).
For unbounded components, there need not be critical points in R™ as illustrated in the following.

Example 5.1 For the parabola from f(x) = ((2v2—3x1) — (231 +522)?)?, C. 1 is generically empty.

This suggests that the definition of C, ; needs to be altered to ensure that critical points are
obtained. Motivated by [15],27], for general ¢ € R", consider replacing @ with

Oj+1f(x) f—e€ Ojuaf a"f>
e 5 )

critical points of with respect to V ( (8)

where
2

D)= (Jz—c|>+ 1% and |z —c|> = (21 —c1)?+ -+ (@0 —cn)?.
In particular, since d is even, dj41f has degree d — 1 while D has degree d and does not vanish
on R™. Thus, dj11f(z)/D(x) is continuous and bounded on R™ and zero when 0;41 f(x) vanishes
as well as at all real points at infinity. Since 0;41f does not vanish identically on V, ; for generic
e € C, in the parlance of [15,27], d;4+1f(x)/D(x) is a routing function for general ¢ € R™. Since
our primary concern here is computing sample points and not a full decomposition, we focus on
properties of the critical points. In particular, the critical points satisfy

( [ f@-e ] )
dj+2f ()

Cej=42eC" |INeP" 7 §eC where :
onf(x)
M(z,\)

| 1-0(Jlz —cf*+1) |
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where
Mz, ) = (Jz — > + 1) MoV (@) + Vi1 f(x) + -+ Ay VO f(x)) — dN10j11 f(z)(x — ).

The last condition in () is Rabinowitz trick to ensure that critical points satisfy D(z) # 0. This
could also be used to simplify M (z, ), i.e.,

M(x,\) =NV f(z)+ )\1V(9j+1f(l‘) + e+ )\nfjvanf(l') — dé)\lé’j+1f(x)(x —c).

Proposition 5.2 For each j = 0,...,n — 1 and for all but finitely many values of € € C, Cc; is
zero-dimensional.

Proof. The result follows from Proposition [3.1 O
As with C¢; limiting to C, similar statements hold with C; = lim._,o Cc ; being well-defined.

Example 5.3 Let us continue with Example [5.1 where we considered

f(z) = (222 — 3z1) — (221 + 5x9)?)2.

For illustration, consider ¢ = 0 where C.1 has 8 points. Moreover, Cy Lo
consists of 4 points (each the limit of two points) with the figure on the B
right showing the two points in C; N R? along with value of the limit of .
o f (@) /(€ 2(|]* + 1)%) I

with the other limiting branch being the negative of this value.
Finally we are ready to state the main theorem of this paper.

Theorem 5.4 (Main Result) For j = 0,...,n — 1, the set Z; = (C;\Vj—1) n R" satisfies the
following conditions:

1. Z; consists of finitely many real points in X ;
2. each point in Z; belongs to a component of X having dimension at least j;

3. Z; contains at least one smooth point on every j-dimensional component of X.

Proof. Since the proof is essentially the same as that of Theorem it is omitted. In fact, we
only have to replace C, ; with C¢ ; in Theorem to remove the compactness assumption of X. []

6 Algorithm

Theorem immediately yields an algorithm that solves the problem posed in Section |2l By using
the output of such an algorithm, one can immediately determine the dimension of X since

dim X = max{j | Z; # J}.

However, if one only wants to find the dimension X, then the algorithm can be structured so
that Z; are computed in the decreasing order on j starting form j = n — 1 and returns j as soon
as the first Z; is determined to be nonempty yielding the dimension of X. Thus, we found that it
is economical to formulate a single algorithm (Algorithm [1]) for both situations:

11



Algorithm 1: Smooth Sample Points (SSP) or Dimension (DIM)

Input:
e Non-constant polynomials f1,..., fx € R[z1,..., 2],

e what € {SSP, DIM}.
Output:

e If what = SSP, then output Zy,..., 2,1 < R" such that

1. Z; consists of finitely many real points in X;
2. each point in Z; belong to a component of X having dimension at least j;
3. Z; contains at least one smooth point on every j-dimensional component of X.

o If what = DIM, then output the dimension of X =V (f1,..., fr) n R™.

1 Randomly select A € R ce R", and 0 € [0, 27);
2 e(t) — te!V1
gforj=n—1,n—-2,...,0do

4 | Zj <

5 Cj < limy_,g+ Ce(y),; Where C(y) ; is given by and @D;
6 foreach p e C; nR" do

7 if p e V;_1 then go to the next iteration on p;

8 if what = SSP then add A - p to Z;;

9 if what = DIM then return j;

10 end
11 end

12 if what = SSP then return 2y, ..., 2, _1;
13 if what = DIM then return —1;

e computing the sets Zy,..., 2Z,_1 as in the problem stated in Section

e determining the dimension of X.

Theorem 6.1 Assuming the randomly selected A € R™*™, ¢ € R", and 0 € [0,27) are generic
choices, Algorithm[1]is correct.

Proof. Immediate from Theorem [5.4] and the obvious fact that dim X = max{j | Z; # @&}. O

In the following examples, we make the choices in Algorithm [I] to be simple for illustrative
purposes. In practice, one often generates each entry independently from a continuous distribution,
e.g., each entry of A and ¢ following a standard Gaussian distribution and 6 from a uniform
distribution on (0, 27).

From an implementation perspective, efficiencies can be obtained in Algorithm [I| by reusing
some computations. Trivially, Co = Vp. Since V, j—1 = V. j n V(041 f), a witness set for V j_; can
be obtained from a witness set for V. ; via intersection, e.g., see [25, Problem 1]. Finally, since C ;
arises from intersecting V. ; with critical point conditions, Cc; can be computed from V,; as an
extension computation |25, Problem 3].
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Since the endpoints arising from the limits as e — 0 are often singular, adaptive precision path
tracking [12] and endgames (e.g., see [42, Chap. 10] and [13, Chap. 3]) can be used on the path
tracking side and isosingular deflation [23] can be used to restore local quadratic convergence of
Newton’s method to refine the numerical approximations.

Example 6.2 The following is a step by step trace of Algorithm[1] on Example for computing
the real dimension.

Input:

o fi=ux1+1 and fo =22 — 1 in Rz, 29, 23]

e what = DIM
Steps:

1 -1 2

I.A—| -1 2 -1 |,c<(2,3,4), and 0 «— /3
2 1 2

2. e(t) — te™/3V-1

9. j—2

4. Zo =

5. Co consists of a real point (13/11,8/11,—8/11) and four nonreal points

6. p— (13/11,8/11, —8/11)

7. pe Vi so go to the next p

6. There is no more p so the loop ends

9. j—1

4. 21—

5. C1 consists of the real point (13/11,8/11,—8/11)

6. p— (13/11,8/11, —8/11)

7. p¢Vi

©

return j =1
Output: dimX =1

Using a single core of Intel Xeon E5-2680 2.5GHz CPU with Bertini [11], this computation
took under 3 seconds. Note that A - p is the point (—1,1,18/11) € V(f1, f2) n R3.

Example 6.3 We next consider the following polynomial from [31]:

fi(@) = 100p1 (2)* + pa(x)?

13



where

pi(e) = (2% + 23 — 1)((z1 — 4 + (22 - 2)° = 1),
pa() = (w1 — 7/2) (w1 — 9/2) (w2 — 1/2) (w2 + 1/2).

The figure below shows the set X = V(f1) n R? consisting of four connected components (blue
curves), each having a thin crescent shape with two singular points (green points) along with a
zoomed in version of the upper right connected component. This example demonstrates that a
classical and often used approach of finding real sample points by computing critical points of the
Euclidean distance function (first proposed by Seidenberg [40]) can not simultaneously compute a
smooth point on each connected component (31, Prop. 3.2]. However, Algom'thm can be used to
compute smooth sample points on each connected component of X. As with the previous illustrative
example, we will provide a step by step trace of the algorithm.

S =

Input:

o f1=100((z3+23—1)((z1—4) >+ (22—2)2—1))?+ ((x1 — 7/2) (21 —9/2) (22— 1/2) (22 +1/2))? € R[z1, x2]
e what = SSP

Steps:

14



2 3

] ,c=(1/2,1/3), and 0 = /3
e(t) « te™/3V-1

J1

Z1<Q

Cy consists of 16 real points and 156 nonreal points. For the real points, 8 arise as the endpoint
of a single path while the other 8 arise as the endpoint of 4 paths each.

AR S

6./7./8. The set Vi consists of 8 real points and 52 nonreal points, the 8 real points in Cy arising from
4 paths each are contained in Vy. The 8 real points in Cy1 arising from a unique path are not
contained in Vy. To 4 decimal places, this yields

5 _ [ (~1.0120,-0.1506), (~0.9667,0.1322), (0.9863,-0.0122), (1.0133,0.0014)
171 (3.8346,1.0135), (3.8349,1.0140),  (4.1287,2.9859), (4.1377,2.9962) |

3. 5«0
4 20— I
5. Co = Vp already computed above
6./7./8. V_1 = & so the 8 real points in Cy form Zy which, to 4 decimal places, is

2 _ [ (~0.8660,-0.5000), (—0.8660,0.5000), (0.8660,~0.5000), (0.8660,0.5000)
071 (3.5000,1.1340),  (3.5000,2.8660),  (4.5000,1.1340), (4.5000,2.8660) |

Output: Zy (green points in figure), 21 (red points in figure)

Using a single core of Intel Xeon E5-2680 2.5GHz CPU with Bertini [11], this computation
took approximately 2 minutes.

We conclude this section by comparing with [20].

Example 6.4 Forn > 3 and s > 2 even, consider

fla) = (@} + 23— 1+ pi(as,....20))°
j=1

where pj € R[zs, ..., xy,] is a general polynomial of degree s with p;j(0) = 0. Hence,
V() "R = V(a5 + a5 —1,23,...,2,) " R"

is a compact real curve. After performing a general change of coordinates f(x) = f(Ax), there is an
irreducible component of Vi corresponding with V (y; +y5—1,ys, ..., yn) < C" after the appropriate
change of coordinates. Since dof wvanishes identically on this curve, the approach of [20] using
isosingular deflation (23] to construct a polynomial which does not vanish identical on this curve
as follows. Let F' = {f,03f,...,0nf}. Since the Jacobian matriz of F', JF, has rank n — 2 on this
curve, isosingular deflation will append n polynomials to F, namely the (n — 1) x (n — 1) minors
of the (n — 1) x n matriz JF, where each has degree (2s —2)(n—1) + 1. Then, g is constructed by
taking a random combination of the (n —1) x (n— 1) minors of the Jacobian matriz of this deflated
system, which has degree (25 —2)(n — 1)2. For comparison, the degree of Oaf is 25 — 1.
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7 Bounds

One way to analyze the computations performed is by bounding the total number of points that
need to be computed. To that end, we consider bounds on the degrees of V, ;, C¢ ;, and C.; for
generic values of € € C.

Proposition 7.1 The degree of V¢ ; is at most
d(d — 1)1, (10)
Proof. Immediate from Bezout’s bound. O

Proposition 7.2 The degree of Ce j is at most

j —_ —_ .
d(d— 1)1 Y <” ; ! . 1) (d—1)5(d — 2))F, (11)

k=0

Proof. One can view C ; as the intersection of one polynomial of degree d, n — 1 — j polynomials
of degree at most d — 1, and the rank deficiency set of an (n — j + 1) x n matrix where each entry
of the first row has degree at most d — 1 and each entry of the remaining n — j rows has degree at
most d — 2. Thus, the following bound arises from [22, Thm. 1]:

d(d— 1)1 > (d—1)F(d—2)7~ k.,

Fatethnj 1=
k17---7kn—j+1?0

This can be rewritten as

d(d —1)"177 i Ay, (d—1)k(d—2)77F
k=0

where

Ay = > 1= > 1.

kot tkn_jr1=j—k b+l j=]—k
k2,...,kn,j+120 f1,...,£n,j20

The claim immediately follows since
((n—j)+(j—k)—1) (n—k—l)
A = ) = . .
(n—j)—1 j—Fk

The following example illustrates the quality of the above bounds.

Example 7.3 Consider two nonnegative polynomials P and Q in 5 variables constructed as follows
where Vr(P) and Vr(Q) are compact. Let x¢ = x1 and define

5 2 5
o) = (z ) Y,
=1 =1
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arising from (19, Ex. 6.2] (see also [20,30]). Let q(x) be a sum of squares of 5 randomly selected
quadratic forms. Since p and q are both homogeneous, we can compactify the real solution set by
intersecting with the unit sphere by taking

5 2 5 2
P(z) = p(x) + <Z R 1) and  Q(z) = q(z) + (Z z? — 1) (12)

so that dim Vg(P) = dim Vg(p) — 1 and dim Vg(Q) = dim Vr(q) — 1. In particular, P and Q both
have n = 5 variables and degree d = 4.

The following table compares the actual values for deg V. ; and deg C ; with the bounds provided
in Propositions and[7.3. Note that, for Q, the bounds are sharp.

J I (10) | degVe; || (1) | degCe;y
4] 4 4 844 604
3 12 12 1572 1332
Pl2| 36 36 1836 1596
1| 108 108 1188 868
0| 324 204 324 204
4] 4 4 844 844
3 12 12 1572 1572
Ql2| 36 36 1836 1836
1| 108 108 1188 1188
0| 324 324 324 324

The following bounds the total number of points that need to be computed in order to ob-
tain Zy, ..., Z,_1 as in Theorem

Proposition 7.4 The total number of points that need to be computed in order to compute the
collection of sets Zj = (C;\Vj—1) nR"™ for j =0,...,n—1 as in Theorem is at most (v/2d)?".

Proof. We begin by simplifying the bounds given in Propositions and
degV.; < d"7,

J
—k—1
degCeyj < ) (” , >d(d— 1t = (”> d(d—1)"1 < (") dn.
=\ ik J J

Forj =0, Zy = ConR"™ = VynR" since V_1 = . For j = 1, Z1 = (C1\Vp) nR"™ where V, is zero-
dimensional with degree at most d(d — 1)"~! points. Thus, a positive-dimensional membership test
is only needed for j = 2,...,n—1. In particular, for each point ¢ € C; nR", one needs to determine
if ¢ € Vj_1. Since the degree of C; is at most (?) d™ and the degree of V;_; is at most d"~7*1, the

homotopy-based membership test [41] to determine C;\V;_; requires computing at most (?) d?n—i+l

points. Hence the total number of points that need to be computed to yield Zy, ..., Z,_1 is at most
n n
d" + nd® + 2 <T{‘>d2n—j+l < Z <n>d2n _ 2nd2n _ (\/id)2n
=2\ j=o \J
L]

Finally the following extends this upper bound to the arbitrary case considered in Algorithm
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Theorem 7.5 The total number of points computed in Algom'thm is at most (v/2(d + 1))?".

Proof. The only difference with Proposition [7.4] is one now needs a bound on the number of
points in C. ;. By using a 3-homogeneous Bezout bound, one obtains a bound of

S

With this, the result follows with a similar proof of Proposition [7.4} O

8 Conclusion

By computing limits of critical points of a perturbation, a new approach based on Theorems [4.3]
and for obtaining smooth sample points on real algebraic sets was developed. In particular, per-
turbations eliminate the need for using isosingular deflation to construct a potentially high degree
polynomial for computing critical points as in [20]. The use of a denominator in Section [5| ensures
that both compact and unbounded components can be handled simultaneously as in Algorithm

Complexity analysis was performed in terms of the number of points that need to be computed
using homotopy continuation. In particular, without the denominator, the total is bounded above
by (v/2d)?" points (see Proposition [7.4)) while using a denominator as in Algorithm to handle the
arbitrary case has at most (v/2 (d + 1))?" points (see Theorem .

One application of computing smooth sample points is to compute dimension of the correspond-
ing real algebraic set (see Algorithm . Since the initial motivation was to close the complexity
gap between computing the real and complex cases of the dimension problem, future work involves
analyzing the computational complexity of this perturbed approach using symbolic computation.
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