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Abstract

We consider a free boundary problem modeling tumor growth
where the model equations include a diffusion equation for the nu-
trient concentration and the Stokes equation for the proliferation of
tumor cells. For any positive radius R, it is know that there exists a
unique radially symmetric stationary solution. The proliferation rate
μ and the cell-to-cell adhesiveness γ are two parameters for character-
izing “aggressiveness” of the tumor. We compute symmetry-breaking
bifurcation branches of solutions by studying a polynomial discretiza-
tion of the system. By tracking the discretized system, we numerically
verified a sequence of μ/γ symmetry breaking bifurcation branches.
Furthermore, we study the stability of both radially symmetric and
radially asymmetric stationary solutions.
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1 Introduction

Mathematical models of tumor growth, which consider the tumor tissue as
a density of proliferating cells, have been developed and studied in many
papers; see [1, 3, 5, 6, 7, 8, 9, 15, 17] and their references. These models
treat tumor tissue as a porous medium described by Darcy’s law. However,
there are tumors for which the tissue is more naturally modeled as a fluid.
For example, in the early stages of breast cancer, the tumor is confined to the
duct of a mammary gland, which consists of epithelial cells, a meshwork of
proteins, and mostly extracellular fluid. Several papers on ductal carcinoma
in the breast use the Stokes equation in their mathematical models [10, 11, 12]
with a focus on the radially symmetric case since tumors grown in vitro
have a nearly spherical shape, it is important to determine whether these
radially symmetric tumors are asymptotically stable. While tumors grown
in vitro have a nearly spherical shape, tumors grown in vivo are usually not.
It is therefore also interesting to study what will happen for the radially
asymmetric tumors.

Let Ω(t) denote the tumor domain at time t, and p be the pressure within
the tumor resulting from proliferation of the tumor cells. The density of the
cells, c, depends on the concentration of nutrients, σ, and assuming that this
dependence is linear, we may simply identify c with σ. We also assume the
proliferation rate, S, depends linearly upon σ. That is,

div�v = S = μ(σ − σ̃) in Ω(t), (1)

where σ̃ > 0 is a threshold concentration and μ is the proliferation rate which
expresses the “intensity” of the expansion or shrinkage. The first order Taylor
expansion for the fully nonlinear model yields the linear approximation μ(σ−
σ̃) used here.

If we assume that the consumption rate of nutrients is proportional to
the concentration of the nutrients, then after normalization, σ satisfies

σt − Δσ = −σ in Ω(t) and σ = 1 on ∂Ω(t). (2)

Most tumor models assume that the tissue has the structure of a porous
medium so that Darcy’s law holds. In particular, �v = −∇p where �v is the
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velocity of the cells and p is the pressure. However, the tissue is modeled
as a fluid in the current model. In this case, the stress tensor is given by

σij = −pδij + 2ν
(
eij − 1

3
Δ̄ δij

)
where p = −1

3

∑3
k=1 σkk, ν is the viscosity

coefficient, eij = 1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
is the strain tensor, δ is the Kronecker delta

and Δ̄ =
∑3

k=1 ekk = div�v is the dilation. If there are no body forces, then
3∑

j=1

∂σij

∂xj
= 0 which can be written as the Stokes equation

−νΔ�v + ∇p − 1

3
ν∇div�v = 0 in Ω(t), t > 0. (3)

Assuming that the strain tensor is continuous up to the boundary of the
domain, we then obtain a boundary condition:

T�n = −γκ�n on ∂Ω(t), t > 0, (4)

where T is the stress tensor: T = ν(∇�v + (∇�v)T ) − (p + 2
3
ν div�v)I with

components

Tij = ν
( ∂vi

∂xj
+

∂vj

∂xi

)
− δij

(
p +

2ν

3
div�v

)
,

where �n is the outward normal, κ is the mean curvature, and γ is the cell-
to-cell adhesiveness constant.

The free boundary condition is given by the kinematic condition

Vn(t) = �v · �n on ∂Ω(t). (5)

Summarizing these equations, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σt − Δσ + σ = 0 in Ω(t)
−Δ�v + ∇p = (μ/3)∇(σ − σ̃) in Ω(t)

div�v = μ(σ − σ̃) in Ω(t)
T (�v, p)�n = (−γκ + 2ν

3
μ(1 − σ̃))�n on ∂Ω(t)

σ = 1 on ∂Ω(t)
�v · �n = Vn on ∂Ω(t)∫

Ω(t)
�vdx = 0 ,

∫
Ω(t)

�v × �xdx = 0

(6)

where the last two conditions represent the choice of a coordinate system
that excludes the six-dimensional kernel of (1), (3) and (4), which consists
of rigid motions.
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The steady state fluid-like tumor system is [13]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δσ + σ = 0 in Ω
−Δ�v + ∇p = (μ/3)∇(σ − σ̃) in Ω

div�v = μ(σ − σ̃) in Ω
T (�v, p)�n = (−γκ + 2ν

3
μ(1 − σ̃))�n on ∂Ω

σ = 1 on ∂Ω
�v · �n = 0 on ∂Ω∫

Ω
�vdx = 0 ,

∫
Ω

�v × �xdx = 0

(7)

where T (�v, p)�n = (∇�v)T + ∇�v − pI with I the 3 × 3 identity matrix.
In [13], it is proved that there exists a unique radially symmetric solution

with free boundary r = R for any given positive number R. For a sequence
μ/γ = Mn(R) there exist symmetry-breaking bifurcation branches of solu-
tions with boundary r = R + εYn,0(θ) + O(ε2) (n even ≥ 2) for small |ε|,
where Yn,0 is the spherical harmonic of mode (n, 0). Note that these results
are valid only in a small neighborhood of the bifurcation branching point.
In this paper, we use the numerical method presented in [16] to find the
radially asymmetric solutions as the parameters go beyond this small neigh-
borhood, e.g., Figure 4. Compare with the system in [16], this system has
more variables and increased complexity when using a similar discretization
scheme. This required us to implement and use parallel differentiation and
a sparse linear solver in order to perform the large-scale numerical computa-
tions needed for the method developed in [16].

2 Discretization

We use the same grid and scheme in [16] for the spherical coordinate expres-
sion of the radially symmetric stationary solution of system (7) presented in
[13]. The formula for the operators in the system in spherical coordinates is
deduced in the Appendix. The values (σ,�v, p) in the small neighborhood of
a bifurcation point obtained in [13] via linearization are⎧⎪⎨
⎪⎩

σ = σs + εσ1 + O(ε2), σ1 = −(σs)r(R)
Il+1/2(r)

r1/2
R1/2

Il+1/2(R)
Yl,0(θ, φ)

p = ps + εp1 + O(ε2), p1 = 4μ
3
σ1 + pl,0(r)Yl,0(θ, φ)

�v = �vs + ε�v1 + O(ε2), �v1 = �a +�b × �x + H1(r)Yl,0�er + H2(r)∇ωYl,0(θ, φ)

,

where Yl,0(θ, φ) is the spherical harmonic function, which satisfies Yl,0(θ, φ) =
Yl,0(π − θ, φ), and H1(r), H2(r) are functions of r (see [13] for detail). Then
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Tumor Model Nθ NR Number of variables time

porous media in [16]
16 30 575 8m24s
32 60 1135 1h30m

fluid-like
16 30 1008 7h28m
32 60 3938 26h34m

Table 1: Comparison of polynomial system solving times

σ and p are symmetric with respect to π
2
. We note that �v can be written as

vr�er + vθ�eθ + vφ�eφ, that ∇ω =
1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
, and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ(θ) = σ(π − θ)
p(θ) = p(π − θ)
vr(θ) = vr(π − θ)
vφ(θ) = 0
−vθ(θ) = vθ(π − θ)

for θ ∈
[
0,

π

2

]

for the bifurcation branch of Mn(R), where n is an even number. In particu-
lar, due to this symmetry, we can construct the grid points on one-eighth of
the domain and then extend using symmetry to yield solutions to the whole
domain.

3 Bifurcation of Mn(R)

Using the floating grid and third order scheme presented in [16], we setup
a discretization of the system (7) yielding a polynomial system. Due to the
complexity of this polynomial system, it required more computational power
than the tumor system in [16]. We used Bertini [2] to handle this polynomial
system running on a Xeon 5410 processor using 64-bit Linux. In order to
better handle this large-scale problem using Bertini, we implemented parallel
differentiation and a sparse linear algebra solver based on BLAS [4] in Bertini.
Table 1 compares the number of variables and time needed to track the
discretized polynomial systems along the radially symmetric branch between
porous media tumor model and fluid-like tumor model. In this table, Nθ and
NR denote the number of grid points in the angular and radial directions,
respectively.
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n formula [13] numerical value
M4 0.47481 0.47494
M6 0.47629 0.47702

Table 2: Comparison of the numerical values of μn with the actual value for
a radius of R = 12.5

The system is parameterized by μ and γ, which characterize the “aggres-
siveness” of the tumor. It is known [13] that there exists a unique radially
symmetric solution with any given μ. When we are tracking the radially
symmetric solutions along the parameter μ with γ = 1, the Jacobian will
become singular at μn where there exists a bifurcation. Starting from a ra-
dially symmetric solution and using parameter continuation with respect to
μ, we are able to compute the value of Mn numerically. Figure 1 plots the
condition number of radially symmetric solutions for different μ ranging be-
tween μ = 0.47 and μ = 0.48 with R = 12.5. We note that this figure shows
that there are two bifurcations, namely μ = M4 and μ = M6, respectively.
Table 2 compares the numerically computed values of Mn with the values of
Mn given by the symbolic formulas derived in [13].

The radially asymmetric solutions along the bifurcation branches are even
more interesting. We found that the double precision arithmetic in Matlab
was unable to accurately compute the tangent directions at μn. This stems
from the fact that the Jacobian matrix is singular at μn and has condition
number around 109 even at values of μ where it is nonsingular. By using
multiprecision arithmetic implemented in Bertini [2], we were able to com-
pute the tangent directions which agreed with the symbolic formulas derived
in [14]. Upon computing the tangent direction, we utilized parameter con-
tinuation to track the radially asymmetric solution branches passing through
the values of M4 and M6 computed above. Figure 2 shows the solution be-
havior of these branches which were computed using NR = 60 grid points in
the radial direction and Nθ = 32 grid points in the angular direction. The
function ε(θ) in this figure is defined in [16] allowing us to plot the branches.
By looking at Figure 2, we see that there are three intersections. The two
intersection, denoted MU and ML in Figure 2 are self-intersections which
arise simply by the choice of the projection since the corresponding nonra-
dial solutions as these points are distinct. The intersection denoted Mnonradial

in Figure 2 is indeed a nonradial bifurcation. To demonstrate this, Figure 3

6



0.47 0.472 0.474 0.476 0.478 0.48 0.482
0

0.5

1

1.5

2

2.5

3

3.5x 10
12

μ

C
on

di
tio

n 
nu

m
be

r

R=12.5

M
4 M

6

Figure 1: Condition Number of the radially symmetric solution vs. μ

plots the condition number along this path and clearly shows a bifurcation
corresponding to the point Mnonradial. Figure 4 plots two nonradial solutions
lying on the M4 and M6 branches, respectively

4 Homotopy continuation of Mn to R

For the porous medium tissue model, the smallest value of μ/γ which gen-
erates protrusions is M2(R). At this point, the tumor will have just three
protrusions independent of the value of R. However, in the case of a fluid-like
tissue, [14] shows that the smallest value of μ/γ which generates protrusions
is Mn∗(R), where n∗ depends on R. Therefore, one natural question is to
determine the values of R where n∗ changes.

Since the value of Mn(R) corresponds with a singular solution of a poly-
nomial system, we use deflation to construct a new polynomial system which
allows us to track along the path Mn(R) parameterized by R. Let f(x, μ)
denote the discretized polynomial system, where x∗ corresponds to the nu-
merical solution (σ, p, �v) at the bifurcation point μ∗ of interest. Let Jf(x, μ)
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be the Jacobian matrix of f at x. Since the Jacobian is rank deficient, it has
nonzero null vectors. One step of the deflation process adds polynomials to
f to yield a general element in this null space, namely the polynomial system

g(x, μ, ξ) =

⎡
⎣ f(x, μ)

Jf(x, μ)ξ
L(ξ)

⎤
⎦

where L(ξ) is a general linear system so that there is a unique value of ξ such
that g(x∗, μ∗, ξ) = 0. Using this augmented polynomial system, we can track
a bifurcation value Mn as R varies. Figure 5 plots the value of M4 with respect
to R along with the numerical error. At the values R∗ where n∗ changes, the
solution (x, μ, ξ) is singular, that is, the Jacobian matrix of g(x, μ, ξ) is rank
deficient. Figure 6 plots the condition number of Jg(x, μ, ξ) with respect to
R. This computation yields a numerical value of R∗ = 12.8778.

5 Linear stability

We now turn our attention to the numerical determination of solution sta-
bility. In order to check linear stability, we rewrite (6) as

ut = F (u, μ, σ̃, γ),

where u = (r, σ, p, �v), r is the function of the angle θ describing the boundary
and F (u, μ, σ̃, γ) represents the steady state system (7). The linearization of
the system (6) gives

u(t) = u0 + εu1(t) + O(ε2), (8)

where u0 is the steady state solution. Substituting (8) into (6), we have(
u0 + εu1(t) + O(ε2)

)
t

= F (u0 + εu1(t) + O(ε2), μ, σ̃, γ)

⇒ (u0)t + ε(u1)t + O(ε2) = F (u0, μ, σ̃, γ) + JF (u0, μ, σ̃, γ)u1ε + O(ε2)

⇒ (u1)t = JF (u0, μ, σ̃, γ)u1, (9)

where JF (u0, μ, σ̃, γ) is the Jacobian of F (u, μ, σ̃, γ) at u0. Let Un
1 denote

the numerical approximation of u1(nτ), where τ is the time step size. Then
the discretization of (9) leads to

Un+1
1 = (I − JF (u0, μ, σ̃, γ)τ)−1Un

1
.
= AUn

1 ,
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Figure 6: Condition number of Jg(x, μ, ξ) v.s. R

where I is the identity matrix. This process transfers the linear stability to
the spectrum of A. Let |ρ(A)| denote the maximum of the absolute values of
the eigenvalues of A. If |ρ(A)| < 1, then ‖Un

1 ‖ → 0 yielding a stable system.
The system is unstable if |ρ(A)| > 1. Continuing with the working example
described in Section 3, namely R = 12.5, we computed the eigenvalues of A
for different values of μ along the radially asymmetric solution branches to
determine the stability which are displayed in Table 3. We note that “U”
and “L” represent the ”upper” and ”lower” branches, respectively.

Table 3 shows that the solution is unstable even before the parameter μ
reaches its first bifurcation point. This is in contrast with tumors growing
in porous media environment where spherical instability occurs only when μ
reaches the first bifurcation point. Moreover, all of the nonradial solutions
computed are unstable while there are some stable nonradial solutions for a
porous tumor [16].
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Table 3: Maximum eigenvalue for different values of μ

Radial branch M4 nonradial branch M6 nonradial branch
μ |ρ(A)| μ |ρ(A)| μ |ρ(A)|

1e-2 9.98647e-1 4.75766e-1U 1.00013 4.76956e-1U 1.00013
5e-2 9.99898e-1 4.76641e-1U 1.00026 4.77128e-1U 1.00014
1e-1 9.99996e-1 4.78324e-1U 1.00034 4.77297e-1U 1.00017
2e-1 1.00032 4.79012e-1U 1.00057 4.78802e-1U 1.00024
3e-1 1.00012 4.82764e-1U 1.00106 4.79208e-1U 1.00039
4e-1 1.00049 4.75766e-1L 1.00010 4.77093e-1L 1.00014
5e-1 1.00148 4.76000e-1L 1.00017 4.78053e-1L 1.0026
6e-1 1.00638 4.76290e-1L 1.00022 4.78727e-1L 1.0046
8e-1 1.01846 4.77101e-1L 1.00027 4.82026e-1L 1.0098
1 1.09861 4.77629e-1L 1.00032 4.84000e-1L 1.0147

puter cluster, but for providing access to a high memory node during the
period when we were parallelizing the differentiation code in Bertini.
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Appendix: Operators under the spherical coordinate

We use the notation �er, �eθ, �eφ for the unit normal vectors in the r, θ, φ direc-
tions, respectively; here 0 ≤ r ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. Then, written
in Cartesian coordinates in R

3,

�er = �e1 sin θ cos φ + �e2 sin θ sin φ + �e3 cos θ,

�eθ = �e1 cos θ cos φ + �e2 sin θ sin φ + �e3 cos θ,

�eφ = −�e1 sin φ + �e2 cos φ,

where (�e1, �e2, �e3) is the standard basis in R
3 in Cartesian coordinates.

The gradient of the vector ∇�v, where �v = (vr, vθ, vφ)T = vr�er+vθ�eθ+vφ�eφ,
is given by

∇�v = ∇vr ⊗ �er + ∇vθ ⊗ �eθ + ∇vφ ⊗ �eφ + vr∇�er + vθ∇�eθ + vφ∇�eφ. (10)

In polar spherical coordinates, the gradient of a function f has the following
form:

∇f =
∂f

∂r
�er +

1

r sin θ

∂f

∂φ
�eφ +

1

r

∂f

∂θ
�eθ.

15



Then, we can deduce the each term of (10) as follows,

∇vr ⊗ �er =

(
∂vr

∂r
�er +

1

r sin θ

∂vr

∂φ
�eφ +

1

r

∂vr

∂θ
�eθ

)
⊗ �er

=
∂vr

∂r
�er ⊗ �er +

1

r sin θ

∂vr

∂φ
�eφ ⊗ �er +

1

r

∂vr

∂θ
�eθ ⊗ �er

∇vθ ⊗ �eθ =
∂vθ

∂r
�er ⊗ �eθ +

1

r sin θ

∂vθ

∂φ
�eφ ⊗ �eθ +

1

r

∂vθ

∂θ
�eθ ⊗ �eθ

∇vφ ⊗ �eφ =
∂vφ

∂r
�er ⊗ �eφ +

1

r sin θ

∂vφ

∂φ
�eφ ⊗ �eφ +

1

r

∂vφ

∂θ
�eθ ⊗ �eφ

vr∇�er = vr

(
∂�er

∂r
�er +

1

r sin θ

∂�er

∂φ
�eφ +

1

r

∂�er

∂θ
�eθ

)
=

vr

r
(�eφ ⊗ �eφ + �eθ ⊗ �eθ)

vθ∇�eθ =
vθ

r
(cot θ�eφ ⊗ �eφ − �er ⊗ �eθ)

vφ∇�eφ = −vφ

r
(cot θ�eθ ⊗ �eφ + �er ⊗ �eφ)

Therefore, we summarize the gradient of velocity as

∇�v =

⎛
⎜⎝

∂vr

∂r
, 1

r
∂vr

∂θ
, 1

r sin θ
∂vr

∂φ
∂vθ

∂r
− vθ

r
, 1

r
∂vθ

∂θ
+ vr

r
, 1

r sin θ
∂vθ

∂φ
∂vφ

∂r
− vφ

r
, 1

r

∂vφ

∂θ
− cot θ

r
vφ,

1
r sin θ

∂vφ

∂φ
+ vr

r
+ cot θ

r
vθ

⎞
⎟⎠ .

A vector Laplacian can be defined for a vector �v by

Δ�v = ∇(∇ · �v) −∇× (∇× �v).

Moreover, the curl ∇× �v under spherical coordinates is given by

∇×�v =
�er

r sin θ

[
∂

∂θ
(vφ sin θ) − ∂vθ

∂φ

]
+

�eθ

r sin θ

[
∂vr

∂φ
− sin θ

∂

∂r
(rvφ)

]
+

�eφ

r

[
∂

∂r
(rvθ) − ∂vr

∂θ

]
.

Thus, the Laplacian of velocity can be expressed as

Δ�v =

⎛
⎜⎜⎝

1
r

∂2(rvr)
∂r2 + 1

r2
∂2vr

∂θ2 + 1
r2 sin2 θ

∂2vr

∂φ2 + cot θ
r2

∂vr

∂θ − 2
r2

∂vθ

∂θ − 2
r2 sin θ

∂vφ

∂φ − 2vr

r2 − 2 cot θ
r2 vθ

1
r

∂2(rvθ)
∂r2 + 1

r2
∂2vθ

∂θ2 + 1
r2 sin2 θ

∂2vθ

∂φ2 + cot θ
r2

∂vθ

∂θ − 2
r2

cot θ
sin θ

∂vφ

∂φ + 2
r2

∂vr

∂θ − 1
r2 sin2 θvθ

1
r

∂2(rvφ)
∂r2 + 1

r2
∂2vφ

∂θ2 + 1
r2 sin2 θ

∂2vφ

∂φ2 + cot θ
r2

∂vφ

∂θ + 2
r2 sin θ

∂vr

∂φ + 2 cot θ
r2 sin θ

∂vθ

∂φ − 1
r2 sin2 θ vφ

⎞
⎟⎟⎠ .
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