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ABSTRACT
Exceptional sets are the sets where the dimension of the fiber
of a map is larger than the generic fiber dimension, which we
assume is zero. Such situations naturally arise in kinematics,
for example, when designing a mechanism that moves when
the generic case is rigid. In 2008, Sommese and Wampler
showed that one can use fiber products to promote such sets
to become irreducible components. We propose an alter-
native approach using rank constraints on Macaulay matri-
ces. Symbolic computations are used to construct the proper
Macaulay matrices, while numerical computations are used
to solve the rank-constraint problem. Various exceptional
sets are computed, including exceptional RR dyads, lines on
surfaces in C3, and exceptional planar pentads.

Keywords
exceptional sets, exceptional mechanisms, symbolic-numeric,
Macaulay matrices, numerical algebraic geometry

1. INTRODUCTION
Consider the system of polynomials

F (x; p) =

 F1(x; p)
...

Fn(x; p)

 (1)

with variables x ∈ CN and parameters p ∈ CP . Denote
the solution set of F = 0 in CN+P as V(F ). The fiber over
p∗ ∈ CP , denoted Fp∗ ⊂ CN , is the solution set in CN of
the system of polynomial equations F (x; p∗) = 0. That is, if
πx(x; p) = x and πp(x; p) = p, then

Fp∗ = πx(π−1
p (p∗) ∩ V(F )). (2)

We present a symbolic-numeric approach for describing the
irreducible components of the exceptional set, which is the
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closure of the set of parameters p∗ where dimFp∗ > 0 in the
case when the generic fiber consists of finitely many points.

The main motivation for computing exceptional sets is the
computation of exceptional mechanisms [22, 25, 29, 28], that
is, computing mechanisms which have unexpected motion.
For example, a general Stewart-Gough platform is rigid hav-
ing 40 assembly modes. The subfamily consisting of Griffis-
Duffy platforms exhibit motion [10, 17]. Another family of
exceptional Stewart-Gough platforms was discovered in [8].
A full classification of the exceptional Stewart-Gough plat-
forms remains an open problem [24].

If πp(V(F )) ( CP , then the generic fiber is empty. Thus,
the exceptional set is simply

E(F ) = {p∗ ∈ CP | Fp∗ 6= ∅} = πp(V(F )),

which is the set of parameters p∗ for which F (x; p∗) = 0 has
at least one solution. Computing the set of polynomials that
vanish on E(F ) is the prime goal of classical elimination the-
ory. Rather than computing defining equations, the prime
goal of numerical elimination theory is to compute pseudo-
witness sets [13] for the irreducible components of E(F ).

Our focus is on the case when πp(V(F )) = CP . Let

dgf (F ) = min{dimFp∗ | p∗ ∈ CP ,Fp∗ 6= ∅}, (3)

which is the generic fiber dimension, i.e., there is a nonempty
Zariski open subset U ⊂ CP such that dimFp∗ = dgf (F ) for
all p∗ ∈ U . Our symbolic-numeric approach applies when
dgf (F ) = 0 and computes the irreducible components of

E(F ) = {p∗ ∈ CP | dimFp∗ > 0}. (4)

Since we are solely focused on the dimension of the fibers
and one may investigate each irreducible component of V(F )
independently, we will additionally assume that V(F ) is ir-
reducible and has multiplicity 1 with respect to F , i.e., the
ideal generated by F is prime. In particular, dimV(F ) = P .

One approach for computing exceptional sets is presented
in [25]. This method uses fiber products to “promote” the
exceptional sets to irreducible components. That is, they re-
duce the problem of computing exceptional sets to comput-
ing irreducible components of polynomial systems of the form F (x(1); p)

...

F (x(k); p)

 .
They provide bounds on k based on information about the
fiber dimension of the exceptional sets one aims to compute.



This fiber product approach is geometric which works by
adding new variables to increase the dimension of the cor-
responding solution set. Our approach, summarized in Sec-
tion 4, follows from an algebraic viewpoint and works by
imposing rank conditions on matrices. First, we need to
construct the matrices to impose the rank constraints. This
step, described in Section 2, uses symbolic computations to
compute a parameterized h-basis using linear algebra rou-
tines which could be performed in parallel. With this basis,
in hand, we then impose rank constraints on the Macaulay
matrices, described in Section 3. We impose the rank con-
straints using the method of [3] via numerical algebraic ge-
ometry to compute in parallel the rank-deficiency sets of the
matrix of coefficients, i.e., the Macaulay matrix. The result
of computing a parameterized h-basis is that the Macaulay
matrix has entries which only depend on the parameters p.
Several examples are presented in Section 5.

We note that there is another approach for computing
exceptional sets for linkages is through the theory of bonds,
e.g., see [1, 15, 16]. The main difference is that this combina-
torial technique is applicable to linkages while the fiber prod-
uct [25] and our new approach are general purpose methods.

Macaulay matrices have been used in related situations.
For example, [19] uses rank conditions on Macaulay matri-
ces to locate embedded components along with other sin-
gular sets. In [6], the left null spaces of Macaulay matrices
are related to syzygies. Also, [20] uses Macaulay matrices
to deflate, i.e., “regularize,” singular isolated solutions (see
also [7, 11, 30]). Macaulay matrices were also used to de-
velop a numerical local dimension test in [4].

2. CONSTRUCTING A PARAMETERIZED
BASIS

Let F : CN ×CP → Cn be a polynomial system as in (1).
As stated in the Introduction, we assume the following:

1. V(F ) ⊂ CN+P is irreducible of dimension P and has
multiplicity 1 with respect to F ; and

2. πp(V(F )) = CP where πp(x; p) = p.

This implies that dgf (F ) = 0, i.e., for p∗ in a nonempty
Zariski open subset of CP , the fiber Fp∗ of F over p∗ is
nonempty and contains finitely many points.

The following describes constructing a parameterized h-basis
for F (x; p). To do this, we first consider the nonparameter-
ized case and then return to the parameterized setting.

2.1 Hilbert function
Suppose that G : CN → Cn is a polynomial system such

that V(G) ⊂ CN is nonempty and has finitely many points.
Thus, the polynomial system G generates a zero-dimensional
ideal, namely

I = 〈G(x)〉 ⊂ C[x1, . . . , xN ].

We define the Hilbert function of G to be the Hilbert function
of C[x1, . . . , xN ]/I, i.e., HG : Z≥0 → Z≥0 where

HG(k) =

(
N + k

k

)
− dim I≤k

with I≤k being the vector space of polynomials in I of degree

at most k. The binomial coefficient
(
N+k
k

)
is simply the

dimension of the vector space of polynomials in N variables

of degree at most k. Since 0 < |V(G)| < ∞, we know that
there exists k∗ ≥ 0, called the index of regularity, such that

1 = HG(0) < HG(1) < · · · < HG(k∗) = HG(k∗ + 1) = · · · .

We will often write the function HG as the vector

[HG(0), HG(1), . . . , HG(k∗), HG(k∗ + 1)]

with the equality of the last two entries signifying the sta-
bilization of the Hilbert function.

Example 2.1. For the zero-dimensional system

G(x) = [x1x2 − x3, x21 − x2, x1 + x2 + x3 − 1]T ,

the Hilbert function of G is [1, 3, 3].

The Hilbert function for G can be computed directly from
a Gröbner basis for G using a graded ordering. Another
approach is via [9] given numerical approximations of the
points in V(G). This numerical approach uses the Macaulay
dual space at each point in V(G), which we summarize next.

2.2 Macaulay dual space
The Macaulay dual space, also called the local inverse sys-

tem, encodes the local multiplicity structure at a point with
respect to a system of equations. Techniques for computing
Macaulay dual spaces are described in [7, 11, 21, 23, 30].

Let G : CN → Cn be a polynomial system and x∗ ∈ CN .
For α ∈ (Z≥0)N , let xα =

∏
i x

αi
i , |α| =

∑
i αi, α! =

∏
i αi!,

and ∂α[x∗] : C[x1, . . . , xN ]→ C be defined by

∂α[x∗](h) =
1

α!

∂|α|h

∂xα

∣∣∣∣
x=x∗

.

When the point x∗ is clear from the context, we simply
write ∂α to mean ∂α[x∗]. Additionally, ∂xα will be used
interchangeably with ∂α. Consider the vector space

Dx∗ = spanC

{
∂α[x∗]

∣∣∣ α ∈ (Z≥0)N
}
.

The Macaulay dual space of G at x∗, denoted Dx∗(G), is the
vector subspace of Dx∗ consisting of all elements that vanish
on all polynomials in the ideal generated by G, namely

Dx∗ (G) =

{
∂ ∈ Dx∗

∣∣∣∣∣ ∂
(

n∑
i=1

hiGi

)
= 0, ∀hi ∈ C[x1, . . . , xn]

}
.

A Macaulay dual basis is a basis for the vector spaceDx∗(G).
Let mult(G, x∗) be the multiplicity of G at x∗. The follow-

ing theorem of Macaulay provides the relationship between
mult(G, x∗) for isolated x∗ ∈ V(G) and Dx∗(G).

Theorem 2.2. Let G : CN → Cn is a polynomial system
and x∗ ∈ V(G).

1. x∗ is isolated in V(G) if and only if dimDx∗(G) <∞.

2. If x∗ ∈ V(G) is isolated, dimDx∗(G) = mult(G, x∗).

Example 2.3. For the polynomial system

G = [x2 − x21, x22]T

one can easily verify that, for x∗ = (0, 0), we have

Dx∗(G) = spanC

{
∂1, ∂x1 , ∂x2 + ∂x21

, ∂x1x2 + ∂x31

}
.

Hence, mult(G, x∗) = dimDx∗(G) = 4.



The Macaulay dual space is dual to the localization of the
ideal of G at x∗. We can turn this into a global view of the
ideal by performing computations at the origin for a homo-
geneous ideal. Computations using this observation, which
included the ideas leading to this current paper, were de-
scribed in an initial draft by the first author [12]. Before ex-
ploring this relationship in the following section, we quickly
consider Macaulay dual spaces for homogeneous systems.

Suppose that G is homogeneous, that is,

Gi(λx) = λdiGi(x)

for each i = 1, . . . , n and any λ 6= 0 where di = degGi. Let
x∗ = 0 ∈ V(G) ⊂ CN . For each k ≥ 0, consider

Dk0 = spanC

{
∂α[0]

∣∣∣ α ∈ (Z≥0)N , |α| = k
}

and the corresponding subspace

Dk0 (G) =

{
∂ ∈ Dk0

∣∣∣∣ ∂
(∑n

i=1 hiGi
)

= 0,
∀hi ∈ C[x1, . . . , xn] homogeneous

}
.

In fact, HG(k)−HG(k−1) = dimDk0 (G) whereHG(−1) = 0.
For a homogeneous system G, Hp

G(k) = HG(k)−HG(k− 1)
is called the projective Hilbert function.

The vector space Dk0 (G) can be identified with the (right)
null space of the order k Macaulay matrix for G at 0, denoted
Mk

0(G), which is constructed as follows. The rows ofMk
0(G)

are indexed by tuples (i, β) where i = 1, . . . , n and β ∈
(Z≥0)N with |β| = k − degGi. In particular, the set of all
corresponding xβGi(x) forms a generating set of the vector
space of all homogeneous polynomials in 〈G(x)〉 of degree
k. The columns of Mk

0(G) are indexed by α ∈ (Z≥0)N such
that |α| = k. The ((i, β), α) entry of Mk

0(G) is

(Mk
0(G))((i,β),α) = ∂α[0]

(
xβGi(x)

)
.

Example 2.4. For the homogeneous polynomial system

G = [x0x2 − x21, x22]T

one can easily verify that HG(k) is

1, 4, 8, 12, 16, 20, 24, . . .

so that Hp
G(k) = HG(k)−HG(k − 1) = dimDk0 (G) is

1, 3, 4, 4, 4, . . . .

Since degG1 = degG2 = 2, M0
0(G) and M1

0(G) are 0 × 1
and 0×3 matrices, respectively, which, by definition, have a
1- and 3-dimensional null space respectively. Now,M2

0(G) is

∂x20
∂x0x1 ∂x0x2 ∂x21

∂x1x2 ∂x22
G1 0 0 1 −1 0 0
G2 0 0 0 0 0 1

which, as expected, has a 4-dimensional null space.

2.3 H-basis
As above, let G : CN → Cn be a polynomial system and

I = 〈G(x)〉 ⊂ C[x1, . . . , xN ] be the ideal generated by G.
One common approach in algebraic geometry is to study the
closure of affine algebraic sets, i.e., solution sets of polyno-
mial systems in CN , in projective space PN . Algebraically,
this corresponds studying the homogenization of an ideal.

For a polynomial f ∈ C[x1, . . . , xN ] of degree d, the ho-
mogenization of f , denoted fh ∈ C[y0, y1, . . . , yN ], is

fh(y0, . . . , yN ) = yd0f

(
y1
y0
, . . . ,

yN
y0

)
.

The homogenization of I is an ideal that is defined by ho-
mogenizing each element of I, namely

Ih = {fh | f ∈ I} ⊂ C[y0, y1, . . . , yN ].

Since I is generated by G, it always the case that

〈Gh(y)〉 ⊂ Ih.

However, the following shows this containment may be strict.

Example 2.5. Let G be as in Example 2.1. Then,

Gh(y) = [y1y2 − y0y3, y21 − y0y2, y1 + y2 + y3 − y0]T .

Since V(G) ⊂ C3 consists of 3 points and V(Gh) ⊂ P3 con-
sists of 4 points, we know 〈Gh(y)〉 ( Ih. This extra point lies
at “infinity” with coordinates [0, 0, 1,−1] ∈ P3. In fact, the
polynomial y1y3 − y22 is contained in Ih but not in 〈Gh(y)〉.

The polynomials G1(x), . . . , Gn(x) is called an h-basis for
the ideal I = 〈G(x)〉 if Gh1 (y), . . . , Ghn(y) is a basis for Ih. A
Gröbner basis with respect to any graded monomial ordering
is an h-basis.

Example 2.6. The system G from Example 2.1 is not an
h-basis, but it is easy to verify that the following is:

H(x) = [x1x2 − x3, x21 − x2, x1x3 − x22, x1 + x2 + x3 − 1]T .

In fact, G1(x), . . . , Gn(x) form an h-basis for I = 〈G(x)〉
if and only if HG(k) = Hp

Gh
(k) for all k ≥ 0. Before turning

to make this test effective, we consider a simple example.

Example 2.7. With G as in Example 2.1, HG(2) = 3 but
Hp

Gh
(2) = 4 which again shows that G is not an h-basis.

Let I be a zero-dimensional ideal with index of regular-
ity k∗ and Ih be the homogenization of I. The maximum
degree of a minimal generating set for Ih consisting of homo-
geneous polynomials is well-defined, called the Noether num-
ber, denoted β(Ih). In this zero-dimensional case, k∗ + 1 is
precisely the Castelnuovo-Mumford regularity of Ih yielding
β(Ih) ≤ k∗ + 1. Thus, one may use k∗ + 1 in the following.

Proposition 2.8. Suppose that G : CN → Cn is a poly-
nomial system such that V(G) is nonempty and finite. Let
I = 〈G(x)〉 ⊂ C[x1, . . . , xN ] and Ih ⊂ C[y0, . . . , yN ] be the
homogenization of I. The polynomials in G(x) form an h-
basis for I if and only if

HG(k) = Hp

Gh
(k) for k = 0, 1, . . . , β(Ih).

Proof. If G(x) forms an h-basis for I, we immediately
know that HG(k) = Hp

Gh
(k) for all k ≥ 0.

Conversely, we know Ih =
〈
Ih≤β(Ih)

〉
and 〈Gh(y)〉 ⊂ Ih.

By dimension counting, 〈Gh(y)〉k = Ihk for k = 0, 1, . . . , β(Ih)
where, for a homogeneous ideal J , Jk is the vector space of
polynomials in J of degree k. Hence, Ih = 〈Gh(y)〉 so that
G(x) forms an h-basis for I.



Corollary 2.9. Let G : CN → Cn be a polynomial sys-
tem such that V(G) nonempty and finite, I = 〈G(x)〉 ⊂
C[x1, . . . , xN ], and Ih ⊂ C[y0, . . . , yN ] be the homogenization
of I. If ` ≥ β(Ih) such that Hp

Gh
(`) = HG(`), then

HG(k) = Hp

Gh
(k) for k ≥ `.

Proof. The statement follows immediately from the fact
that, for k ≥ β(Ih), Ihk+1 = 〈Ihk 〉k+1.

As demonstrated in Example 2.5, the reason why 〈Gh(y)〉
may be strictly contained in Ih is due to extraneous solu-
tions at “infinity,” i.e., solutions contained in the hyperplane
defined by y0 = 0. In order to remove such solutions, one
simply saturates with respect to y0. This is described next.

2.4 Quotients and saturation
Suppose that J ⊂ C[y0, . . . , yN ] is a homogeneous ideal,

i.e., it has a basis consisting of homogeneous polynomials,
and f ∈ C[y0, . . . , yN ] is a homogeneous polynomial. The
quotient of J with respect to f is the ideal

J : f = {a ∈ C[y0, . . . , yN ] | a · f ∈ J}.

It is easy to verify that (J : f) : f = J : f2 and

J = J : f0 ⊂ J : f1 ⊂ J : f2 ⊂ · · · .

The ascending chain condition yields there exists `∗ ≥ 0 with

J = J : f0 ( J : f1 ( · · · ( J : f `
∗

= J : f `
∗+1 = · · · .

The ideal J : f `
∗

is called the saturation of J with respect
to f , which will be denoted J : f∞.

Example 2.10. For Gh(y) defined as in Example 2.5,

y0(y1y3 − y22) ∈ 〈Gh(y)〉.

Thus, y1y3 − y22 ∈ 〈Gh(y)〉 : y0. In fact,

〈Gh(y)〉 ( 〈Gh(y)〉 : y0 = 〈Gh(y)〉 : y∞0 = 〈G(x)〉h.

With the setup as above, let d = deg f . For any k ≥ 0,
we can compute Dk0 (J : f) from Dk+d0 (J) using the linear
operator Φf : D0 → D0 defined as follows:

Φf (∂)(g) = ∂(gf), ∀g ∈ C[x0, x1, . . . , xN ] homogeneous. (5)

When f = yi, then Φf reduces to the operator Φi defined
by [26, 27]. For the nonhomogeneous case, see [18].

Since Φf is a linear operator, Φf is described by how it
performs on basis elements. If |α| = k+d, Leibniz rule yields

Φf (∂α) =
∑
γ≤α
|γ|=d

∂γ(f)∂α−γ . (6)

where γ ≤ α means that γi ≤ αi for all i. This immediately
shows that Φf (Dk+d0 ) ⊂ Dk0 .

The following relates Dk0 (J) and Dk0 (J ∩ 〈f〉) under Φf .

Lemma 2.11. Let J ⊂ C[x0, x1, . . . , xN ] be a homogeneous
ideal and f ∈ C[x0, x1, . . . , xN ] be a homogeneous polyno-
mial. Then, for every k ≥ 0,

Φf (Dk0 (〈f〉)) = {0} and Φf (Dk0 (J)) = Φf (Dk0 (J ∩ 〈f〉)).

Proof. Let ∂ ∈ Dj0(〈f〉). For every g ∈ C[x0, x1, . . . , xN ],
gf ∈ 〈f〉 so that Φf (∂)(g) = ∂(gf) = 0 Hence, Φg(∂) = 0.

Assuming that Dk0 (J ∩ 〈f〉) = Dk0 (J) +Dk0 (〈f〉),

Φf (Dk0 (J ∩ 〈f〉)) = Φf (Dk0 (J) +Dk0 (〈f〉))
= Φf (Dk0 (J)) + Φf (Dk0 (〈f〉))
= Φf (Dk0 (J)).

Since J, 〈f〉 ⊃ J ∩ 〈f〉, it is clear from the definition that

Dk0 (J),Dk0 (〈f〉) ⊂ Dk0 (J ∩ 〈f〉)

which immediately implies

Dk0 (J) +Dk0 (〈f〉) ⊂ Dk0 (J ∩ 〈f〉)

Conversely, the inclusion-exclusion principle provides

dimDk0 (J ∩ 〈f〉) = Hp
J∩〈f〉(k)

= Hp
J(k) +Hp

〈f〉(k)−Hp
J+〈f〉(k).

Since, from the definition, Dk0 (J + 〈f〉) = Dk0 (J) ∩ Dk0 (〈f〉),

Hp
J(k) +Hp

〈f〉(k)−Hp
J+〈f〉(k)

= dimDk0 (J) + dimDj0(J)− dim
(
Dk0 (J) ∩Dk

0 (〈f〉)
)

= dim
(
Dk0 (J) +Dk0 (〈f〉)

)
.

Therefore, Dk0 (J ∩ 〈f〉) = Dk0 (J) +Dk0 (〈f〉).

We now aim to construct a one-sided inverse for Φf when
f 6= 0. If f = yi, a one-sided inverse of Φf was constructed
in [30] as the linear operator defined by Ψyi(∂β) = ∂β+ei . In
particular, Φyi ◦Ψyi is the identity operator. The following
generalizes the construction of such an operator.

Definition 2.12. Let f ∈ C[x0, . . . , xN ] be a nonzero ho-
mogeneous polynomial of degree d. Define the linear oper-
ator Ψf : D0 → D0 as follows. Write f =

∑
|α|=d fαx

α and

let ≺ be a graded lexicographic ordering on (Z≥0)N+1 with

α0 = min
≺
{α | |α| = d and fα 6= 0}.

For any β, γ ∈ (Z≥0)N+1 with |γ| − |β| = d, define

M(β, γ) =

{
fγ−β if γ ≥ β,
0 otherwise.

For any n ≥ 0 and β ∈ (Z≥0)N+1 with |β| = n, define

Ψf (∂β) =
∑

|α|=n+d

cα(β)∂α

where cα(β) is 0 when α 6≥ α0 and is

1

fα0

δ(α− α0, β)−
∑
|γ|=|α|
γ�α

M(α− α0, γ)cγ(β)


when α ≥ α0 where δ(ζ, ε) is Kronecker’s delta.

Lemma 2.13. If f ∈ C[x0, x1, . . . , xN ] is a nonzero homo-
geneous polynomial, then Φf ◦Ψf is the identity operator.

Proof. Fix k ≥ 0 and β ∈ (Z≥0)N+1 with |β| = k. Uti-
lizing the notation from Definition 2.12, for any γ ∈ (Z≥0)N+1

with |γ| = k, we claim

δ(γ, β) =
∑

|α|=k+d

M(γ, α)cα(β). (7)



This is shown by splitting the summation as∑
|α|=k+d

M(γ, α)cα(β) =
∑

|α|=k+d
α≺γ+α0

M(γ, α)cα(β)

+ M(γ, γ + α0)cγ+α0
(β)

+
∑

|α|=k+d
α�γ+α0

M(γ, α)cα(β).

Let α be such that |α| = k + d and α ≺ γ + α0. If α 6≥ α0,
cα(β) = 0. Otherwise, we must have M(γ, α) = 0 by con-
struction of α0. In particular,∑

|α|=k+d
α≺γ+α0

M(γ, α)cα(β) = 0.

Since M(γ, γ + α0) = fα0 , the definition of cγ+α0(β) yields

M(γ, γ + α0)cγ+α0(β) = δ(γ, β)−
∑

|α|=k+d
α�γ+α0

M(γ, α)cα(β)

which immediately yields (7).
The following using (6) and (7) completes the proof:

Φf (Ψf (∂β)) =
∑

|α|=k+d

cα(β)Φg(∂α)

=
∑

|α|=k+d

cα(β)
∑
γ≤α

∂α−γ(g)∂γ

=
∑

|α|=k+d

cα(β)
∑
|γ|=k

M(γ, α)∂γ

=
∑
|γ|=k

 ∑
|α|=k+d

M(γ, α)cα(β)

 ∂γ

=
∑
|γ|=k

δ(γ, β)∂γ = ∂β .

Theorem 2.14. Let J ⊂ C[x0, . . . , xN ] be a homogeneous
ideal and f ∈ C[x0, . . . , xN ] be a nonzero homogeneous poly-
nomial of degree d. Then, for every k ≥ 0,

Dk
0 (J : f) = Φf

(
Dk+d

0 (J)
)

= Φf
(
Dk+d

0 (J ∩ 〈f〉)
)
. (8)

Proof. Let ∂ ∈ Dk+d
0 (J). For any g ∈ J : f , we know

Φf (∂)(g) = ∂(gf) = 0. Hence, Φf (∂) ∈ Dk
0 (J : f).

Conversely, let ∂ ∈ Dk
0 (J : f). Suppose that g ∈ J ∩ 〈f〉.

Then, h = g
f
∈ J : f and

Ψf (∂)(g) = Ψf (∂)(hf) = Φf (Ψf (∂))(h) = ∂(h) = 0.

Thus, Ψf (∂) ∈ Dk+d
0 (J ∩ 〈f〉) and

∂ = Φf (Ψf (∂)) ∈ Φf (Dk+d
0 (J ∩ 〈f〉)).

In the zero-dimensional case of interest here, we can com-
pute an h-basis from the given system G as follows.

First, we compute the Hilbert functionHG using [9], which
also yields k∗. This requires computing numerical approx-
imations of the finitely many points in V(G) which can be
performed in parallel using homotopy continuation. Then,
for each point x∗ ∈ V(G), we independently computeDx∗(G)
which provides the necessary data for [9]. The null space
computations required here can be performed in parallel.

Secondly, we compute Dk0 (Gh) for increasingly larger k,
which can be performed using parallel null space computa-
tions, until we find ` such that

dim Φy`0
(Dr+`0 (Gh)) = HG(r) for r = 0, 1, . . . , k∗ + 1.

We again use parallel null space computations to compute a
basis for the vector space of polynomials of degree r that are
annihilated by Φy`0

(Dr+`0 (Gh)) for r = 0, 1, . . . , k∗ + 1. De-

homogenizing the generators, i.e., setting y0 = 1 and yi = xi
for i = 1, . . . , N , yields an h-basis for 〈G(x)〉.

To help reduce the degrees under consideration, one can
perform this computation iteratively by adding in the new
generators as they are found.

Example 2.15. In Example 2.10, we claimed

Ih = 〈G(x)〉h = 〈Gh(y)〉 : y0.

Since HG = [1, 3, 3] with k∗ = 1, the following table shows
computing the projective Hilbert functions using dual spaces:

k 0 1 2 3

〈Gh(y)〉 1 3 4 4

〈Gh(y)〉 : y0 1 3 3

which verifies this claim. The annihilators of the correspond-
ing dual spaces yields that Ih is generated by 1 linear and
7 quadratic polynomials, with the minimal generating set
consisting of 1 linear and 3 quadratic polynomials, say

y1 + y2 + y3 − y0, y1y2 − y0y3, y21 − y0y2, y1y3 − y22
which dehomogenizes to the h-basis H(x) in Example 2.6.

2.5 The parameterized case
The aforementioned computations can be performed over

the field generated by the coefficients. Moreover, with the
setup described at the beginning of Section 2, there is a
nonempty Zariski open subset U ⊂ CP such that the Hilbert
function of F (x; p∗) is the same for all p∗ ∈ U . In practice,
we select a random point p∗ ∈ CP , say using a complex
Gaussian distribution, so that, with probability one, p∗ ∈ U .

From the generic Hilbert function, we can compute a sys-
tem G(x; p), called a parameterized h-basis for F (x; p), such
that there is a Zariski open dense subset Z ⊂ CP where
G(x; p∗) is an h-basis of 〈F (x; p∗)〉 for all p∗ ∈ Z. To com-
pute a parameterized h-basis, we could first compute an h-
basis at a random p∗ ∈ CP . Then, we could recreate the
computations symbolically to yield a parameterized h-basis.

2.6 Example using RR dyad
We demonstrate computing a parameterized h-basis using

the inverse kinematic problem of an RR dyad. As shown in
Figure 1, the RR dyad consists of two legs of length `1 and
`2 together with two pin joints. The mechanism is anchored
at point O which, without loss of generality, we may assume
is the origin. Given a point P = (px, py), the problem is to
find the angles θ1 and θ2 so that the end of the second leg
is located at P . By treating sin(θj) and cos(θj) as indeter-
minants, namely, sj and cj , together with the Pythagorean
theorem, we start with the polynomial system

f(c1, c2, s1, s2; `1, `2, px, py) =


`1c1 + `2c2 − px
`1s1 + `2s2 − py
c21 + s21 − 1
c22 + s22 − 1

 .



O

`1

θ1

θ2

`2

P

Figure 1: RR dyad

Since the physically meaningful parameters have `i > 0,
we can use the linear equations to eliminate c2, s2, namely

F (c1, s1; `1, `2, px, py) =

[
s21 + c21 − 1

(px − `1c1)2 + (py − `1s1)2 − `22

]
.

It is well-known that F has two solutions for general pa-
rameters with generic Hilbert function [1, 2, 2] and index of
regularity k∗ = 1. In particular, there is a linear relation-
ship between c1 and s1. With the homogenizing variable y0,
M2

0(Fh) is the rank 2 matrix

∂y20
∂y0c1 ∂y0s1 ∂c21

∂c1s1 ∂s21
F1 −1 0 0 1 0 1
F2 p2x + p2y − `22 −2`1px −2`1py `21 0 `21

whose null space corresponds with D2
0(Fh). Then,

Φy0 (D2
0(Fh)) = spanC

{
py∂c1 − px∂s1 ,

2`1px∂y0 + (`21 − `22 + p2x + p2y)∂c1

}
which annihilates the linear polynomial

2`1pxc1 + 2`1pys1 − (`21 − `22 + p2x + p2y)y0.

In particular, a parameterized h-basis is

G(c1, s1; `1, `2, px, py) =[
s21 + c21 − 1

2`1pxc1 + 2`1pys1 − (`21 − `22 + p2x + p2y)

]
.

3. RANK-DEFICIENCY SETS
For x ∈ CN , suppose that A(x) ∈ Cm×n whose entries are

polynomial in x. For r = 0, 1, . . . ,min{m,n}, consider

Rr(A) = {x ∈ CN | rankA(x) ≤ r}.

Each Rr(A) is an algebraic set, in particular, it is closed un-
der both the Zariski and Euclidean topologies, since they are
defined by the vanishing of the determinants of all (r+1)×
(r + 1) submatrices of A(x), i.e., the (r + 1)-minors.

Instead of using determinants, we follow the approach
of [3] which uses a null space approach. Without loss of
generality, we may assume that m ≤ n. Then, A(x) has
rank r if and only if the left null space of A(x) has dimen-
sion m − r. In particular, there is a Zariski open subset
U ⊂ Cm×m such that, for every B ∈ U ,

Rr(A) =

{
x ∈ CN

∣∣∣∣ ∃Λ ∈ Cr×(m−r) s.t. A(x)T · B ·
[
I
Λ

]
= 0

}
.

where I is the (m− r)× (m− r) identity matrix.
The particular case of interest isRm−1(A), which we com-

pute using the simplification

Rm−1(A) = {x ∈ CN | ∃λ ∈ Pm−1 s.t. λ ·A(x) = 0} .

The advantage of using such an approach with numerical
algebraic geometry is that the system of equations is natu-
rally bihomogeneous and one avoids the exponentially many
determinants of potentially high degree. Moreover, using
the observation in [2] further helps to reduce the computa-
tion by only using slices in x rather than slices in (x, λ).
Such an approach can also be combined with intersection
via regeneration [14] to compute the rank-deficiency set.

4. ALGORITHM
We now describe our parallelizable hybrid symbolic-numeric

approach for computing exceptional sets. Since it requires
several random choices, say using a complex Gaussian dis-
tribution, this algorithm succeeds with probability one.

We assume, as input, F : CN ×CP → Cn is a polynomial
system as described in § 2. The output is a description of
the irreducible components of E(F ) described in (4) which
are presented via (pseudo)witness sets.

First, we compute a parameterized h-basis G using the
parallelizable symbolic-numeric technique described in § 2.
Let k∗ be the generic index of regularity and β be the maxi-
mum degree of the generators, which is the generic Noether
number. Let d := max{k∗, β}.

Construct a submatrix N ofMd
0(G) which generically has

full row rank, i.e., m := Hp

Gh
(d) which is the degree of a gen-

eral fiber. Since we know that we have either ≤ m points in
the fiber or infinitely many, E(F ) is contained in Rm−1(N ).
Thus, we compute the irreducible components of Rm−1(N )
via the parallelizable approach described in § 3.

Each irreducible component of Rm−1(N ) is either con-
tained in E(F ) or arose due to the choice of rows when
constructing N . In the latter case, we construct another
submatrix, which we also call N , possibly using a different
parameterized h-basis G, that, on this irreducible set, N has
generically rank m. We repeat the process with the newly
constructed N . Since the superfluous components decrease
in dimension each time, this process terminates after finitely
many loops yielding the irreducible components of E(F ).

4.1 Example using RR dyad
Let F with parameterized h-basis G be as defined in Sec-

tion 2.6. In this case, N = M2
0(G) is the following 4 × 6

matrix that generically has full rank:
−1 0 0 1 0 1
Z 2`1px 2`1py 0 0 0
0 Z 0 2`1px 2`1py 0
0 0 Z 0 2`1px 2`1py


where Z = `22− `21−p2x−p2y. Using Bertini [5], we find that
R3(N ) consists of 3 components:

V(`1, `2 − p2x − p2y) ∪ V(px, py, `1 + `2) ∪ V(px, py, `1 − `2).

It is easy to verify that each of these three are indeed con-
tained in E(F ) with only the last component containing
physically meaningful parameters, i.e., `i > 0.

We note that the reduction from f to F in Section 2.6
was based on the fact that physically meaningful parame-
ters have `2 > 0, which permitted us to easily demonstrate
the algorithm. Of course, one can repeat this process using
`1 > 0, i.e., eliminating c1 and s1, or simply using f .



5. EXAMPLES
The following examples used Bertini [5] to compute nu-

merical irreducible decompositions running on a node having
four AMD Opteron 6378 2.4 GHz processors, a total of 64
cores, with 128 GB memory. Supplementary files for the
following examples are available at www.nd.edu/~jhauenst/
exceptional.

5.1 Lines on surfaces
As a comparison with the fiber product approach of [25],

we use the formulation presented in [25, § 4] to demonstrate
the approaches to compute rulings of a quadric and lines
on a cubic in C3. In particular, even though such a for-
mulation is not the most efficient way for computing these,
they provide good test cases. To that end, suppose that
g : C3 → C is a polynomial that defines the surface. They
represent a line L ⊂ C3 via (u, v) ∈ (C3 \ {0}) × C3 where
L = {ut+ v | t ∈ C}. In fact, each line L is actually repre-
sented by a 2-dimensional family since (u, v) and (λu, v+µu)
generate the same line for any λ, µ ∈ C with λ 6= 0. Due to
this, we simplify the setup by writing u3 as a general affine
linear combination of u1 and u2, and v3 as a general affine
linear combination of u1, u2, v1, and v2.

With this setup, we aim to compute (u, v) such that the
corresponding line L is contained in V(g). This can be ac-
complished by computing the exceptional set of

F (x;u, v) =

[
g(x)

u× (x− v)

]
.

Here, × denotes the cross product of vectors in C3.

Rulings of a quadric
We first consider the hyperboloid of one sheet defined by

g(x) = x21 + x22 − x23 − 1.

It is well-known this hyperboloid and most quadric surfaces
in C3 are doubly ruled. That is, we are looking for curves
of lines contained in V(g). For a general linear polynomial
`(u, v), we follow [25] and consider the third fiber product
along with the linear `, say

F3(x(1), x(2), x(3);u, v) =


F (x(1);u, v)

F (x(2);u, v)

F (x(3);u, v)
`(u, v)

 .
Since the fiber product works by increasing the dimension,
we need to compute a numerical irreducible decomposition
of V(F3). Using Bertini, in 11 seconds, we found that V(F3)
consists of 12 irreducible components of dimension 3. Since
four have x(i) = x(j) for some i 6= j, there are 8 components
of interest, each of which is a linear space supported over
one parameter point. The 8 parameter points decompose
into witness point sets for the two rulings, which, in this
formulation, correspond with curves in (u, v) of degree 4.

We now use the approach of Section 4. The generic Hilbert
function is [1, 2, 2] with g and any two of the polynomials in
u× (x− v) forming a parameterized h-basis, say

G(x;u, v) =

 g(x)
u2(x3 − v3)− u3(x2 − v2)
u3(x1 − v1)− u1(x3 − v3)

 .

Since the 9 × 10 matrix M2
0(G) generically has rank 8,

we take N to be the 8 × 10 submatrix where we remove
the row corresponding to x3G3. As above, we restrict to
`(u, v) = 0. Using [2] with a natural 3-homogeneous setup
using Bertini, we compute in 4 seconds 148 points: 140
have some ui = 0 which arose from the construction and 8
points as above corresponding to the two rulings.

Lines on a cubic
We next consider the following variant of the Clebsch cubic
obtained from www.singsurf.org/parade/Cubics.php:

g(x) = 16x31 + 16x32 − 31x33 + 24x21x3 − 48x21x2
− 48x1x

2
2 + 24x22x3 − 54

√
3x23 − 72x3.

It is well-known that most cubic surfaces in C3 contain 27
lines with V(g) having all 27 lines being real. That is, if we
use real coefficients for the linear combinations describing
u3 and v3, each of the 27 lines corresponds to a real point
(u, v). In the cubic case, one needs the fourth fiber product,
which we denote by F4. As above, since the fiber product
works by increasing the dimension, we need to compute a
numerical irreducible decomposition of V(F4). Bertini, in
5.33 minutes, computes 41 irreducible components. Since 14
have x(i) = x(j) for some i 6= j, there are 27 components of
interest, each of which is a linear space supported over one
real parameter point corresponding to a line on the cubic.

We now use the approach of Section 4. The generic Hilbert
function is [1, 2, 3, 3] and we take a similar parameterized
h-basis G as above. Since the 21× 20 matrixM3

0(G) gener-
ically has rank 17, we take N to be the 17 × 20 submatrix
where we remove the four rows corresponding to xix3G3 for
i = 0, . . . , 3. Since the column corresponding to the coef-
ficient of x1x

2
3 has only one nonzero entry, namely u2, we

either have u2 = 0 which one can easily verify cannot yield
a line on the Clebsch cubic or the 16× 19 matrix removing
this column and corresponding row is rank deficient. In this
latter case, we use [2] with a natural 3-homogeneous setup
and Bertini to compute 3474 distinct points in 2.5 minutes:
3447 have some ui = 0 which arose from the construction
and 27 corresponding to the 27 lines on the Clebsch cubic.

5.2 Planar pentads
We conclude with a demonstration of our approach for

verifying the existence of the double parallelograms which
are moving planar pentads, e.g., see [29]. We start with the
following setup:

variables θ = (θ1, θ
′
1, θ2, θ

′
2, θ3, θ

′
3, θ4, θ

′
4),

parameters p = (u3, u
′
3, u4, u

′
4, v0, v

′
0, v4, v

′
4),

f(θ; p) =


θiθ
′
i − 1 for i = 1, . . . , 4

u1θ1 + u2θ2 + u4θ4 + 1
v0 + u1θ1 + u3θ3 + v4θ4
u′1θ
′
1 + u′2θ

′
2 + u′4θ

′
4 + 1

v′0 + u′1θ
′
1 + u′3θ

′
3 + v′4θ

′
4


where

u1 = −u3 − v0 − v4
u′1 = −u′3 − v′0 − v′4
u2 = u3 − u4 + v0 + v4 − 1
u′2 = u′3 − u′4 + v′0 + v′4 − 1.

Since the physically meaningful solutions have all parame-

www.nd.edu/~jhauenst/exceptional
www.nd.edu/~jhauenst/exceptional
www.singsurf.org/parade/Cubics.php


ters nonzero, we can eliminate θ2, θ
′
2, θ3, θ

′
3 to obtain

F (θ; p) =


θ1θ
′
1 − 1

θ4θ
′
4 − 1

(u1θ1 + u4θ4 + 1)(u′1θ
′
1 + u′4θ

′
4 + 1)− u2u

′
2

(v0 + u1θ1 + v4θ4)(v′0 + u′1θ
′
1 + v′4θ

′
4)− u3u

′
3

 .
The Hilbert function for F is generically [1, 5, 6, 6] with a pa-
rameterized h-basis, say G, consisting of 9 quadratics that
one readily computes using the parallelizable symbolic ap-
proach of Section 2.

Since N :=M2
0(G) is a 9×15 matrix that generically has

rank 9, we need to compute R8(N ). By simply factoring
the resulting polynomials in λ · N , we can remove factors
corresponding to the vanishing of parameters which are not
physically meaningful. We then solve the resulting system
using Bertini by cascading down the possible dimensions
of the set of exceptional parameters. The verification that
R8(N ) contains no sets of dimensions 7, 6, and 5 took 5,
14, and 80 seconds, respectively. In dimension 4, the only
component with all lengths nonzero is a linear space which
corresponds to the double parallelograms. We used an inter-
section based approach via [14] to compute this exceptional
set in a total of 225 seconds.
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