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Abstract

This paper revisits the parametric analysis of semidefinite optimization problems with respect to the perturbation of the
objective function along a fixed direction. We review the notions of invariancy set, nonlinearity interval, and transition
point of the optimal partition, and we investigate their characterizations. We show that the continuity of the optimal set
mapping, on the basis of Painlevé-Kuratowski set convergence, might fail on a nonlinearity interval. Furthermore, under
a mild assumption, we prove that the set of transition points and the set of points at which the optimal set mapping
is discontinuous are finite. We then present a methodology, stemming from numerical algebraic geometry, to efficiently
compute nonlinearity intervals and transition points of the optimal partition. Finally, we support the theoretical results
by applying our procedure to some numerical examples.

1 Introduction

Let Sn be the vector space of n×n symmetric matrices. Consider a parametric semidefinite optimization (SDO) problem

(Pε) inf
X∈Sn

{
〈C + εC̄,X〉 : 〈Ai, X〉 = bi, i = 1, . . . ,m, X � 0

}
,

(Dε) sup
(y,S)∈Rm×Sn

{
bT y :

m∑
i=1

yiA
i + S = C + εC̄, S � 0

}
,

where C,Ai ∈ Sn for i = 1, . . . ,m, b ∈ Rm, C̄ ∈ Sn is a fixed direction, the inner product is defined as 〈C,X〉 := tr(CX),
and X � 0 means that the matrix X is symmetric and positive semidefinite. Let v(ε) ∈ R ∪ {−∞,∞} denote the
optimal value of (Pε). This yields a function v : R → R ∪ {−∞,∞} which is the so-called optimal value function. Let
E := {ε ∈ R : v(ε) > −∞} be the domain of v(ε).

The primal and dual optimal set mappings are defined as

P∗(ε) := {X : 〈C + εC̄,X〉 = v(ε), X ∈ P(ε)},

D∗(ε) :=
{

(y, S) : bT y = v(ε), (y, S) ∈ D(ε)
}
,

where P(ε) and D(ε) denote the primal and dual feasible set mappings:

P(ε) :={X : 〈Ai, X〉 = bi, i = 1, . . . ,m, X � 0},

D(ε) :=

{
(y, S) :

m∑
i=1

yiA
i + S = C + εC̄, S � 0

}
.
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Note that P∗(ε) or D∗(ε) might be empty for some ε ∈ E . To avoid trivialities, we make the following assumption
throughout this paper:

Assumption 1.1 The interior point condition holds for both (Pε) and (Dε) at ε = 0, i.e., there exists a feasible(
X◦(0), y◦(0), S◦(0)

)
∈ P∗(0)×D∗(0) such that X◦(0), S◦(0) � 0, where � 0 means positive definite.

Assumption 1.1 implies that E is nonempty and non-singleton, and that v(ε) is proper and concave on E [8, Lemma 2.2].
The concavity of v(ε) yields that E is a closed, possibly unbounded, interval [8, Lemma 2.2] and that v(ε) is continuous
on int(E) [11, Corollary 2.109].

Remark 1.1 Assumption 1.1 is equivalent to the existence of a strictly feasible solution
(
X◦(ε), y◦(ε), S◦(ε)

)
at every

ε ∈ int(E) [19, Lemma 3.1], where int(.) denotes the interior of a convex set.

Hence, for all ε ∈ int(E), Assumption 1.1 ensures that strong duality holds and that the optimal sets P∗(ε) and D∗(ε)
are nonempty and compact. In this paper, by strong duality we mean that the optimal values of (Pε) and (Dε) are both
attained and the duality gap is zero, see e.g., [11, Theorem 5.81]. In particular, the optimality conditions for (Pε) and
(Dε) can be written as

〈Ai, X〉 = bi, i = 1, . . . ,m,
m∑
i=1

yiA
i + S = C + εC̄,

XS = 0,

X, S � 0,

(1)

where XS = 0 denotes the complementarity condition. Furthermore, Assumption 1.1 guarantees the existence of a
so-called maximally complementary optimal solution for every ε ∈ int(E).

Definition 1.1 An optimal solution
(
X∗(ε), y∗(ε), S∗(ε)

)
is called maximally complementary if

X∗(ε) ∈ ri
(
P∗(ε)

)
and

(
y∗(ε), S∗(ε)

)
∈ ri

(
D∗(ε)

)
,

where ri(.) denotes the relative interior of a convex set. A maximally complementary optimal solution
(
X∗(ε), y∗(ε), S∗(ε)

)
is called strictly complementary if X∗(ε) + S∗(ε) � 0.

For any fixed ε ∈ int(E), rank
(
X∗(ε)

)
+ rank

(
S∗(ε)

)
is maximal on P∗(ε) × D∗(ε), see e.g., [15, Lemma 2.3]. Even

though a strictly complementary optimal solution may fail to exist, a maximally complementary optimal solution always
exists under Assumption 1.1.

In practice, given a fixed ε, (Pε) and (Dε) can be efficiently solved in polynomial time using a primal-dual path-following
interior point method (IPM), see [32]. A primal-dual path following IPM generates a sequence of solutions whose
accumulation points are maximally complementary optimal solutions [21].

1.1 Optimal partition

For SDO, the optimal partition information can be leveraged to establish sensitivity analysis results. The optimal parti-
tion provides a characterization of the optimal set, and it is uniquely defined for any instance of an SDO problem which
satisfies strong duality [15]. For a fixed ε ∈ int(E), let

(
X∗(ε), y∗(ε), S∗(ε)

)
∈ ri

(
P∗(ε)×D∗(ε)

)
be a maximally comple-

mentary optimal solution, and let B(ε) := R
(
X∗(ε)

)
, N (ε) := R

(
S∗(ε)

)
, and T (ε) :=

(
R
(
X∗(ε)

)
+R

(
S∗(ε)

))⊥
, whereR(.)

is the column space and ⊥ denotes the orthogonal complement of a subspace. Then the triple
(
B(ε), T (ε),N (ε)

)
is called

the optimal partition of (Pε) and (Dε). Note that the subspaces R
(
X∗(ε)

)
and R

(
S∗(ε)

)
are orthogonal by the comple-

mentarity condition in (1). Further, the optimal partition
(
B(ε), T (ε),N (ε)

)
is independent of the choice of a maximally

complementary optimal solution [15, Lemma 2.3(i)].
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1.2 Related works

Sensitivity analysis along a fixed direction has been extensively studied in optimization theory and was originally in-
troduced for linear optimization (LO) and linearly constrained quadratic optimization (LCQO) problems in [1, 8, 27].
Sensitivity analysis of nonlinear optimization problems was studied by Fiacco [17] and Fiacco and McCormick [16]
using the implicit function theorem [36]. Their analysis was based on linear independence constraint qualification,
second-order sufficient condition, and the strict complementarity condition. Furthermore, Fiacco [17] showed how to
compute/approximate the partial derivatives of a locally optimal solution. Robinson [35] removed the reliance on the
strict complementarity condition by imposing a strong second-order sufficient condition. Kojima [29] removed the de-
pendence on the strict complementarity condition by invoking the degree theory of a continuous map, see e.g., [33].
See [18] for a survey of classical results.

A comprehensive treatment of directional and differential stability of nonlinear SDO problems is given by Bonnans and
Shapiro [10, 11], see also [9, 38]. The study of sensitivity analysis based on the optimal partition approach was initiated
by Adler and Monteiro [1] and Jansen et al. [27] for LO and then extended for LCQO, SDO, and linear conic optimization
by Berkelaar et al. [8], Goldfarb and Scheinberg [19], and Yildirim [43], respectively. Recently, the second and fourth
authors [30] introduced the concepts of a nonlinearity interval and a transition point for the optimal partition of (Pε)
and (Dε) to investigate the sensitivity of the optimal partition and the approximation of the optimal partition with
respect to ε.

1.3 Contributions

A parametric SDO problem was initially studied in [19, 30]. Based on the notion of an invariancy set, which might be
either a singleton or an open interval, from [19, 30] and the notions of nonlinearity interval and transition point from [30],
we present a methodology for the identification of the optimal partitions on the entire int(E). An invariancy interval is
an open subinterval of int(E) on which the optimal partition is invariant with respect to ε. A nonlinearity interval is an
open maximal length subinterval of int(E) on which the rank of maximally complementary optimal solutions X∗(ε) and
S∗(ε) stay constant, while the optimal partition varies with ε. A transition point is a singleton invariancy set which does
not belong to a nonlinearity interval. To the best of our knowledge, this is the first comprehensive methodology for the
computation of nonlinearity intervals and transition points in int(E).

Our main contributions are 1) the study of continuity of optimal set mapping on a nonlinearity interval, 2) algebraic
interpretation of transition points of the optimal partition, and 3) a numerical procedure for the computation of nonlin-
earity intervals and transition points. Using continuity arguments on the basis of Painlevé-Kuratowski set convergence,
we provide sufficient conditions under which the set of transition points has empty interior, see Lemma 3.1, and a non-
linearity interval exists, see Lemma 3.2. We analyze the continuity of the optimal set mapping and show that continuity
may fail on a nonlinearity interval, see problem (8). Furthermore, we show that even a continuous selection [37, Chapter
5(J)] through the relative interior of the optimal sets might fail to exist, see problem (10). The second part of this
paper investigates the computation of nonlinearity intervals and transition points of the optimal partition. Under a
mild assumption, we show that the set of transition points and the set of points at which the optimal set mapping fails
to be continuous relative to int(E) are finite, see Theorem 4.1. Using numerical algebraic geometry, we then present a
methodology to partition int(E) into the finite union of invariancy intervals, nonlinearity intervals, and transition points,
see Algorithms 1 through 4.

Besides sensitivity analysis purposes and their economical interpretations, the identification of a nonlinearity interval is
important from practical perspectives. For example, in order to approximate the optimal value function on a neighbor-
hood of a given ε, one needs to utilize samples from the same nonlinearity interval containing ε. Cifuentes et al. [13]
studied the local stability of SDO relaxations for polynomial and semi-algebraic optimization problems with emphasis
on a notion similar to a nonlinearity interval.

1.4 Organization of the paper

The rest of this paper is organized as follows. In Section 2, we investigate the continuity of the feasible and optimal
set mappings at a given ε ∈ int(E) relative to int(E). In Section 3, we study the sensitivity of the optimal partition
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with respect to ε. Further, we use continuity arguments to partially characterize nonlinearity intervals and transition
points, and we investigate the continuity of the optimal set mapping on a nonlinearity interval. In Section 4, we present
an algorithm to partition int(E) into invariancy intervals, nonlinearity intervals, and transition points of the optimal
partition. Our numerical experiments are presented in Section 5. Finally, we present remarks and topics for future
research in Section 6.

Notation Throughout this paper, Sn+ denotes the cone of n×n symmetric positive semidefinite matrices. Associated
with a symmetric matrix, λmin(X) denotes the smallest eigenvalue of X, Λ(X) serves as the diagonal matrix of the
eigenvalues, and svec(X) denotes a linear mapping stacking the upper triangular part of a symmetric matrix, in which
the off-diagonal entries are multiplied by

√
2, i.e.,

svec(X) :=
(
X11,

√
2X12, . . . ,

√
2X1n, X22,

√
2X23, . . . ,

√
2X2n, . . . , Xnn

)T
.

For any two square matrices K1 and K2 and a symmetric matrix H, the symmetric Kronecker product, denoted by ⊗s,
is defined as

(K1 ⊗s K2) svec(H) :=
1

2
svec

(
K2HK

T
1 +K1HK

T
2

)
,

see e.g., [15] for more details. Finally, for a given ε ∈ int(E), a maximally complementary optimal solution is denoted by(
X∗(ε), y∗(ε), S∗(ε)

)
.

2 Continuity of the feasible set and optimal set mappings

This section investigates the continuity of the primal and dual feasible set mappings and the outer semicontinuity of the
primal and dual optimal set mappings for (Pε) and (Dε). We adopt the notions and definitions from [37].

Let Rq and Rl be finite-dimensional Euclidean spaces. A mapping Φ(ξ) : Rq ⇒ Rl is called a set-valued mapping if it
assigns a subset of Rl to each element of Rq. The domain of a set-valued mapping Φ(ξ) is

dom(Φ):={ξ : Φ(ξ) 6= ∅},

and the range of Φ(ξ) is defined as

range(Φ):={ν : ∃ ξ s.t. ν ∈ Φ(ξ)}.

The following discussion concisely reviews the continuity of a set-valued mapping on the basis of Painlevé-Kuratowski
set convergence, see [37, Chapters 4 and 5] for more details. Let N be the set of natural numbers, J denote the collection
of subsets J ⊆ N such that N \ J is finite, and J∞ be the collection of all infinite subsets of N. For a sequence {Ck}∞k=1

of subsets of Rl, the outer and inner limits are defined, respectively, as

lim sup
k→∞

Ck :=
{
ν : ∃ J ∈ J∞, ∃ νk ∈ Ck, (k ∈ J) with νk

J→ ν
}
,

lim inf
k→∞

Ck :=
{
ν : ∃ J ∈ J , ∃ νk ∈ Ck, (k ∈ J) with νk

J→ ν
}
,

where νk
J→ ν means that limk∈J νk = ν. Let X be a subset of Rq containing ξ̄. A set-valued mapping Φ(ξ) is

called outer semicontinuous at ξ̄ relative to X if lim sup
ξ→ξ̄

Φ(ξ) ⊆ Φ(ξ̄) and inner semicontinuous at ξ̄ relative to X if

lim inf
ξ→ξ̄

Φ(ξ) ⊇ Φ(ξ̄), where

lim sup
ξ→ξ̄

Φ(ξ) :=
{
ν : ∃ {ξk}∞k=1 ⊆ X with ξk → ξ̄, ∃ νk → ν with νk ∈ Φ(ξk)

}
,

lim inf
ξ→ξ̄

Φ(ξ) :=
{
ν : ∀ {ξk}∞k=1 ⊆ X with ξk → ξ̄, ∃ νk → ν with νk ∈ Φ(ξk)

}
. (2)

When X = Rq, we simply call Φ(ξ) outer or inner semicontinuous at ξ̄.
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Definition 2.1 A set-valued mapping Φ(ξ) is Painlevé-Kuratowski continuous at ξ̄ relative to X if it is both outer and
inner semicontinuous at ξ̄ relative to X .

In our setting, outer and inner semicontinuity agree with the notions of closedness and openness of a point-to-set map
in [26], see also [37, Theorem 5.7(c)] and [26, Corollary 1.1].

We show the continuity of the feasible set mapping and the outer semicontinuity of the optimal set mapping relative to
int(E). Trivially, P(ε) : R ⇒ Sn is continuous since it remains invariant with respect to ε. Furthermore, the continuity
of D(ε) : R ⇒ Rm × Sn relative to int(E) follows from [26, Theorems 10 and 12], where D(ε) = ∅ for every ε ∈ R \ E .
For the sake of completeness, we provide a proof for our special case here. Let Dy(ε) : R ⇒ Rm be a set-valued mapping
defined by

Dy(ε) :=

{
y ∈ Rm : C + εC̄ −

m∑
i=1

yiA
i � 0

}
.

Now, the following result is in order.

Lemma 2.1 Under Assumption 1.1, the set-valued mapping Dy(ε) and thus D(ε) are continuous relative to int(E).

Proof: Since Sn+ is a closed convex cone and int(E) ⊆ dom(Dy), it follows that Dy(ε) is outer semicontinuous relative to
int(E), see e.g., [37, Example 5.8]. Hence, it only remains to show that Dy(ε) is inner semicontinuous at every ε′ ∈ int(E).

Let ȳ ∈ Dy(ε′) such that C + ε′C̄ −
∑m
i=1 ȳiA

i � 0 and ŷ ∈ Dy(ε′) such that Ŝ := C + ε′C̄ −
∑m
i=1 ŷiA

i has at least one

zero eigenvalue. The case when Ŝ � 0 is trivial. Given a sequence {εk}∞k=1 with εk → ε′, we will construct a convergent
sequence yk → ŷ so that C + εkC̄ −

∑m
i=1(yk)iA

i � 0 for all sufficiently large values of k.

Define yk = (1− αk)ŷ + αkȳ. Note that C + εkC̄ −
∑m
i=1(yk)iA

i � 0 holds if

(1− αk)
(
C + εkC̄ −

m∑
i=1

ŷiA
i
)

+ αk
(
C + εkC̄ −

m∑
i=1

ȳiA
i
)
� 0. (3)

If 0 ≤ αk ≤ 1, then (3) holds if

(1− αk)λmin

(
C + εkC̄ −

m∑
i=1

ŷiA
i
)

+ αkλmin

(
C + εkC̄ −

m∑
i=1

ȳiA
i
)
≥ 0,

which is equivalent to

αk ≥
−λmin

(
C + εkC̄ −

∑m
i=1 ŷiA

i
)

λmin

(
C + εkC̄ −

∑m
i=1 ȳiA

i
)
− λmin

(
C + εkC̄ −

∑m
i=1 ŷiA

i
)

for sufficiently large k, since the denominator has to be positive. Letting αk := max{ρk, 0}, where

ρk :=
−λmin

(
C + εkC̄ −

∑m
i=1 ŷiA

i
)

λmin

(
C + εkC̄ −

∑m
i=1 ȳiA

i
)
− λmin

(
C + εkC̄ −

∑m
i=1 ŷiA

i
) ,

we have ρk → 0 and yk ∈ Dy(εk) for sufficiently large k since 0 ≤ αk ≤ 1 and αk → 0. This completes the proof for the
continuity of Dy(ε) relative to int(E). The continuity of D(ε) is then immediate from S = C + εC̄ −

∑m
i=1 yiA

i. �

As a result of Lemma 2.1, we can show that P∗(ε) : R ⇒ Sn and D∗(ε) : R ⇒ Rm× Sn are outer semicontinuous relative
to int(E), see e.g., [26, Theorem 8]. All this implies that for any ε′ ∈ int(E) and any sequence εk → ε′ we have

lim inf
k→∞

P∗(εk) ⊆ lim sup
k→∞

P∗(εk) ⊆ P∗(ε′) and lim inf
k→∞

D∗(εk) ⊆ lim sup
k→∞

D∗(εk) ⊆ D∗(ε′).

However, P∗(ε) and D∗(ε) are not necessarily inner semicontinuous relative to int(E) as shown in Example 3.1, where
the optimal set is multiple-valued at ε = 1

2
but single-valued everywhere else in a neighborhood of 1

2
. Nevertheless, the

set of points at which P∗(ε) or D∗(ε) fails to be continuous relative to int(E) is of first category in int(E), i.e., it is the
union of countably many nowhere dense sets in int(E), see e.g., [31]. This directly follows from the outer semicontinuity
of the optimal set mapping relative to int(E) and Theorem 5.55 in [37]. All this yields the following result.
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Theorem 2.1 The set of points at which P∗(ε) or D∗(ε) fails to be continuous relative to int(E) has empty interior.

Proof: Since int(E) is a Baire subset of R [31, Lemma 48.4], every first category subset of int(E) has empty interior. �
As a consequence of Theorem 2.1, every open subset of int(E) contains a point at which both P∗(ε) and D∗(ε) are
continuous relative to int(E).

3 Sensitivity of the optimal partition

We briefly review the notions of an invariancy interval, nonlinearity interval, and a transition point from [30]. Let
π(ε) :=

(
B(ε), T (ε),N (ε)

)
denote the subspaces of the optimal partition at ε, and let

Qε :=
(
QB(ε), QT (ε), QN (ε)

)
be an orthonormal basis partitioned according to the subspaces of the optimal partition.

Definition 3.1 ([19, 30]) An invariancy set is a subset Iinv of int(E) on which π(ε) is invariant for all ε ∈ Iinv. A
non-singleton Iinv is called an invariancy interval. Otherwise, Iinv is called a singleton invariancy set.

Indeed, a non-singleton invariancy set is proven to be an open, possibly unbounded, subinterval of int(E) [30, Section
3.1]. The boundary points of an invariancy set, containing a given ε̄, can be efficiently computed by solving a pair of
auxiliary SDO problems [19, Lemma 4.1]:

αinv(βinv) := inf(sup) ε

s.t.

m∑
i=1

yiA
i +QN (ε̄)USQ

T
N (ε̄) = C + εC̄,

US � 0,

(4)

where we might have αinv = −∞, βinv =∞, or both. If αinv < ε̄ < βinv holds, then ε̄ belongs to an invariancy interval.
Otherwise, ε̄ is a singleton invariancy set which either belongs to a nonlinearity interval, or it is a transition point, as
formally defined in Definitions 3.2 and 3.3.

Definition 3.2 (Definition 3.6 in [30]) A nonlinearity interval is an open maximal subinterval Inon of int(E) on
which both rank

(
X∗(ε)

)
and rank

(
S∗(ε)

)
are constant while π(ε) varies with ε.

Definition 3.3 (Definition 3.5 in [30]) A singleton invariancy set {ε̄} ⊂ int(E) is called a transition point if for
every δ > 0, there exists ε ∈ (ε̄− δ, ε̄+ δ) such that

rank
(
X∗(ε)

)
6= rank

(
X∗(ε̄)

)
or rank

(
S∗(ε)

)
6= rank

(
S∗(ε̄)

)
. (5)

Remark 3.1 Both the primal and dual optimal sets must vary with ε on a nonlinearity interval. Otherwise, one would
get an invariancy interval [30, Lemma 3.3 and Remark 5]. Indeed, a nonlinearity interval can be thought of as the union
of infinitely many singleton invariancy sets on which both rank

(
X∗(ε)

)
and rank

(
S∗(ε)

)
stay constant.

Since the domain E may be unbounded, a nonlinearity interval Inon may be unbounded too. Furthermore, a boundary
point of an invariancy or a nonlinearity interval must be a transition point, since (5) always holds at a boundary point,
see also [30, Remark 5]. Lemma 3.1 indicates that under an extra condition, the converse of this statement is true as
well, i.e., a transition point must be a boundary point of an invariancy or a nonlinearity interval.

Lemma 3.1 Assume that the set of points at which P∗(ε) or D∗(ε) fails to be continuous relative to int(E) is finite.
Then the set of transition points in int(E) has empty interior.

Proof: To reach a contradiction, suppose that there exists a subset I ⊆ int(E) with int(I) 6= ∅ such that ε is a transition
point for every ε ∈ I. By the assumption, there must exist ε̄ ∈ int(I) and ς > 0 such that both P∗(ε) and D∗(ε) are
continuous on (ε̄− ς, ε̄+ ς), and

rank
(
X∗(ε̄)

)
≤ rank

(
X∗(ε)

)
and rank

(
S∗(ε̄)

)
≤ rank

(
S∗(ε)

)
6
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Figure 1: The feasible set of the parametric SDO problem (6).

hold with at least one strict inequality for every ε ∈ (ε̄ − ς, ε̄ + ς). Then choosing ε̄ := ε and applying this argument
infinitely many times with a small enough ς > 0 and an ε ∈ (ε̄− ς, ε̄+ ς), we arrive at a contradiction, since each iteration
increases rank

(
X∗(ε)

)
or rank

(
S∗(ε)

)
at least by 1. �

Under the condition of Lemma 3.1, the union of invariancy and nonlinearity intervals is dense in int(E). The following

example shows the existence of nonlinearity intervals and transition points.

Example 3.1 Consider the following parametric SDO problem:

min

{
(4ε− 2)x+ (2− 4ε)y − 2z :


1 x y 0
x 1 z 0
y z 1 0
0 0 0 1− z

 � 0, (x, y, z) ∈ R3

}
, (6)

in which the feasible region is the intersection of a 3-elliptope and the inequality constraint z ≤ 1, see Figure 1. Notice
that (6) can be cast into the primal form (Pε), where X ∈ S4 and m = 7.

It is easy to check that for all ε ∈ (− 1
2
, 3

2
) \ { 1

2
}, see also [30, Example 3.1], the unique strictly complementary optimal

solution of (6) is given by

X∗(ε) =


1 1

2
− ε ε− 1

2
0

1
2
− ε 1 1− 2(ε− 1

2
)2 0

ε− 1
2

1− 2(ε− 1
2
)2 1 0

0 0 0 2(ε− 1
2
)2

 ,

y∗(ε) =
(
−(2ε− 1)2,−1,−1, 0, 0, 0, 0

)T
, S∗(ε) =


(2ε− 1)2 2ε− 1 1− 2ε 0

2ε− 1 1 −1 0
1− 2ε −1 1 0

0 0 0 0

 ,

(7)

and the analytic center [15] of the optimal set at ε = 1
2

is given by

X∗( 1
2
) =


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 , y∗( 1
2
) =

(
0, − 1

2
, − 1

2
, −1, 0, 0, 0

)T
, S∗( 1

2
) =


0 0 0 0
0 1

2
− 1

2
0

0 − 1
2

1
2

0
0 0 0 1

 .

The eigenvalue decompositions of X∗(ε) and S∗(ε) reveal that

rank
(
X∗(ε)

)
=

{
3 ε ∈ (− 1

2
, 3

2
) \ { 1

2
},

2 ε = 1
2
,

rank
(
S∗(ε)

)
=

{
1 ε ∈ (− 1

2
, 3

2
) \ { 1

2
},

2 ε = 1
2
.
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Thus, (− 1
2
, 1

2
) and ( 1

2
, 3

2
) are nonlinearity intervals and ε = 1

2
is a transition point of the optimal partition. In fact, for

all ε ∈ (− 1
2
, 3

2
) \ { 1

2
}, the optimal partition is given by

B(ε) = R




0 2sgn(2ε−1)√

2(2ε−1)2+4
0

1√
2

−|2ε−1|√
2(2ε−1)2+4

0

1√
2

|2ε−1|√
2(2ε−1)2+4

0

0 0 1



 , T (ε) = {0}, N (ε) = R




(1−2ε)√
(2ε−1)2+2
−1√

(2ε−1)2+2
1√

(2ε−1)2+2

0


 ,

while the optimal partition at ε = 1
2

is

B( 1
2
) = R




0 1
1√
2

0
1√
2

0

0 0


 , T ( 1

2
) = {0}, N ( 1

2
) = R




0 0
−1√

2
0

1√
2

0

0 1


 ,

where sgn(.) denotes the signum function.

Due to unknown behavior of the optimal set mapping in a parametric SDO problem, see Remark 3.1, a general existence
condition for a nonlinearity interval or a transition point is still an open question. Nevertheless, strict complementarity
coupled with the continuity of the optimal set mapping at a given ε̄ relative to int(E) provide sufficient conditions for
the existence of a nonlinearity interval surrounding ε̄, see also [30, Theorems 3.7 and 3.10].

Lemma 3.2 Assume that {ε̄} is a singleton invariancy set. If (X∗(ε̄), y∗(ε̄), S∗(ε̄)
)

is a strictly complementary optimal
solution, and both the primal and dual optimal set mappings are continuous at ε̄ relative to int(E), then ε̄ belongs to a
nonlinearity interval.

Proof: The strict complementarity condition yields

rank
(
X∗(ε̄)

)
+ rank

(
S∗(ε̄)

)
= n.

Continuity of X∗(ε) and S∗(ε) at ε̄, along with the continuity of the eigenvalues, shows that rank
(
X∗(ε̄)

)
≤ rank

(
X∗(ε)

)
and rank

(
S∗(ε̄)

)
≤ rank

(
S∗(ε)

)
for all ε in a small neighborhood of ε̄, see also [36, Theorem 3B.2(b)]. Hence, the rank

of X∗(ε) and S∗(ε) remain constant on a sufficiently small neighborhood of ε̄. �

Unfortunately, the converse of Lemma 3.2 is not necessarily true for a parametric SDO problem. In fact, the primal or
dual optimal set mapping might fail to be continuous on a nonlinearity interval. This can occur since the lim inf of a
sequence of faces is not necessarily a face of the feasible set, i.e., it might be a subset of the relative interior of a face.
A counterexample can be given as

min

{
(4ε− 2)x+ (2− 4ε)y − 2z :

1 x y
x 1 z
y z 1

 � 0, (x, y, z) ∈ R3

}
, (8)

where the strict complementarity condition holds on a nonlinearity interval (− 1
2
, 3

2
), see [30, Example 3.1]. The primal

optimal set mapping is single-valued, and thus continuous, everywhere on (− 1
2
, 1

2
) ∪ ( 1

2
, 3

2
). However, P∗(ε) fails to be

inner semicontinuous at ε = 1
2
, because

lim inf
k→∞

P∗(εk) ⊂ ri(P∗( 1
2
))

for any sequence εk → 1
2
.

Remark 3.2 The continuity condition in Lemma 3.2 can be relaxed by imposing the conditions

lim inf
k→∞

P∗(εk) ∩ ri
(
P∗(ε̄)

)
6= ∅ and lim inf

k→∞
D∗(εk) ∩ ri

(
D∗(ε̄)

)
6= ∅ (9)
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Figure 2: The feasible set of the parametric SDO problem (10).

for every sequence εk → ε̄, see also [36, Proposition 3A.1], which by (2) and the continuity of the eigenvalues imply the
existence of a nonlinearity interval around ε̄. However, even the weaker condition (9) may not hold on a nonlinearity
interval. For instance, by adding the inequality constraint x+ y + z ≤ 1 to (8) we get

min

{
(4ε− 2)x+ (2− 4ε)y − 2z :


1 x y 0
x 1 z 0
y z 1 0
0 0 0 1− x− y − z

 � 0, (x, y, z) ∈ R3

}
, (10)

for which
(
X∗(ε), y∗(ε), S∗(ε)

)
defined by (7) is still a unique strictly complementary optimal solution for all ε ∈

(− 1
2
, 3

2
) \ { 1

2
}, see Figure 2. However, for any εk → 1

2
the sequence X∗(εk) converges to an optimal solution on

the boundary of P∗( 1
2
). This example shows that even a continuous selection [37, Chapter 5(J)] through the relative

interior of the optimal sets might fail to exist on a nonlinearity interval. However, we do not know yet whether (9) could
fail at a boundary point of a nonlinearity interval.

4 Identification of the optimal partitions

This section proposes a methodology to identify the optimal partitions on the entire int(E). By Definitions 3.1 to 3.3, the
interval int(E) is the union of invariancy intervals, nonlinearity intervals, and transition points. An invariancy interval
can be efficiently computed by solving the auxiliary problems (4). In general, however, the identification of a nonlinearity
interval around a given ε̄ is a nontrivial computational task, since the conditions of Lemma 3.2 may not be easily checked
in practice. One could try to simply solve (Pε) and (Dε) for various ε in a neighborhood of ε̄ with the aim of finding
the desired nonlinearity interval. However, this could fail due to the fact that the solution of IPMs usually come with
numerical inaccuracy, while an eigenvalue of X∗(ε) or S∗(ε) might be doubly exponentially small [34]. On the other
hand, since the set of transition points might have empty interior, see Lemma 3.1, the numerical inaccuracy could lead
one to miss a transition point when simply solving (Pε) and (Dε) at a given set of mesh points.

In order to compute the nonlinearity intervals, we numerically locate the transition points by reformulating the optimality
conditions (1) as a system of polynomials. We then view the problem of finding transition points through the lens of
numerical algebraic geometry, see [7, 39] for an overview of results regarding polynomial systems. Together with the
auxiliary problems (4), this approach allows us to identify the optimal partitions on int(E).
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4.1 Algebraic formulation

For A :=
(

svec(A1), . . . , svec(Am)
)T

, the optimality conditions (1) can be equivalently written as

F (V, ε) :=

 A svec(X)− b
AT y + svec(S)− svec(C + εC̄)

1
2

svec(XS + SX)

 = 0, (11)

X,S � 0, (12)

where V :=(X, y, S) is the vector of variables. Given a particular ε, the set of solutions satisfying (11) is denoted by

V
(
F (V, ε)

)
:=
{
V ∈ Cm+2n : F (V, ε) = 0

}
. (13)

Following this notation, a solution in V
(
F (V, ε)

)
, an optimal solution, and a maximally complementary optimal solution

of (Pε) and (Dε) are denoted by V (ε), V (ε), and V ∗(ε), respectively. Clearly, V (ε) is not necessarily an optimal solution
of (Pε) and (Dε). As ε varies on a nonlinearity interval Inon, the solutions V ∗(ε) for ε ∈ Inon form a solution sheet
of (11).

The Jacobian matrix of (11) is given by

J(V, ε) :=

 A 0 0
0 AT In(n+1)/2

S ⊗s In 0 X ⊗s In

 ,

where the symmetric Kronecker product ⊗s is defined in Section 1.4. If the Jacobian is nonsingular at (V ∗(ε̄), ε̄), then
V ∗(ε̄) is the unique and strictly complementary optimal solution of (Pε̄) and (Dε̄).

Lemma 4.1 (Theorem 3.1 of [2] and [20]) The Jacobian J
(
V ∗(ε̄), ε̄

)
is nonsingular if and only if the optimal solu-

tion V ∗(ε̄) is unique and strictly complementary.

When the Jacobian is nonsingular, then the implicit function theorem [36] and Lemma 3.2 describe the behavior of
V ∗(ε) in a neighborhood of ε̄ and induce the existence of a nonlinearity interval around ε̄, see [30, Lemma 3.9] and
the subsequent discussion therein. Consequently, transition points and the points at which P∗(ε) or D∗(ε) fails to be
continuous relative to int(E) are both subsets of singular points, i.e., the set of ε ∈ C such that

∃ V (ε) ∈ V
(
F (V, ε)

)
where J

(
V (ε), ε

)
is singular,

in which case V (ε) is called a singular solution. This inclusion might be strict as demonstrated by problem (8), where
ε = 1

2
is a singular point but not a transition point. If ε is not a singular point, then it is called a nonsingular point. Here,

our goal is to locate the real singular points in int(E) and then identify the transition points out of the singular points.

Singular points of parameterized systems are well-studied in algebraic geometry, e.g., Sylvester’s 19th century work in
discriminants and resultants [40, 41]. Under a mild assumption, the algebraic formulation (11) shows that the set of
singular points must be an algebraic subset of C, leading to the following finiteness result.

Theorem 4.1 Assume that there exists a nonsingular point ε̄ ∈ int(E). Then the set of singular points in int(E), and
hence the set of transition points and the set of points at which P∗(ε) or D∗(ε) fails to be continuous relative to int(E),
are finite.

Proof: By definition, the set Υ of all (V (ε), ε) with a singular Jacobian satisfies

Υ:=
{

(V, ε) ∈ Cm+2n+1 : F (V, ε) = 0, det
(
J(V, ε)

)
= 0
}
, (14)

where (14) is a basic constructible set [3] in Cm+2n+1. Since the projection of a constructible set to C is a constructible
subset of C [3, Theorem 1.22], it holds that{

ε ∈ C : ∃V ∈ Cm+2n s.t. (V, ε) ∈ Υ
}

(15)
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is either finite or the complement of a finite subset of C, see e.g., [3, Exercise 1.2]. On the other hand, it follows from
the assumption and the implicit function theorem that the complement of (15) contains an open neighborhood of ε̄. All
this implies that the projection of Υ is finite, and thus it is an algebraic subset of C. The finiteness result naturally
holds when we restrict the set of singular points to R, in which our domain E is defined. Consequently, there are only
finitely many real singular points in int(E). �

Remark 4.1 Under the weaker assumption that there exists a singular point ε ∈ int(E) such that J
(
V ∗(ε), ε) is nonsingu-

lar, Theorem 4.1 implies the existence of finitely many singular solutions in the solution sheet which passes through V ∗(ε).

From a computational algebraic geometry viewpoint, the problem of computing singular points for a parametric SDO
problem was studied by the first and third authors in [24] in a more general context. Here, we present a simplified
process to locate the singular points in int(E). To that end, we make the following assumption from this point on:

Assumption 4.1 There exists a nonsingular point ε̄ ∈ int(E).

Remark 4.2 While the condition of Lemma 3.1 automatically follows from Assumption 4.1, Theorem 4.1 provides a
stronger result of finiteness.

With Assumption 4.1, it follows from Theorem 4.1 that any two invariancy/nonlinearity intervals are separated by a
transition point. This will enable us to decompose int(E) into the union of finitely many open intervals of maximal
length and their finitely many singular boundary points. The final step is to classify the singular points into transition
and non-transition points and then form the nonlinearity intervals from the appropriate open intervals.

Given a nonsingular initial point ε̄ ∈ int(E), the key idea is using Davidenko’s [14, 28] ordinary differential equation (ODE)

J(V, ε)
dV

dε
+
∂F (V, ε)

∂ε
= 0 (16)

to track an optimal solution V (ε) from ε̄ to the nearest singular point in each direction. Since solutions of (16) correspond
to level sets of F (V, ε), i.e., {(V, ε) : F (V, ε) = c} for arbitrary constant c, using the initial condition V (ε̄) = V ∗(ε̄) yields
the set of solutions to (11) and (12) for all ε in a neighborhood of ε̄. Hence, this approach utilizes the local information
provided by the Jacobian, when it is nonsingular, to obtain accurate approximations of the optimal solutions nearby.
The following lemma provides a summary of the solution [24].

Lemma 4.2 (Theorems 2 and 3 in [24]) Suppose that the Jacobian is nonsingular on an interval Ireg ⊆ int(E) and
let ε̄ ∈ Ireg. Then, V ∗(ε) is analytic on Ireg, and it is the unique solution of

dV

dε
= −J(V, ε)−1 ∂F (V, ε)

∂ε
, V (ε̄) = V ∗(ε̄)

for every ε ∈ Ireg.

Using the results of [22], we can track along Ireg, on which the optimal solution V ∗(ε) is analytic, until we reach
the boundary points of Ireg. As the perturbation parameter approaches a singular point at the boundary of Ireg, ill-
conditioning of F (V, ε) = 0, or spurious numerical behavior will be detected numerically. Thus, the singularity of the
Jacobian matrix J(V, ε) indicates the existence of a possible transition point. Consequently, the common scenario of
jumping over a transition point, when using just an IPM on discrete mesh points, can be avoided.

At a singular boundary point ε̂, we examine the uniqueness of the corresponding optimal solution V a(ε̂), where V a(ε̂)
is an accumulation point of the sequence of unique optimal solutions V ∗(ε), obtained from (16), as ε ↗ ε̂ or ε ↘ ε̂.
An accumulation point exists, by the outer semicontinuity of P∗(ε) and D∗(ε) relative to int(E), and it belongs to
P∗(ε̂) × D∗(ε̂). Toward this end, we compute the local dimension of the algebraic set V

(
F (V, ε̂)

)
at V a(ε̂) using a

numerical local dimension test [4, 42]. The local dimension is defined as the maximum dimension of the irreducible
components of V

(
F (V, ε̂)

)
which contain V a(ε̂). If V

(
F (V, ε̂)

)
has local dimension zero at V a(ε̂), then we can conclude

from Lemma 3.2 that ε̂ is a transition point, since V a(ε̂) turns out to be the unique optimal solution of (Pε̂) and (Dε̂).
Otherwise, we need to examine the change of rank at a maximally complementary optimal solution V ∗(ε̂). Such a solution
is generic on the irreducible component of V

(
F (V, ε̂)

)
which contains V a(ε̂), and it can be computed efficiently using

numerical algebraic geometry [7]. See e.g., [39] for a detailed description of algebraic sets and irreducible components.
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4.2 Partitioning algorithm

Based on the above description, we present the outline of Algorithm 1, a three-part algorithm, i.e., Algorithms 2, 3
and 4, which partitions int(E) into the finite union of invariancy intervals, nonlinearity intervals, and transition points.
Algorithm 2 computes the singular boundary points of an invariancy interval, which are indeed the transition points
in int(E), by solving the auxiliary problems (4). Algorithm 3 locates the singular points in int(E). In particular,
Algorithm 3 tracks the optimal solution of (Pε) and (Dε) by solving the ODE system (16) using a predictor-corrector
tracking method [12]. This procedure is repeated alongside Algorithm 2 until all singular points and invariancy intervals
in int(E) are identified. Finally, Algorithm 4 classifies the singular points into transition and non-transition points.

In order to completely cover the interval, the increment change ∆ε can be positive or negative to allow both left and
right movements from the starting point. Furthermore, we assume, for the simplicity of computation, that the domain E
is bounded, i.e., E = [Emin, Emax], where |Emin|, |Emax| <∞. Accordingly, the optimal value of the auxiliary problems (4)
is constrained to (Emin, Emax).

Computation of singular points and invariancy intervals Lemma 4.2 specifies a systematic way to approx-
imate the boundary points of the nonsingular interval Ireg surrounding the given ε̄. The numerical detection of singular
points is described in detail in [24] with respect to several singularity criteria, e.g., the derivative of λmin

(
X∗(ε)

)
and

λmin

(
S∗(ε)

)
with respect to ε, or the singularity of the Jacobian of (11). We omit the details here and refer the reader

to [24] for more information on the numerical implementation of the singularity criteria.

Once a singular point is identified, the numerical solution obtained from the ODE system (16) at the next mesh point
is most likely non-optimal, due to the numerical instability or the infeasibility of the solution. Thus, we invoke a
primal-dual IPM in Algorithms 2 and 3 to compute the unique optimal solution at the first neighboring mesh point
in the remaining interval. In order to guarantee that every singular point is correctly identified, a finer mesh pattern
might be needed, and a higher precision might be required for the computation of singular points, far beyond the double
precision arithmetic.

Solution sharpening Since the singular points are algebraic numbers, they can be computed to arbitrary accuracy,
see e.g., [23]. The process of increasing the algebraic precision of a singular point is also known as the sharpening
process, see Algorithm 3. More specifically, using a numerical approximation of a given singular point, which is indeed
the nearest mesh point to the singular point, the theory of isosingular sets [25] allows one to construct a new polynomial
system where Newton’s method would converge quadratically to the singular point.

Classification of singular points The use of adaptive precision, see e.g., [6], in Bertini [5, 7] ensures that
adequate precision is being used for reliable computations near the singular solutions. This method enables one to
compute a maximally complementary optimal solution near V a(ε̂) to arbitrary accuracy. With the ability to refine the
accuracy of a maximally complementary optimal solution, we can determine if a given singular point is a transition point.
This can be done robustly by examining the rank of X∗(ε) and S∗(ε) using standard numerical rank revealing methods,
such as singular value decomposition. More specifically, by computing the eigenvalues of an approximate maximally
complementary optimal solution at various precisions, one can determine if the least positive eigenvalues of X∗(ε) and
S∗(ε) converge to zero as we increase the precision of computation. This process accurately reveals the rank of X∗(ε)
and S∗(ε) at a singular point.

5 Numerical examples

In this section, using the approach described in Section 4 and outlined by Algorithm 1, we conduct numerical experiments
on the computation of nonlinearity intervals and transition points. Section 5.1 demonstrates the convergence rate of
computing the singular points. Section 5.2 describes a parametric SDO problem where the continuity of the dual
optimal set mapping fails at a transition point. Section 5.3 computes the nonlinearity interval of the parametric SDO
problem (10) where the Jacobian is singular at a non-transition point. All numerical experiments are conducted on a
PC with Intel Core i7-6500U CPU @2.5 GHz.
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Algorithm 1 Partitioning of int(E)

Input: A, b, C, C̄, domain [Emin, Emax], nonsingular initial point εinit ∈ int(E), a positive increment change ∆ε
Output: The union Uinv of invariancy intervals in (Emin, Emax), the union Unon of nonlinearity intervals in (Emin, Emax), the set
Utran of transition points in (Emin, Emax)

Set ε = εinit, Uinv = ∅, Unon = (Emin, Emax), Utran = ∅, and Usin = ∅

while ε < Emax do . Track forwards
repeat . Check the existence of an invariancy interval

Set (αinv, βinv, ε,Uinv,Unon,Utran)=Invariancy(A, b, C, C̄,∆ε, ε, Emin, Emax,Uinv,Unon,Utran)
until αinv < βinv and ε < Emax

if ε < Emax then
Set (ε,Uinv,Unon,Usin,Utran)=Singular(A, b, C, C̄,∆ε, ε,Uinv,Unon,Usin,Utran) . Algorithm 3

end if
end while

Set ε0 =

 inf
ε∈Uinv

ε Uinv 6= ∅

∞ Uinv = ∅

Set ε = min{εinit, ε0}

if ε > Emin then
Set ∆ε = −∆ε

if ε < εinit then . Move past a transition point
Set ε = ε+ ∆ε

end if

while ε > Emin do . Track backwards
repeat . Check the existence of an invariancy interval

Set (αinv, βinv, ε,Uinv,Unon,Utran)=Invariancy(A, b, C, C̄,∆ε, ε, Emin, Emax,Uinv,Unon,Utran)
until αinv < βinv and ε > Emin

if ε > Emin then
Set (ε,Uinv,Unon,Usin,Utran)=Singular(A, b, C, C̄,∆ε, ε,Uinv,Unon,Usin,Utran) . Algorithm 3

end if
end while

end if

if {ε : (V, ε) ∈ Usin} \ Utran 6= ∅ then . Classify the singular points which are not already in Utran

Set Utran=Transition(Usin,Utran) . Algorithm 4
end if

Set Unon = Unon \ Utran
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Algorithm 2 Identification of invariancy intervals

function Invariancy(A, b, C, C̄, ∆ε, ε, Emin, Emax, Uinv, Unon, Utran)
Output: αinv, βinv, ε, Uinv, Unon, Utran

Compute the unique optimal solution V ∗(ε) using a primal-dual IPM

Compute the orthonormal basis QN (ε) from V ∗(ε)

Using QN (ε) solve the SDO problems (4) restricted to (Emin, Emax) to obtain αinv and βinv

if αinv < ε < βinv then
Set Uinv = Uinv ∪ (αinv, βinv) and Unon = Unon \ (αinv, βinv)
if αinv > Emin and αinv 6∈ Utran then

Set Utran = Utran ∪ {αinv}
end if
if βinv < Emax and βinv 6∈ Utran then

Set Utran = Utran ∪ {βinv}
end if
if ∆ε < 0 then . Move past a transition point

Set ε = αinv + ∆ε
else

Set ε = βinv + ∆ε
end if

end if
end function

Algorithm 3 Identification of the singular points

function Singular(A, b, C, C̄, ∆ε, ε̄, Uinv, Unon, Usin, Utran)
Output: ε, Uinv, Unon, Usin, Utran

Set F (V, ε) = [A svec(X)− b;AT y + svec(S)− svec(C + εC̄); 1
2

svec(XS + SX)]

Compute the unique optimal solution V ∗(ε̄) using a primal-dual IPM

Set ε = ε̄

while ε+ ∆ε ∈ Unon and Jacobian is nonsingular on [ε, ε+ ∆ε] do . Check the singularity
Set ε = ε+ ∆ε
Compute the unique optimal solution V ∗(ε) by solving (16) with initial point V ∗(ε̄)

end while

if ε+ ∆ε ∈ Unon and a singular point exists in [ε, ε+ ∆ε] then . Compute the singular point
Compute the singular point ε̂ and set Usin = Usin ∪ {(V a(ε̂), ε̂)}
Set ε = ε̂+ ∆ε . Move past a singular point

else
Set ε = ε+ ∆ε

end if
end function
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Algorithm 4 Classification of the singular points

function Transition(Usin, Utran)
Output: Utran

for (V, ε) ∈ Usin do
Calculate the local dimension d of the algebraic set V

(
F (V, ε)

)
, defined in (13), at V

if d = 0 then
Set Utran = Utran ∪ {ε}

else . Compute a maximally complementary optimal solution V ∗(ε)
Use a polynomial solver to compute V ∗(ε) in the irreducible component which contains V
if the rank of X∗(ε) or S∗(ε) changes then

Set Utran = Utran ∪ {ε}
end if

end if
end for

end function

5.1 Convergence rate

Consider the following parametric SDO problem

min − 2εx1 − 2(1− ε)x2

s.t.


1 x1 x2 0 0
x1 1 0 0 0
x2 0 1 0 0
0 0 0 x2 x1 − 1
0 0 0 x1 − 1 x2

 � 0,
(17)

which can be cast into the primal form (Pε), where m = 13 and X ∈ S5. The block structure of the matrix indicates
that (17) is indeed an SDO reformulation of a parametric second-order conic optimization problem with E = R, see
also Figure 3. For computational purposes, we choose a bounded domain [− 1

4
, 5

4
] and the initial point ε = 1

4
, where

rank
(
X∗( 1

4
)
)

= 4 and rank
(
S∗( 1

4
)
)

= 1.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3: The feasible set of problem (17).
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Algorithm 2 identifies ε = 1
4

as a singleton invariancy set belonging to a nonlinearity interval. We then invoke Algorithm 3
to track the unique optimal solutions until we locate the singular points ε = 0 and ε = 1. Algorithm 3 then computes a
sufficiently accurate approximation of the singular points. Figure 4 demonstrates the exact and numerical approximation
of x1(ε) and the minimum modulus of the Jacobian eigenvalues versus ε. In particular, this tracking indicates that the
Jacobian approaches singularity near ε = 0 and ε = 1.

Restarting at the first mesh point next to the singular points, Algorithm 2 identifies the invariancy intervals (− 1
4
, 0) and

(1, 5
4
) and determines that ε = 0 and ε = 1 are indeed the transition points of the optimal partition.

We should point out that while J
(
V ∗( 1

4
), 1

4

)
is nonsingular, there exists a singular solution V ( 1

4
), and J

(
V ∗(ε), ε

)
is

singular for every maximally complementary optimal solution V ∗(ε) on (−∞, 0) and (1,∞). Nevertheless, Algorithm 1
produces the correct result even with the singular initial point ε = 1

4
. In this case, by Remark 4.1, there are finitely

many singular solutions in the solution sheet which passes through V ∗( 1
4
).

Figure 4: Left: The exact and numerical approximation of x1(ε) versus ε. Right: The minimum modulus of the Jacobian
eigenvalues.

Using different patterns of mesh points, we demonstrate the convergence of x1(ε), computed by Algorithm 3, when ε
approaches the singular points ε = 0 and ε = 1. To that end, we let initial ∆ε take values from 0.05×2−j for j = 0, . . . , 5
or 0.03 × 2−j for j = 0, . . . , 5, and we set ε = 1

4
as the initial point. Tables 1 and 2 summarize the numerical results,

where the L1 error between the exact and numerical approximation of x1(ε) on [ 1
4
, 1) and (0, 1

4
], the order of convergence,

and the computation time are reported. The order of convergence is computed by

ρj+1 :=log2

(
Err(∆εj)

Err(∆εj+1)

)
, j = 0, . . . , 4,

where Err(∆εj) denotes the L1 error associated with mesh pattern j. Notice the difference between ρj and the classical
notion of the order of convergence in computational optimization.
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Table 1: Convergence of x1(ε) when ε approaches to the singular point ε = 1.

j ∆εj Approximate singular point Err(∆εj) ρj CPU(s)

0 0.05 1.00 4.1597× 10−6 - 4.05
1 0.05× 2−1 1.00 2.6520× 10−7 3.971 6.56

2 0.05× 2−2 1.00 1.6707× 10−8 3.989 12.79

3 0.05× 2−3 1.00 1.0484× 10−9 3.994 26.14

4 0.05× 2−4 1.00 6.5671× 10−11 3.997 55.81

5 0.05× 2−5 1.00 4.1090× 10−12 3.998 125.27

In Table 1, the singular point ε = 1 is exactly identified by Algorithm 3, since the singular point coincides with one of
the mesh points. In general, however, it is unlikely that a singular point belongs to the mesh point set. This can be
observed in Table 2, where a fixed increment change 0.03× 2−j for j = 0, . . . , 5 is utilized. In this case, the approximate
singular point is taken as the last mesh point before the minimum eigenvalues of X∗(ε) or S∗(ε), obtained from the ODE
system (16), become negative, or the first mesh point at which the minimum modulus of the Jacobian eigenvalues drops
below 10−5. As stated in Section 4.2, we can utilize numerical algebraic geometric tools to compute a singular point to
arbitrary accuracy.

Table 2: Convergence of x1(ε) when ε approaches to the singular point ε = 0.

j ∆εj Approximate singular point Err(∆εj) ρj CPU(s)

0 0.03 0.01 2.0415× 10−7 - 2.85
1 0.03× 2−1 0.01 1.2917× 10−8 3.982 4.57

2 0.03× 2−2 0.025 8.2444× 10−10 3.970 8.52

3 0.03× 2−3 0.0025 5.1677× 10−11 3.996 17.73

4 0.03× 2−4 0.000625 3.2461× 10−12 3.993 34.90

5 0.03× 2−5 0.000625 2.0302× 10−13 3.999 72.34

5.2 A transition point with discontinuous dual optimal set mapping

We next consider the parametric SDO problem

min εx1 + (1− ε)x2

s.t.


1 x1 x2 0 0 0
x1 1 0 0 0 0
x2 0 1 0 0 0
0 0 0 1 1

2
x1 x2

0 0 0 1
2
x1 1 0

0 0 0 x2 0 1

 � 0,
(18)

in which the feasible set is compact and E = R. It can be verified that the Jacobian is nonsingular on E \ {0},
rank

(
X∗(ε)

)
= 5, and rank

(
S∗(ε)

)
= 1 at every ε ∈ E \ {0}. Since both the primal and dual problems have unique

optimal solutions for every ε ∈ E \ {0}, the dual optimal set mapping fails to be continuous at ε = 0.
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Figure 5: Left: The feasible set of problem (18). Right: The exact and numerical approximation of the optimal value
function for problem (18) on [−1, 32 ].

For the purpose of numerical experiments, we consider the bounded domain [−1, 3
2
]. When starting from a nonsingular

point ε = 1
2

with a fixed increment change 0.01, Algorithm 3 properly identifies ε = 0 as a singular point. One could easily
skip over the singular point ε = 0 when simply solving at a finite set of mesh points. Figure 5 demonstrates the exact
optimal value function versus its numerical approximation obtained from Algorithm 3. Upon refining the accuracy of the
approximate singular point and obtaining the singular point ε = 0, we invoke Bertini solver in Algorithm 4 to compute
the dimension of all irreducible components of V

(
F (V, 0)

)
which contain V a(0). We observe that V a(0) lies on a 1-

dimensional irreducible component of V
(
F (V, 0)

)
, and there exists a generic solution V ∗(0) such that rank

(
X∗(0)

)
= 4

and rank
(
S∗(0)

)
= 2. All this indicates that the rank of X∗(ε) and S∗(ε) change at ε = 0, and thus ε = 0 is a

transition point. Consequently, we can partition (−1, 3
2
) into two nonlinearity intervals (−1, 0) and (0, 3

2
) and the

transition point {0}.

5.3 A non-transition point with singular Jacobian

Here, we apply Algorithm 1 to identify the singular points and the transition points of the parametric SDO problem (10)
in a bounded domain [−1, 2]. We initialize Algorithm 1 with the nonsingular point ε = 0, see (7), and the initial
increment change ∆ε = 0.005. While tracking forwards, Algorithm 3 computes the numerical approximation of the
unique optimal solution until it locates the singular points ε = 1

2
and ε = 3

2
. Then restarting the solution tracking at

3
2

+ ∆ε, Algorithm 2 identifies the invariancy interval ( 3
2
, 2) and the transition point ε = 3

2
. In an analogous fashion,

while tracking backwards, Algorithm 3 and Algorithm 2 identify the singular point ε = − 1
2

and the invariancy interval
(−1,− 1

2
), respectively. Figure 6 illustrates the exact and numerical approximation of the optimal value function, where

the singular/transition points are represented by the dots marks.
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Figure 6: The exact and numerical approximation of the optimal value function for problem (10) on [−1, 2].

Applying Algorithm 4 to the singular point ε = 1
2
, we can observe that V a( 1

2
) is not isolated, and it belongs to a

1-dimensional irreducible component of V
(
F (V, 1

2
)
)
. We then invoke the polynomial solver Bertini to compute a

generic solution

X∗( 1
2
) =


1 −0.0449 −0.0449 0

−0.0449 1 1 0
−0.0449 1 1 0

0 0 0 0.0898

 , y∗( 1
2
) =



0
−1
−1
0
0
0
0


, S∗( 1

2
) =


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 ,

in which rank
(
X∗( 1

2
)
)

= 3 and rank
(
S∗( 1

2
)
)

= 1. Given the rank of X∗(ε) and S∗(ε) on (− 1
2
, 1

2
) ∪ ( 1

2
, 3

2
), all this

implies that the singular point ε = 1
2

belongs to the nonlinearity interval (− 1
2
, 3

2
). Consequently, the domain (−1, 2) is

partitioned as

Uinv = (−1,− 1
2
) ∪ ( 3

2
, 2), Unon = (− 1

2
, 3

2
), Utran = {− 1

2
, 3

2
}.

6 Concluding remarks and future research

This paper utilized an optimal partition approach to parametric analysis for SDO problems, where the objective function
is perturbed along a fixed direction. In terms of continuity, we provided sufficient conditions for the existence of
nonlinearity intervals and the emptiness of the interior of the set of transition points. We showed that the optimal set
mapping might fail to be continuous on a nonlinearity interval, and the sequence of maximally complementary optimal
solutions may converge to the boundary of the optimal set at an ε in a nonlinearity interval. Under the assumption
of the existence of a nonsingular point in int(E), we then proposed a methodology, stemming from numerical algebraic
geometry, to efficiently partition int(E) into finite union of invariancy intervals, nonlinearity intervals, and transition
points. The computational approach was demonstrated on several examples.
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We conjecture that condition (9) could fail at a boundary point of a nonlinearity interval. It is worth providing a
counterexample or sufficient conditions which guarantee the validity of (9) at a boundary point of a nonlinearity interval.
Furthermore, we still do not know about any upper bound on the number of points at which P∗(ε) or D∗(ε) fails to be
continuous on a nonlinearity interval, or whether the subspaces

(
B(ε), T (ε),N (ε)

)
move continuously on a nonlinearity

interval. These topics are subjects of future research. We note that one could extend Theorem 4.1 to provide an upper
bound on the number of singular points, and hence on the number of transition points. However, such bounds would be
on the number of complex singular points, which may drastically overestimate the number of transition points in int(E).
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