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Abstract

Homotopy continuation is an efficient tool for solving polynomial systems.
Its efficiency relies on utilizing adaptive stepsize and adaptive precision
path tracking, and endgames. In this article, we apply homotopy contin-
uation to solve steady state problems of hyperbolic conservation laws. A
third-order accurate finite difference weighted essentially non-oscillatory
(WENO) scheme with Lax-Friedrichs flux splitting is utilized to derive
the difference equation. This new approach is free of the CFL condi-
tion constraint. Extensive numerical examples in both scalar and system
test problems in one and two dimensions demonstrate the efficiency and
robustness of the new method.
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1 Introduction

Numerical simulation of hyperbolic conservation laws has been a major research
and application area of computational mathematics in the last few decades.
Weighted essentially non-oscillatory (WENO) finite difference/volume schemes
are a popular class of high order numerical methods for solving hyperbolic par-
tial differential equations (PDEs). They have the advantage of attaining uniform
high order accuracy in smooth regions of the solution while maintaining sharp
and essentially monotone transitions of discontinuities. The first WENO scheme
was constructed in [21] for a third-order accurate finite volume version. In [19],
third- and fifth-order accurate finite difference WENO schemes in multi-space
dimensions were constructed, with a general framework for the design of the
smoothness indicators and nonlinear weights. Later, WENO schemes on un-
structured meshes were developed for dealing with complex domain geometries
[14, 36]. For steady state problems of hyperbolic conservation laws, efficiently
solving the large nonlinear system derived from the WENO discretization is still
a challenging problem.

A popular approach for solving steady state problems is the time march-
ing method. Starting from an initial condition, the numerical solution evolves
into a steady state by using a time stepping scheme. For examples using this
kind of approach, see the numerical experiments in [19] and high order residual
distribution (RD) conservative finite difference WENO schemes for solving the
steady state problems in [7]. The class of RD schemes for solving steady state
problems were developed in, e.g. [8, 25, 26, 2, 1]. They use a similar pointwise
representation of the solution as in finite difference schemes, but allow conser-
vative approximations with high order accuracy on very general meshes. In [7],
a high order accurate residual by a WENO integration procedure was computed
directly and the resulting RD-WENO schemes achieved both high order accu-
racy and conservativeness on arbitrary Cartesian or curvilinear meshes without
any smoothness assumption.

A big advantage of the time marching method is that the computed steady
state is stable and usually carries physical properties of the system and the
initial condition. However, from the point of view of computational efficiency,
the computational cost of time marching method for obtaining a steady state
solution is not linear due to restricted time-step sizes by the well-known Courant-
Friedrichs-Lewy (CFL) condition [10]. One way to improve this is to take ad-
vantage of the properties of hyperbolic PDEs, i.e., information propagates along
characteristics from boundaries of a steady state problem. In [37, 34] a class
of iterative methods, called “fast sweeping methods” [38], have been combined
with WENO schemes to accelerate the convergence of the time marching ap-
proach. Fast sweeping methods utilize alternating sweeping strategy to cover a
family of characteristics in a certain direction simultaneously in each sweeping
order. Coupled with the Gauss-Seidel iterations, the methods can achieve a fast
convergence speed for computations of steady state solutions. Recently, this
acceleration approach has been applied for the case of hyperbolic conservation
laws in [6]. Another way to improve the convergence is to design new smooth-
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ness indicators. In [35], a new smoothness indicator is introduced to remove
the slight post-shock oscillations and the numerical residue so that the WENO
schemes can converge to machine precision.

It is desirable to design a numerical method for solving steady state problems
with linear computational complexity. Such methods need to be free of the CFL
conditions. For the large nonlinear system derived from the WENO discretiza-
tion, one way to solve this system is to apply Newton iterations. A Newton
iteration based method was adopted to solve the steady two dimensional Euler
equations in [15, 16, 18]. The matrix-free Squared Preconditioning is applied
to Newton iterations nonlinearly preconditioned by means of the flow solver in
[17]. In this paper, we design a novel method to solve the large nonlinear system
directly. This new method has linear computational complexity and is free of
CFL conditions, as shown in our numerical experiments.

Discretizing many systems of nonlinear differential equations produces sparse
polynomial systems. Numerical algorithms based on techniques arising in alge-
braic geometry, collectively called numerical algebraic geometry, have been de-
veloped to solve polynomial systems. Over the last decade, numerical algebraic
geometry (see [20, 29, 32] for some background), which grew out of continuation
methods for finding all isolated solutions of systems of nonlinear multivariate
polynomials, has reached a high level of sophistication. Even though the poly-
nomial systems that arise by discretizing differential equation system are many
orders of magnitude larger than the polynomial systems that the algorithms of
numerical algebraic geometry have been applied to, these algorithms can still
be used efficiently to investigate such polynomial systems.

The major tool in numerical algebraic geometry is homotopy continuation.
For a given system of polynomial equations to be solved, a homotopy between
the given system and a new system (which is easier to solve and share many
features with the former system) can be constructed (see §3 for a detailed de-
scription of this method in this context). Then, one tracks paths starting from
each solution of the new system as one moves towards the original system along
the homotopy, thereby obtaining solutions of the original system. The homo-
topy method computes all the complex (which obviously include real) solutions
of a system which is known to have only isolated solutions. In this paper, we
utilize a homotopy continuation approach to compute steady states of hyper-
bolic systems and demonstrate that this new approach can easily handle singular
systems and also be used to find multiple steady states. The numerical exper-
iments show that the homotopy method is competitive with the Newton based
methods [15, 16, 18] and is faster than the classical time marching methods.

The organization of the article is as follows. We propose a homotopy method
based on a third order finite difference WENO scheme in §2. In §3, we describe
homotopy continuation and endgames. Extensive numerical simulation results
are contained in §4 for one- and two-dimensional scalar and system steady state
problems to demonstrate the behavior of our scheme. We conclude in §5.
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2 Numerical methods

In this article, we solve both one-dimensional and two-dimensional steady state
hyperbolic conservation laws. We use a third order accurate finite difference
WENO scheme with Lax-Friedrichs flux splitting to discretize the PDEs. The
advantage of using a finite difference WENO scheme is that we can perform
the WENO reconstructions in a dimension-by-dimension manner, to achieve
better efficiency than a finite volume WENO scheme in multi-dimensions [19].
For simplicity, we describe the scheme for solving one-dimensional problems. To
solve multi-dimensional problems, one can simply use a dimension-by-dimension
approach.

Consider the following one-dimensional hyperbolic conservation laws

ut +
(
f(u)

)
x
= g(u, x).

Setting ut to zero, the steady state problem becomes

(
f(u)

)
x
− g(u, x) = 0.

For an initial condition u0, we introduce the homotopy

H(u, ǫ) =
((
f(u)

)
x
− g(u, x)− ǫuxx

)
(1 − ǫ) + ǫ(u− u0) ≡ 0, (2.1)

where ǫ is a parameter between 0 and 1. In particular, when ǫ = 1, the ini-
tial condition automatically satisfies (2.1) and, when ǫ = 0, (2.1) becomes the
steady state problem. The term ǫuxx is introduced and guarantees that steady
states obtained by homotopy function satisfy the entropy condition. It can also
smooth the solution during the iterations and benefit the convergence of New-
ton’s corrector. Moreover, the initial condition u0 is also built in the homotopy
function, and plays a role in computing steady state solution when ǫ is tracked.

To compute using (2.1), we discretize using the uniform grid {xi}i=0,...,N

with corresponding grid function {ui}i=0,...,N . The finite difference scheme with
Lax-Friedrichs flux for solving (2.1) becomes

H(u, ǫ) =(
f̂
i+1

2

−f̂
i−

1
2

h − g(ui, xi)− ǫui+1+ui−1−2ui

h2

)
(1− ǫ) + ǫ(ui − u0

i ) ≡ 0
(2.2)

where u = (u0, . . . , uN)T and h is the uniform step size in the grid. Here, the
derivative f(u)x at xi is approximated by a conservative flux difference

f(u)x

∣∣∣∣
x=xi

≈ 1

h

(
f̂i+1/2 − f̂i−1/2

)
, (2.3)

where, for the third order WENO scheme, the numerical flux f̂i+1/2 depends on
the three point values f(ul), l = i−1, i, i+1, when the wind is positive (i.e., when
f ′(u) ≥ 0 for the scalar case, or when the corresponding eigenvalue is positive

4



for the system case with a local characteristic decomposition). This numerical

flux f̂i+1/2 is written as a convex combination of two second order numerical
fluxes based on two different substencils of two points each, and the combination
coefficients depend on a “smoothness indicator” measuring the smoothness of
the solution in each substencil. The detailed formula is

f̂i+1/2 = w0

[
1

2
f(ui) +

1

2
f(ui+1)

]
+ w1

[
−1

2
f(ui−1) +

3

2
f(ui)

]
, (2.4)

where

wr =
αr

α1 + α2
, αr =

dr
(ǫ̃+ βr)2

, r = 0, 1. (2.5)

The numbers d0 = 2/3 and d1 = 1/3 are called the “linear weights” while
β0 = (f(ui+1)− f(ui))

2 and β1 = (f(ui)− f(ui−1))
2 are called the “smoothness

indicators.” The small positive number ǫ̃ is chosen to avoid the denominator to
be 0. We take ǫ̃ = 10−6 in this article.

When the wind is negative (i.e., when f ′(u) < 0), a right-biased stencil with
numerical values f(ui), f(ui+1), and f(ui+2) are used to construct a third order

WENO approximation to the numerical flux f̂i+1/2. The formulae for negative
and positive wind cases are symmetric with respect to the point xi+1/2. For the
general case of f(u), we perform the “Lax-Friedrichs flux splitting”

f+(u) =
1

2
(f(u) + αu), f−(u) =

1

2
(f(u)− αu), (2.6)

where α = maxu |f ′(u)|. The positive wind part is f+(u) while f−(u) is
the negative wind part. Corresponding WENO approximations are applied to
find numerical fluxes f̂+

i+1/2 and f̂−
i+1/2 respectively. The final numerical flux

f̂i+1/2 = f̂+
i+1/2 + f̂−

i+1/2. See [19, 27, 28] for more details.

For the homotopy H(u, ǫ), the initial condition is continuously transformed
into a steady state solution, as ǫ decreases from 1 to 0. In order to avoid
singularities during the path tracking, we add a random complex number γ into
the homotopy function, i.e.,

H(u, ǫ) =(
f̂
i+1

2

−f̂
i−

1
2

h − g(ui, xi)− ǫui+1+ui−1−2ui

h2

)
(1− ǫ) + γǫ(ui − u0

i ) ≡ 0.
(2.7)

This remarkable technique of utilizing a randomly chosen complex number γ,
called the γ-trick in the literature, makes sure that there are no singularities or
bifurcations along the path. This γ-trick is an illustration of the use of so-called
probability-one methods [29]. Although the γ-trick adds additional memory and
computational cost via complex arithmetic, it is a small price to pay for avoiding
singularities and bifurcations. The homotopy method to compute steady state
solutions is free of the CFL condition. The parameter ǫ only depends on the pre-
set maximal step size and the local conditioning of the system. It does not depend
on the wave speed of the hyperbolic system. Hence it does not need to be decreased
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along with the spatial mesh refinement. In the numerical experiments, we will
show that our homotopy approach is free of the CFL condition and has linear
computational complexity. This is a significant advantage leading to a much
faster convergence of the homotopy method than the time marching method.

We summarize our homotopy continuation approach for computing steady
state solutions in the following algorithm and expand upon the steps in the
following section.

Algorithm 1: Homotopy continuation to compute steady state solutions

Input : The initial condition u0 as the solution of H(u, 1); the
maximum step size during the path tracking; ǫend: a number
between 0 and 1 which indicates where to start the endgame
algorithm.

Output: A steady state solution
Set ǫ = 1.
while ǫ >= ǫend do

set the stepsize ∆ǫ by using adaptive stepsize control algorithm;
use predictor/corrector to compute corresponding solution at ǫ+∆ǫ.

end

Run the endgame algorithm to compute a solution to H(u, 0) = 0.

3 Numerical homotopy tracking

In this section, we outline the numerical method for one of the most power-
ful tools in numerical algebraic geometry, the so-called homotopy continuation
tracking. We give a brief explanation of the principles and algorithms involved
as well as advertise some available software packages.

We consider a general homotopy H(u, t) = 0, where u consists of the vari-
ables and t ∈ [0, 1] is the path tracking parameter. When t = 1, we assume
that we have known solutions to H(u, 1) = 0. The known solutions are called
start points and the system H(u, 1) = 0 is called the start system. At t = 0, we
recover the original system that we want to solve, called the target system. The
problem of getting the solutions of the target system now reduces to tracking
solutions of H(u, t) = 0 from t = 1 where we know solutions to t = 0. The
numerical method used in path tracking from t = 1 to t = 0 arises from solving
the Davidenko differential equation:

dH(u(t), t)

dt
=

∂H(u(t), t)

∂u

du(t)

dt
+

∂H(u(t), t)

∂t
= 0.

In particular, path tracking reduces to solving initial value problems numerically
with the start points being the initial conditions. Since we also have an equa-
tion which vanishes along the path, namely H(u, t) = 0, predictor/corrector
methods, such as Euler’s predictor and Newton’s corrector, are used in prac-
tice to solve these initial value problems. Additionally, the predictor/corrector
methods are combined with adaptive stepsize and adaptive precision algorithms
[4, 5] to provide reliability and efficiency.
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Even though high-order prediction methods are used in practice, we will
focus on Euler’s method for simplicity. Both prediction based on Euler’s method
and correction based on Newton’s method arise from considering the following
local model obtained via a Taylor expansion:

H(u+∆u, t+∆t) ≈ H(u, t) +
∂H

∂u
(u, t)∆u+

∂H

∂t
(u, t)∆t.

If we have a solution (u, t) on the path, that is, H(u, t) = 0, one may predict
to a new solution at t +∆t by setting H(u + ∆u, t +∆t) = 0 and solving the
first-order terms to obtain Euler’s method, namely

∆u = −
(
∂H

∂u
(u, t)

)−1
∂H

∂t
(u, t)∆t. (3.8)

On the other hand, if H(u, t) is not as small as one would like, one may
hold t constant by setting ∆t = 0 and solving the first-order terms to obtain
Newton’s method, namely

∆u = −
(
∂H

∂u
(u, t)

)−1

H(u, t). (3.9)

The main concerns for implementing a numerical path tracking algorithm is to
decide which predictor/corrector method to employ, the size of the step ∆t, and
the precision used to provide reliable computation. See [5, 29] for more details
regarding the construction and implementation of a path tracking algorithm.

The basic idea for a path tracking algorithm is as follows. If the initial
prediction is not adequate, the corrector fails and the algorithm responds by
shortening the stepsize to try again. For a small enough step and a high enough
precision, the prediction/correction cycle must succeed and the tracker advances
along the path. Moreover, for too large a stepsize, the predicted point can be far
enough from the path that the rules set the precision too high that the algorithm
fails before a decrease in stepsize is considered. So we employ adaptive path
tracker [4, 5] that adaptively changes the stepsize and precision simultaneously.
This adaptive path tracker increases the security of adaptive precision path
tracking while simultaneously reducing the computational cost.

We shall not discuss the actual path tracking algorithms further, but it is
important to mention that these algorithms are designed to handle almost all
apparent difficulties such as tracking to singular endpoints. When the endpoint
of a solution path is singular, there are several approaches that can improve the
accuracy of its estimate. All the singular endgames [22, 23, 24] are based on
the fact that the homotopy continuation path u(t) approaching a solution of
H(u, t) = 0 as t → 0 lies on a complex algebraic curve containing (u, 0). For a
singular endpoint, Newton’s method applied to solve H(u, 0) is no longer satis-
factory since it loses its quadratic convergence or even diverges. The problem
of slow convergence would be expected since the prediction along the incoming
path may give a poor initial guess. Therefore, we need a different strategy to
deal with singular solutions, namely endgame algorithms.
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All singular endgames estimate the endpoint at t = 0 by building a local
model of the path inside a small neighborhood containing t = 0. First, due to
slowly approaching singular solutions, the endgames sample the path as close as
possible to t = 0. The simplest endgame approach is to simply track the path
as close to t = 0 as possible using extended precision to attempt to obtain the
same accuracy as a nonsingular solution. The Cauchy integral endgame [22] is
based on the use of the Cauchy Integral Theorem to estimate the solution of
H(u, 0) = 0. The Cauchy Integral Theorem states that

u(0) =
1

2πc

∫ 2πc

0

u
(
Re

√
−1θ

)
dθ,

where c is the winding number. Because of periodicity, the trapezoid method
is an excellent scheme used to evaluate this integral which yields an estimate
of u(0) with error of the same magnitude as the error with which we know the

sample values u
(
Re

√
−1θ

)
.

In summary, the numerical strategy of the Cauchy endgame is to first track

u(t) until t = R for some R ∈ (0, 1). We then track u
(
Re

√
−1θ

)
as θ varies,

to both determine the winding number c and to collect samples around this
circular path. There are several good ways to determine c, with one obvious
option being to directly measure the winding number by tracking a circular
path, t = Re

√
−1θ until the path closes up at θ = 2πc with c a positive number,

namely, with u
(
Re2πc

√
−1

)
= u(R).

We refer to [22, 23, 24, 29] for more on endgame methods such as the power-
series method and the clustering or trace method. Many of these endgames are
implemented in several sophisticated numerical packages well-equipped with
path trackers such as Bertini [3], PHCpack [31], and HOMPACK [33]. Their
binaries are all are available as freeware from their respective research groups.

4 Numerical results

In this section, we provide numerical experimental results to demonstrate the
behavior of the homotopy method. In some examples, we compare this method
with the time marching approach. The time marching approach uses the same
third order finite difference WENO scheme with the second order TVD Runge-
Kutta method (TVD-RK2) [27]. The stopping criteria is based on the numerical
residual, namely ‖ut‖L1 ≤ 10−15. All the examples were run on a Xeon 5410 pro-
cessor running 64-bit Linux. All the numerical experiments show that winding
number is less than 5, therefore the endgame algorithm is efficient to approach
the steady state solution.
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4.1 One-dimensional scalar problems

4.1.1 Example 1

Consider the steady state solutions of the Burgers equation with a source term

ut +

(
u2

2

)

x

= sin(x) cos(x), x ∈ [0, π]

with initial condition u(x, 0) = β sin(x) and boundary condition u(0, t) =
u(π, t) = 0. This problem was studied in [30] as an example of a problem with
a unique steady state for a given initial condition. The steady state solution to
this problem depends upon the value of β: a shock forms within the domain if
β ∈ [−1, 1]; otherwise, the steady state solution is smooth. In particular,

u(x,∞) =

{
sin(x) x < xs

− sin(x) x > xs
, (4.10)

where xs, the “shock” location, is π − sin−1
(√

1− β2
)
.

In order to test the order of accuracy to a smooth steady state solution, we
take β = 2 yielding u(x,∞) = sinx. We use our homotopy method with the
Lax-FriedrichsWENO3 fluxes, and present the numerical results in Table 1. The
convergence to third order accuracy of L1 and L∞ error is clearly observed from
this data. In Table 1, we compare the CPU time of our homotopy method with
the time marching approach using TVD-RK2. It is obvious that the homotopy
method is much more efficient than the time marching approach. Furthermore,
via a mesh refinement study, we observe that the CPU time increases linearly
for the homotopy method. This shows that the computational cost is O(N) (N
is the number of spatial grid points) and the homotopy approach is free of the
CFL condition.

Table 1: Errors and numerical orders of accuracy of WENO3 scheme for Exam-
ple 4.1.1 with N points

N L1 error Order L∞ error Order computing time
homotopy TVD-RK2

20 3.68e-2 – 1.55e-2 – 0.21s 0.18s
40 7.49e-3 2.30 4.38e-2 1.83 0.47s 0.69s
80 1.21e-3 2.63 9.12e-3 2.26 1.02s 2.52s
160 1.71e-4 2.82 1.60e-3 2.51 1.98s 9.85s
320 2.18e-5 2.97 2.24e-4 2.84 4.03s 39.10s
640 2.76e-6 2.98 2.90e-5 2.95 8.48s 154.93s

Remark: The steady state system of this example is singular since there
exists a sequence of steady state solutions depending upon the “shock” location
xs. Due to this singularity, Newton schemes have convergence difficulties. How-
ever, endgame algorithms can handle this singularity. A similar two-dimensional
case presented in Example 4.3 is also singular.
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4.1.2 Example 2

We consider the same problem as in Example 4.1.1, but take β = 0.5 in the
initial condition. As mentioned in the previous example, a shock will form
within the domain, which separates branches of the steady state. For this value
of β, the shock is located at 2.0944. Figure 1 displays the numerical solution
for different values of ǫ. Additionally, we verify that the numerical shock is at
the correct location and is resolved well for ǫ = 0.

The convergence of the solutions with respect to ǫ for various β is plotted in
Figure 2. Here u(x, ǫ) is the solution of homotopy function H(u, ǫ) in (2.2). In
this case, a sequence u(x, ǫn) converges to u(x, 0). In Figure 2, ‖u(x, ǫ)−u(x, 0)‖
is the L2 norm of the difference of u(x, ǫ) and u(x, 0). The step size of ǫ is
determined by the adaptive path tracking method. In summary, this shows
that the homotopy method converges to the steady states in roughly 10 to 20
steps. In Table 2, we can observe that the iteration number is approximately
a constant when the spatial mesh is refined, for a fixed β value. Again, this
shows that our homotopy approach is free of the CFL condition, and has linear
computational complexity.
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Figure 1: The real part and imaginary part of numerical solution along path
tracking from ǫ = 1 to 0 with 200 grid points. For ǫ = 0, the real part of
numerical solution (stars) is compared with the exact solution (solid line), while
the imaginary part goes to 0.
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Figure 2: The convergence of solutions with respect to ǫ for different β with 100
grid points. The maximum stepsize is 1/10.

Table 2: Iteration numbers for Example 4.1.1 with N points
N iteration number

β = 0 β = 0.5 β = 1.5 β = 2
20 14 16 12 10
40 17 16 14 11
80 18 17 13 14
160 18 19 14 15
320 20 20 14 14
640 22 19 12 13

4.1.3 Example 3

We consider the steady state solutions of Burgers equation with a different
source term, namely

ut +

(
u2

2

)

x

= − π cos(πx)u, x ∈ [0, 1]
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with boundary conditions u(0, t) = 1 and u(1, t) = −0.1, and initial condition

u(x, 0) =

{
1 x < 0.5

−0.1 x ≥ 0.5
. (4.11)

This problem has two steady state solutions with shocks, namely

u(x,∞) =

{
1− sin(πx) x < xs

−0.1− sin(πx) x ≥ xs
, (4.12)

where xs = 0.1486 for one and xs = 0.8514 for the other.
Both solutions satisfy the Rankine-Hugoniot jump condition and the entropy

conditions, but only the one with the shock at 0.1486 is stable for small per-
turbations. This problem was studied in [9] as an example of multiple steady
states for one-dimensional transonic flows. The classical method [7] shows that
the numerical solution converges to the stable one when starting with a reason-
able perturbation of the stable steady state.

However, with some minor modifications, our homotopy method can find
all the steady state solutions when ǫ approaches zero. To accomplish this,
we first compute all solutions of the the polynomial system (2.2) for ǫ = 0.1
using bootstrapping method [11], which we shall summarize. The discretized
polynomial system is completely solved on a coarse grid, say 10 grid points,
first. Then, to obtain solutions for a finer grid, say 20 grid points, we first solve
subsystems on each subdomain, whose length is 2 in this setup. The solutions
are obtained by using homotopy continuation to build from the solutions of the
subdomains. Solutions to even finer grids, say 320 grid points, can be obtained
by iterating this bootstrapping approach. Table 3 shows the number of complex
solutions at ǫ = 0.1 and the real solutions produced at ǫ = 0. This table clearly
demonstrates that there are 2 steady states, which are displayed in Figure 3.

Remark: Our method can find multiple solutions of the steady state sys-
tem. However, some steady state solutions might be unstable or not physical.
Stabilities of these steady state solutions could be verified by perturbation the-
ory and a time marching approach [12, 13]. The computational cost of the
verification is typically much smaller than a direct time marching method for
computing steady states. This occurs since one only needs to add small random
perturbations to the already obtained steady state solution and use it as the
initial condition for time marching.

4.2 One-dimensional systems

4.2.1 Example 4

Consider the steady state solutions to the one-dimensional shallow water equation
(

h
hu

)

t

+

(
hu

hu2 + 1
2gh

2

)

x

=

(
0

−ghbx

)
, (4.13)

where h denotes the water height, u is the velocity of the fluid, b(x) represents
the bottom topography, and g is the gravitational constant.
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Table 3: Number of solutions for example 4.1.3
# of grid points # of complex solutions # of real solutions

for ǫ = 0.1 for ǫ = 0
10 256 32
20 169 20
40 34 6
80 20 3
160 2 2
320 2 2
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0

0.5

1

x

u

 

 

Exact
Numerical

0 0.5 1
−1

−0.5

0

0.5

1

x

u

 

 

Exact
Numerical

Figure 3: Steady state solutions for Example 4.1.3: the one on the left is stable
while the one on the right is unstable.

We consider the smooth bottom topography given by

b(x) = 5e−
2
5
(x−5)2 , x ∈ [0, 10].

The initial condition we consider is the stationary solution

h+ b = 10, hu = 0

with the exact steady state solution imposed by the boundary condition. By
starting from a stationary initial condition, which itself is a steady state solution,
we can check the order of accuracy. In particular, we tested our method using
the third order WENO scheme with the numerical results displayed in Table 4.
This clearly shows the third order of accuracy of both L1 and L∞ error. The
convergence of the solutions is presented in Figure 4.
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Table 4: Errors and numerical orders of accuracy for the water height h using
the homotopy method with WENO3 scheme for Example 4.2.1 with N points

N L1 error Order L∞ error Order
20 2.23e-1 – 4.28e-1 –
40 4.42e-2 2.23 5.81e-2 2.88
80 6.18e-3 2.84 8.04e-3 2.85
160 8.16e-4 2.92 9.12e-3 3.14
320 1.05e-4 2.95 1.15e-3 2.99
640 1.29e-5 3.02 1.45e-4 2.98
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Figure 4: The convergence of solutions with respect to ǫ with 100 grid points
for example 4.2.1. The maximum stepsize is 1/10.

4.2.2 Example 4

We next test our scheme on the steady state solution of the one-dimensional
nozzle flow problem




ρ
ρu
E




t

+




ρu
ρu2 + p
u(E + p)




x

= −a′(x)

a(x)




ρu
ρ2u

u(E + p)


 , (4.14)

where ρ denotes the density, u is the velocity of the fluid, E is the total energy,
γ is the gas constant, which is taken as 1.4, p = (γ − 1)(E − 1

2ρu
2) is the

pressure, and a(x) represents the area of the cross-section of the nozzle. We
follow the setup of [7]: starting with an isentropic initial condition having a
shock at x = 0.5. The mach number is linearly distributed (the inlet Mach
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number at x = 0 is 0.8. The outlet Mach number at x = 1 is 1.8) before and
after the shock with the area of the cross-section, a(x), determined by a function
of mach number as follows

a(x)f(Mach Number at x) = constant, for all x ∈ [0, 1],

and

f(w) =
w

(1 + δw2)d
, δ =

1

2
(γ − 1), d =

γ + 1

2(γ − 1)
.

The density ρ and pressure p at −∞ are 1.
In Figure 5, the numerical solution computed by our homotopy method using

the third order WENO scheme is compared with the exact solution. One can
clearly see that the shock is resolved well. We also analyze the convergence speed
by displaying the numerical solutions and the history of residues in Figure 6. In
particular, this shows that homotopy method approaches the exact solution in
only 27 steps (6.12 seconds CPU time) while the time marching method using
TVD-RK2 takes 52.19 seconds.
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Figure 5: Nozzle flow problem with 100 grid points. The numerical solutions
correspond to ǫ = 0.1, 0.005, and 0, respectively.
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Figure 6: Convergence of nozzle flow problem with 100 grid points. The maxi-
mum stepsize is 1/10.

4.3 Two-dimensional scalar problem

Consider the steady state problem for the two-dimensional Burgers’ equation
with a source term

ut +

(
1√
2

u2

2

)

x

+

(
1√
2

u2

2

)

y

= sin

(
x+ y√

2

)
cos

(
x+ y√

2

)
,

(x, y) ∈
[
0,

π√
2

]
×
[
0,

π√
2

]

with initial conditions

u(x, y, 0) = β sin

(
x+ y√

2

)
.

The boundary conditions are taken to satisfy the exact solution of the steady
state problem. The one-dimensional problem in Example 4.1.1 arises along the
northeast-southwest diagonal line. For this example we take β = 1.5, which

gives a smooth steady state solution u(x, y,∞) = sin

(
x+ y√

2

)
. The numerical

results shown in Table 5 clearly show that third order accuracy is achieved. As
that for the 1D problem, we compare the CPU time of our homotopy method
with the time marching approach using TVD-RK2. Again, we obtain the same
conclusion. The homotopy method has linear computational complexity, and it
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is free of the CFL condition. Figure 7 displays information regarding β = 2 and
β = 0.5. In particular, this shows that the correct shock location is obtained in
14 steps for β = 0.5.

Table 5: Errors and numerical orders of accuracy with WENO3 scheme for
Example 4.3 with N ×N points

N ×N L1 error Order L∞ error Order computing time
homotopy TVD-RK2

20× 20 3.49e-3 – 8.69e-3 – 4.89s 20.39s
40× 40 4.95e-4 2.31 1.32e-3 2.72 18.39s 153.39s
80× 80 6.33e-5 2.97 2.74e-4 2.92 81.21s 1127.23s

160× 160 7.62e-5 3.05 3.49e-5 2.97 335.75s 8228.52s
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Figure 7: Example 4.3 with 80 × 80 grid points. Top left: contour plot of
solution for β = 0.5; Top right: the numerical solutions with different ǫ versus
the exact solution along the cross section through the northeast to southwest
diagonal for β = 0.5; Bottom: the convergence of solutions for β = 0.5 and
β = 2 respectively.
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4.4 Two-dimensional systems

4.4.1 Cauchy–Riemann problem

We consider the Cauchy-Riemann problem

∂W

∂t
+A

∂W

∂x
+B

∂W

∂y
= 0, (x, y) ∈ [−2, 2]× [−2, 2], t > 0, (4.15)

where

A =

(
1 0
0 −1

)
and B =

(
0 1
1 0

)

with the following Riemann data W = (u, v)T :

u =





1 if x > 0 and y > 0,
−1 if x < 0 and y > 0,
−1 if x > 0 and y < 0,
1 if x < 0 and y < 0,

and v =





1 if x > 0 and y > 0,
−1 if x < 0 and y > 0,
−1 if x > 0 and y < 0,
2 if x < 0 and y < 0.

The solution is self-similar and therefore we can simplify the problem. For
W (x, y, t) = W̃

(
x
t ,

y
t

)
, (4.15) can be rewritten as

∂

∂ξ

[
(−ξI +A)W̃

]
+

∂

∂η

[
(−ηI +B)W̃

]
= −2W̃ , (4.16)

where ξ = x
t and η = y

t . We consider the system (4.16) as a steady state system
with time t = 1. The the shock location of the Riemann data is propagated
from the origin to (1, 1) and (−1, 1) for u and v, respectively. The boundary
conditions are given by the Riemann data after the shift of the shock location.
The numerical results are shown in Figure 8 and Figure 9.

4.4.2 Two-dimensional Euler equations

Our last example is to compute a steady state solution of a regular shock re-
flection problem for the two-dimensional Euler equations:

ut + (f(u))x + (g(u))y = 0, (x, y) ∈ [0, 4]× [0, 1], (4.17)

where u = (ρ, ρu, ρv, E)T , f(u) = (ρu, ρu2 + p, ρuv, u(E + p))T , and g(u) =
(ρv, ρuv, ρv2+p, v(E+p))T . Here ρ is the density, (u, v) is the velocity, E is the
total energy and p = (γ − 1)(E − 1

2 (ρu
2 + ρv2)) is the pressure. The constant

γ is the gas constant which is taken as 1.4 in our numerical tests.
The initial conditions are

(ρ, u, v, p) = (1.69997, 2.61934,−0.50632, 1.52819) on y = 1,

(ρ, u, v, p) =

(
1, 2.9, 0,

1

γ

)
otherwise
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Figure 8: Cauchy-Riemann problem with 50× 50 grid points.
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Figure 9: Convergence of example 4.4.1. The maximum stepsize is 1/10.

with boundary conditions

(ρ, u, v, p) = (1.69997, 2.61934,−0.50632, 1.52819) on y = 1,

and reflective boundary condition on y = 0. The left boundary at x = 0 is set
as an inflow with (ρ, u, v, p) =

(
1, 2.9, 0, 1

γ

)
, and the right boundary at x = 4

is set to be an outflow with no boundary conditions prescribed. The numerical
solutions obtained using the homotopy method with the WENO third order
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scheme are displayed in Figure 10. It can be clearly seen that the incident
and reflected shocks are well-resolved. Figure 11 shows the convergence of the
solution. It takes 22 steps (489.23 seconds) while using the Newton iteration
based method [18] takes 46 steps (1,012.37 seconds).
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Figure 10: Shock reflection for the density and the energy respectively with
100× 25 grid points.

5 Conclusion

In this article, we have designed a homotopy approach based on WENO finite
difference schemes for computing steady state solutions of conservation laws
in one and two dimensional spaces. The homotopy continuation method is
computationally less expensive and has the advantage that it can also be used
to find multiple steady states. Moreover, this homotopy method is free of the
CFL condition constraint. Using the above proposed algorithm as a beginning
step, generalization of the technique to three-dimensional problems and utilizing
discontinuous Galerkin (DG) methods are straightforward and will be carried
out in the future.
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