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The authors are hosting an AMS sponsored Mathematics
Research Community (MRC) on real numerical algebraic ge-
ometry. The research program developed by the authors
will focus on theory and algorithm design for real numeri-
cal algebraic geometry alongwith solving problems arising
in applications such as kinematics and chemical reaction
networks. This article provides some background and an
introduction to the themes of this MRC. Interested pure
and applied researchers in mathematics and fields related
to the applications are encouraged to apply.

1. Real Numerical Algebraic Geometry
Numerical algebraic geometry (65H14 inMSC2020) is the
mathematical subject area focused on numerically com-
puting and manipulating solution sets to systems of poly-
nomial equations. The name numerical algebraic geom-
etry was coined in 1996 in a paper by Sommese and
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Wampler [21]. By performing computations over the com-
plex numbers, which is algebraically closed, one can prove
many results regarding polynomial system solving leading
to computationally feasible algorithms that can be imple-
mented using floating-point arithmetic. For example, one
can compute the irreducible components of the solution
set of a given polynomial system and represent it on a
computer via a so-called numerical irreducible decomposi-
tion with witness sets. The books [3,22] provide a general
overview of numerical algebraic geometry.

For most applications of polynomial systems in science
and engineering, only real solutions are of interest. Some
examples include computing the equilibria of a dynam-
ical system, synthesizing a mechanism to perform given
tasks, and reconstructing three-dimensional models from
two-dimensional images in computer vision. Of course,
if a polynomial system has only finitely many solutions
over the complex numbers, then one approach is to com-
pute all of the complex solutions and retain only the real
subset of solutions. Although such an approach has been
used effectively on problems of modest size, the number
of real solutions are typically only a very small fraction of
the number of complex solutions, somuch computation is
wasted. For example, a problem in four-bar synthesis has
only 384 real solutions out of 8652 complex solutions [24]
while a problem in computing equilibria of a dynamical
system has only 2 equilibria out of ≈ 1018 complex solu-
tions [9]. Thus, a key research area is to develop numeri-
cal approaches for computing and manipulating only the
real solution set to a system of polynomial equations yield-
ing real numerical algebraic geometry.
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Since the real numbers are not algebraically closed,
much of the theory underpinning techniques in numeri-
cal algebraic geometry no longer holds when considering
only the real solutions. However, there is a growing body
of algorithms for numerically computing and manipulat-
ing the real solution set to a system of polynomial equa-
tions. This includes critical-point methods for sampling
real points, routing functions and road-maps for deciding
connectivity, and cell decompositions to provide a full de-
scription.

Figure 1. A curve traced by a Griffis-Duffy platform,
an exceptional Stewart-Gough platform.

2. Exploring the Real Parameter Space
Polynomial systems arising in science and engineering
typically depend upon parameters such as reaction rates,
lengths, and temperature. Since the behavior of the real
solution sets can change as the parameters vary, one can
explore the parameter space to determine the different be-
haviors. One tool for exploration is a parameter homo-
topy of the form

𝐻(𝑥, 𝑡) = 𝐹(𝑥; 𝑡 ⋅ 𝑝0 + (1 − 𝑡) ⋅ 𝑝∗) = 0.

Moving from 𝑡 = 1 to 𝑡 = 0 deforms the parameters 𝑝
from the starting parameters 𝑝0 to the target parameters
𝑝∗. A parameter homotopy allows for efficient computa-
tion of solutions to 𝐹(𝑥; 𝑝∗) = 0 for many different pa-
rameters 𝑝∗. Such information can be used to provide in-
sight into the geography of the parameter space. Figure 2
presents a decomposition of the parameter space based on
the number of real solutions when the lengths of two legs
of a 3RPR mechanism are changed [16]. The color repre-
sents the number of real solutions such that the darker the
color, the more real solutions there are. The boundaries
correspond with the discriminant locus.

Figure 2. Parameter space decomposition for 3RPR
mechanism based on number of real solutions.

If one performs a real parameter homotopy inside of
a connected component in the complement of the dis-
criminant locus, then there must be a bijection between
real solutions for the start and target parameters. Param-
eter space exploration coupled with learning the bound-
aries has showed that corresponding real parameter ho-
motopies significantly decrease the computational cost of
computing the real solutions [4], especially when the num-
ber of real solutions is small in comparison to the total
number of complex solutions. For example, in the trifo-
cal pose geometry problem illustrated in Figure 3, there
are a total of 312 nonsingular, isolated solutions, yet only
about 35 of them are real on average [13]. Computer vi-
sion showcases minimal problems where the number of
real solutions is drastically smaller than the total degree.
Therefore, continuing to expand current methods to focus
on just real solutions can have a large impact on efficient
and fast solving for many parameter instances within ap-
plications.

Figure 3. Trifocal pose geometry: three pinhole cameras view
a point-plus-tangent [13].
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When using a sequence of parameter homotopies, it is
natural to consider what happens to the solutions when
one performs a loop in parameter space and returns to the
original set of parameters. Classically, the monodromy
group encapsulates all the possible permutations of the
isolated solutions. A simple example of a nontrivial mon-
odromy loop is demonstrated using the complex square
root via 𝐹(𝑥, 𝑡) = 𝑥2−𝑡 = 0. As shown in Figure 4, starting
at (𝑥, 𝑡) = (1, 1) and tracking the solution 𝑥(𝑡) for 𝑡 = 𝑒𝑖𝜃
as 𝜃 goes from 0 to 2𝜋 will return to (𝑥, 𝑡) = (−1, 1). Thus,
the monodromy group is the symmetric group on two el-
ements since the two solutions 𝑥 = ±1 at 𝑡 = 1 can be
interchanged.

Although the monodromy group captures some struc-
ture within the solutions over the complex numbers, it
can fail to capture interesting behavior about the real so-
lutions. For example, returning to the 3RPR mechanism
whose parameter space decomposition is provided in Fig-
ure 2, a nontrivial monodromy action corresponds with a
nonsingular assembly mode change. This is important for
engineers to understand when controlling parallel manip-
ulators due to the possible change of pose at the “home”
position. Although the complex monodromy group is the
full symmetric group, the six real solutions in the red re-
gion actually break into two subsets of 3 that can only
permute amongst themselves [16]. In particular, starting
with a “home” position pose, it is possible to return to
two other poses. Since this behavior is not captured with
the classical monodromy group over the complex number,
this exemplifies the impact of having methods that focus
on the real numbers to understand the behavior of the real
solutions.

Figure 4. Monodromy loop: as 𝑡 circles in ℂ around 0, 𝑥
interchanges between 1 and −1.

For positive-dimensional real solution sets, sampling
techniques combined with topological data analysis can
be used to build graphs that approximate the topologi-
cal structure. For example, Figure 5 shows the configura-
tion space of a parallel five-bar manipulator [12] which
can be used for path planning to efficiently connect differ-
ent configurations while avoiding configurations that are
problematic from a mechanical perspective.

Figure 5. Path planning in configuration space for a parallel
five-bar manipulator.

In addition to sampling, other approaches for numeri-
cally computing positive-dimensional real solution sets in-
clude cell decompositions [5] and decompositions using
routing functions [10, 18], which will be explored as part
of this MRC.

3. Number of Real Solutions
A natural question to ask of any parameterized systemwith
generically finitely many complex solutions is the mini-
mum and maximum number of real solutions. For ex-
ample, assembling a Stewart-Gough platform corresponds
with solving a parameterized polynomial system which
generically has 40 complex solutions. In 1998, a set of
parameters was found such that all 40 solutions are real,
meaning that the corresponding Stewart-Gough platform
robot can be assembled in 40 different ways [11]. Similar
questions arise inmany application areas including param-
eters for a chemical reaction network to have multiple real
equilibria.

Another example is to determine themaximumnumber
of equilibria for the Kuramoto model, which is a math-
ematical model used to describe synchronization. With
three oscillators, the maximum number of real equilibria
matches the generic root count over the complex numbers,
namely 6. With four oscillators, it was conjectured using
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parameter space exploration that the maximum number
of real equilibria was 10, which is strictly smaller than the
generic complex root count of 14. This upper bound of 10
for four oscillators was proven in [15] with Figure 6 illus-
trating the approach which computed at least one sample
point in each component. The cases with five or more os-
cillators remain open.

Figure 6. Parameter space decomposition arising from 𝑛 = 4
Kuramoto with sample points in each component [15].

Anatural question concerning parameterized families is
whether there always exists a real solution, i.e., if the min-
imum number of real solutions is positive. Of course, if
there is an odd number of nonsingular complex solutions
to a polynomial system with real coefficients, then there is
always a real solution since nonreal solutions arise in com-
plex conjugate pairs. For problems with an even number,
the answer can be quite challenging. This is relevant, for
example, in computer vision, in which one may want to
determine if there always exists a real reconstruction given
any location of the image features. An open problem in
real enumerative geometry is to determine if there always
exists a real plane conic that passes through the origin and
intersects each of six given real lines. Over the complex
numbers, there are 18 such plane conics generically and
all experimental evidence to date suggests that at least two
of them are always real, e.g., [14,17], while a proof remains
elusive. An instance of this problem is shown in Figure 7.

4. Software
Software packages implementing various numerical al-
gebraic geometric algorithms include Bertini [2],
Hom4PS2 [19], HomotopyContinuation.jl [8],

Figure 7. Real plane conic intersecting six given real lines and
passing through the origin (green).

NAG4M2 [20], and PHCpack [23]. Paramotopy [1] pro-
vides efficient methods for parameterized polynomial sys-
tems using Bertini. Some examples of software in real
numerical algebraic geometry are Bertini_real [5] for
computing a cell decomposition of curves and surfaces,
polyTop [6] for computing topological information of
a real surface, and HypersurfaceRegions.jl [7] for
computing complements of an arrangement of real hyper-
surfaces from [10,18].

5. You are Invited!
The authors invite early-career applicants to join our AMS
MRC during the summer of 2025 on these topics. The
goal of this collaborative workshop is to bring together
mathematicians and domain experts in kinematics, com-
puter vision, and chemical reaction networks to develop
new methods and to solve problems using real numerical
algebraic geometry. The problems to be undertaken in the
workshop generally fall into one or more of the following
categories:

• development and refinement of algorithms character-
izing the real solution set, such as counting connected
components, sampling points on connected compo-
nents, and capturing monodromy structures;

• approaches for quickly computing real solutions;
• methods for exploring the behavior of real solutions
over a parameter space; and

• exploration of applications, such as robot kinematics,
computer vision, or chemical equilibrium. Among
these, the characterization of robot and mechanism
workspaces, singularities, and connectivity is an espe-
cially rich source of interesting problems.

In addition to research collaborations, there will be profes-
sional development opportunities to learn about research
in industry and expand professional networks. We invite
you to apply and join us in exploring real numerical alge-
braic geometry!
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