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Abstract. In this paper, we study iterative methods on the coefficients
of the rational univariate representation (RUR) of a given algebraic set,
called global Newton iteration. We compare two natural approaches to
define locally quadratically convergent iterations: the first one involves
Newton iteration applied to the approximate roots individually and then
interpolation to find the RUR of these approximate roots; the second one
considers the coefficients in the exact RUR as zeroes of a high dimensional
map defined by polynomial reduction, and applies Newton iteration on
this map. We prove that over fields with a p-adic valuation these two
approaches give the same iteration function, but over fields equipped with
the usual Archimedean absolute value, they are not equivalent. In the
latter case, we give explicitly the iteration function for both approaches.
Finally, we analyze the parallel complexity of the different versions of
the global Newton iteration, compare them, and demonstrate that they
can be efficiently computed. The motivation for this study comes from
the certification of approximate roots of overdetermined and singular
polynomial systems via the recovery of an exact RUR from approximate
numerical data.

1 Introduction

Let F1, . . . , Fn ∈ K[x1, . . . , xn] be polynomials with coefficients from a field K,
J := 〈F1, . . . , Fn〉 the ideal they generate, and assume that J is zero dimensional
and radical. We consider two cases for the coefficient field K:

Non-Archimedean case: Let R be a principal ideal domain, K its field of
fractions, and p an irreducible element in R. Then, we can equip K with the
p-adic valuation, which defines a non-Archimedean metric on vector spaces
over K. The main examples include R = Z and p a prime number, or R =
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Q[t] and p = t. Note that after clearing denominators, we can assume that
F1, . . . , Fm ∈ R[x1, . . . , xn].

Archimedean case: In this case, K is a subfield of C and it is equipped with
the usual absolute value. The usual Euclidean norm defines an Archimedean
metric on vector spaces over K.

The objective of this paper is to study iterative methods on the coefficients of
the rational univariate representation (RUR) of a component of J , and compare
them in the Archimedean and the non-Archimedean cases. The RUR of a compo-
nent of J , originally defined in [32], is a simple representation of a subset of the
common roots of F1, . . . , Fn, expressing the coordinates of these common roots
as Lagrange interpolants at nodes which are given as the roots of a univariate
polynomial (see definition below).

We study two natural approaches for iterations that are locally quadratically
convergent to an exact RUR of a component of J , both based on Newton’s
method:

– To update an RUR, apply the usual n×n Newton iteration to each common
root of the old RUR, and compute the updated RUR which defines these
updated roots. In this approach we assume inductively that the common
roots of the iterated RUR’s are known exactly.

– Consider the map that takes an RUR and returns the reduced form of the
input polynomials F1, . . . , Fn modulo the RUR. Since an exact RUR of a
component of J is a zero of this map, we apply Newton’s method to this
map.

Note that in the p-adic case, the first iteration was studied in [15] where they
gave the iteration function explicitly and analyzed its complexity in terms of
straight-line programs, while the second approach was proposed in [38], without
giving the iteration explicitly.

The main results of this paper are as follows: First we prove that the above
two approaches give the same iteration function in the p-adic valuation. Next,
we show that in the Archimedean case the two iterations are not equivalent.
In this case, we give the explicit iteration functions for both approaches and
show that they are also different from the iteration function presented in [15]
and interpreted for the Archimedean case. We illustrate the methods on an
example involving the mobility of a spacial mechanism. Finally, we analyze the
parallel complexity of both approaches in the Archimedean case: For the first
approach, we use n × n Newton iterations independently for each root and an
efficient parallel Vandermonde linear solver for Lagrange interpolation. For the
second approach we utilize efficient parallel Toeplitz-like linear system solvers
to compute modular inverses of univariate polynomials. We present a version
of the algorithms of [30] to solve Toeplitz-like linear systems that uses a more
efficient displacement representation with factor circulant matrices defined in
[31, Example 4.4.2] rather than triangular Toeplitz matrices. Finally, we briefly
discuss the computation of modular inverses and cofactors when all the roots of
at least one of the two associated input polynomials are simple and known.
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1.1 Related work

The motivation to study numerical approximations of RUR’s come from a work
in progress in [2] to certify approximate roots of overdetermined and singular
polynomial systems over Q. For well-constrained non-singular systems, Smale’s
α-theory (see [6, Chapters 8 and 14]) gives a tool for the certification of approxi-
mate roots, as was explored and implemented in alphaCertified [18]. However,
alphaCertified does not straightforwardly extend to overdetermined or singu-
lar systems: in [18], they propose to use universal lower bounds for the minimum
of positive polynomials on a disk, such as in [22], but they conclude that such
bounds are “too small to be practical.” To overcome this difficulty, in [2] it is
proposed to iteratively compute the exact RUR of a rational component from
approximations of the roots, and then use the machinery of [18] to certify approx-
imate roots of this RUR. While [2] is devoted to considerations about the global
behavior of the iteration, this paper considers different choices of the iteration
function and their parallel complexity.

The iterative algorithms that are in the core of this paper are the Archimedean
adaptations of what is known as “global Newton iteration” or “multivariate
Hensel lifting” or “Newton-Hensel lifting” in the computer algebra literature,
where it is defined for the non-Archimedean case. Various versions of the Newton-
Hensel lifting were applied in many applications within computer algebra, in-
cluding in univariate polynomial factorization [42, 27], multivariate polynomial
factorization [8, 16, 23], gcd of sparse multivariate polynomials [24], lexicographic
and general Gröbner basis computation of zero dimensional algebraic sets [38,
41], geometric resolution of equi-dimensional algebraic sets [13, 14, 19, 15], Chow
forms [21], and sparse interpolation [3]. As we mentioned above, the most related
to this paper are [38, 15].

Computing numerical approximation to symbolic objects in the Archimedean
metric is not new either. There is a significant literature studying such hybrid
symbolic-numeric algorithms, and without trying to give a complete bibliogra-
phy, the following mentions the papers that are the closest to our work.

Closest to our approach is the literature on finding the vanishing ideal of
a finite point set given with limited precision. In [7], they give an algorithm
that given one approximate zero of a polynomial system, finds the RUR of the
irreducible component containing the corresponding exact roots in randomized
polynomial time. The algorithm in [7] applies the univariate results of [25] using
lattice basis reduction. The main point of our approach in this paper and in [2]
is that we assume to know all approximate roots of a rational component, so in
this case we can compute the exact RUR much more efficiently, and in parallel.

The papers [7, 35, 29, 1, 20, 9, 10] use a more general approach than the one
here, by computing border bases for a given set of approximate roots, which
avoids defining a random primitive element as is done for RURs used in this
paper. For general polynomial systems, numerical computation of Gröbner bases
was proposed, for example, in [33, 34, 28, 37]. The focus of these papers is to find
numerically stable support for the bases, which we assume to be given here by
the primitive element.
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2 Preliminaries

Let us start with recalling the notion of Roullier’s Rational Univariate Repre-
sentation (RUR), originally defined in [32]. Instead of defining the RUR of an
ideal J , here we only define the notion of the RUR of a component of J , which
is a weaker notion. We follow the notation in [2].

Let K be a field. Given F = (F1, . . . , Fn) ⊂ K[x1, . . . , xn] for some n, and
assume that the ideal J := 〈F1, . . . , Fn〉 is radical and zero dimensional. Then
the factor ring K[x1, . . . , xn]/J is a finite dimensional vector space over K, and
we denote

δ := dimK K[x1, . . . , xn]/J .

Furthermore, for almost all (λ1, . . . , λn) ∈ Kn (except a Zariski closed subset),
the linear combination

u(x1, . . . , xn) := λ1x1 + · · ·+ λnxn

is a primitive element of J , i.e. the powers 1, u, u2, . . . , uδ−1 form a linear basis
for K[x1, . . . , xn]/J (c.f. [32]).

In the algorithms that follow, we compute an RUR that may not generate
the ideal J , nevertheless the polynomials F1, . . . , Fn vanish modulo the RUR.
In this case the RUR will generate a component of J . We have the following
definition:

Definition 1. Let J = 〈F1, . . . , Fn〉 ⊂ K[x1, . . . , xn] be as above. Let λ1x1 +
· · ·+ λnxn be a primitive element of J . We call the polynomials

T − λ1x1 + · · ·+ λnxn, q(T ), v1(T ), . . . , vn(T ) (1)

a Rational Univariate Representation (RUR) of a component of J if it satisfies
the following properties:

– q(T ) ∈ K[T ] is a monic polynomial of degree d ≤ δ,
– gcdT (q(T ), q′(T )) = 1 where q′(T ) = ∂q(T )

∂T ,
– v1(T ), . . . , vn(T ) ∈ K[T ] are all degree at most d− 1 and satisfy

λ1v1(T ) + · · ·+ λnvn(T ) = T,

– for all i = 1, . . . , n we have

Fi(v1(T ), . . . , vn(T )) ≡ 0 mod q(T ).

First note that the set

{q(T ), x1 − v1(T ), . . . , xn − vn(T )} (2)

forms a Gröbner basis for the ideal it generates with respect to the lexicographic
monomial ordering with T < x1 < · · · < xn.
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Next let us recall the relationship between the RUR of a component of J
and its (exact) roots. Let

V (J ) = {ξ1, . . . , ξδ} ⊂ Cn

be the set of common roots of J . Denote ξi = (ξi,1, . . . , ξi,n) for i = 1, . . . , δ.
Then for any n-tuple (λ1, . . . λn) ∈ Kn such that for i, j = 1, . . . , δ

λ1ξi,1 + · · ·+ λnξi,n 6= λ1ξj,1 + · · ·+ λnξj,n if i 6= j,

we can define the primitive element u = λ1x1 + · · ·+λnxn for J . Since all roots
of J are distinct, such primitive element exist, and can be computed from the
roots {ξ1, . . . , ξδ}, or using randomization. Fix such (λ1, . . . λn) ∈ Kn. For d ≤ δ
let {ξ1, . . . , ξd} be a subset of V (J ) and define

µi := λ1ξi,1 + · · ·+ λnξi,n, i = 1, . . . d. (3)

The RUR of the component of J corresponding to the subset {ξ1, . . . , ξd} ⊂
V (J ) is defined by

q(T ) :=
d∏
i=1

(T − µi), (4)

and for each j = 1, . . . , n, the polynomial vj(T ) is the unique Lagrange inter-
polant of degree at most d− 1 satisfying

vj(µi) = ξi,j for i = 1, . . . , d. (5)

Note that if J is defined by polynomials over K, then the polynomials in the
RUR of J have coefficients in K, but that is not true for all components of
V (J ). We call a subset {ξ1, . . . , ξd} ⊂ V (J ) a rational component of J if the
corresponding RUR has also coefficients in K.

3 Global Newton Iteration

In this section we describe iterative methods that improves the accuracy of the
coefficients of the RUR of a component of J . We use a similar approach as in
[15, Section 4], but instead of a coefficient ring with the p-adic absolute value,
here we make adaptations to coefficient field K ⊆ C equipped with the usual
absolute value. We start with recalling the definitions given in [15, Section 4].

3.1 Non-Archimedean Global Newton iteration

First, we briefly describe the global Newton iteration defined in [15, Section 4].
There the coefficient domain is the ring Q[t] and the non-Archimedean metric
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is defined by the irreducible element t ∈ Q[t]. They consider a square system
F = (F1, . . . , Fn) with Fi ∈ Q[t][x1, . . . , xn]. Let

u(x1, . . . , xn) = λ1x1 + · · ·+ λnxn = T

be a random primitive element for 〈F1, . . . , Fn〉. Furthermore, define

I := 〈tk〉 for some k.

In [15, Section 4] they assume that some initial approximate RUR is given
for a component of J :

q(T ), v(T ) := (v1(T ), . . . , vn(T )) ∈ Q[t][T ]

satisfying the following assumptions:

Assumption 2 Let F , u, I, q(T ) and v(T ) be as above. Then

1. q(T ) is monic and has degree d,
2. vi(T ) has degree at most d− 1,
3. F (v(T )) ≡ 0 mod q(T ) mod I,
4. λ1v1(T ) + · · ·+ λnvn(T ) = T mod I,
5. JF (v(T )) :=

[
∂Fi
∂xj

(v(T ))
]n
i,j=1

is invertible modulo q(T ) and I.

They define the following updates:

Definition 3. Assume that F , u, q(T ), v(T ) and I satisfy Assumption 2. Then
in [15, Section 4] they define

u =

nX
i=1

λixi = T remains the same as for the initial RUR,

w(T ) := v(T )−
`
JF (v(T ))−1F (v(T ))mod q(T )

´
mod I2,

∆(T ) :=

nX
i=1

λiwi(T )− T mod I2,

V (T ) := w(T )−
„
∆(T ) · ∂w(T )

∂T
mod q(T )

«
mod I2,

Q(T ) := q(T )−
„
∆(T ) · ∂q(T )

∂T
mod q(T )

«
mod I2.

In [15, Section 4] they prove the following:

Proposition 4 ([15]). Assume that F , u, q(T ), v(T ) and I satisfy Assumption
2 and let w(T ), ∆(T ), V (T ), Q(T ) be as in Definition 3. Then

(i) v(T ) ≡ w(T ) ≡ V (T ), q(T ) ≡ Q(T ) and ∆(T ) ≡ 0 mod I
(ii) F (w(T )) ≡ 0 mod q(T ) mod I2,

(iii) 〈q(T ), U−T−∆(T ), x1−w1(T ), . . . , xn−wn(T )〉 = 〈Q(U), T−U−∆(U), x1−
V1(U), . . . , xn − Vn(U)〉 mod I2,

(iv) F (V (T )) ≡ 0 mod Q(T ) mod I2,
(v) λ1V1(T ) + · · ·+ λnVn(T ) = T mod I2.
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3.2 First Construction

Our first variation of Definition 3 will have the property that it agrees to the
approximate RUR obtained from the approximate roots via Lagrange interpo-
lation as was described in the Preliminaries. We give our definition over some
general coefficient ring R, but later we will use R = K ⊂ C, or Q[t]/I2. We need
the following assumptions:

Assumption 5 Let F = (F1, . . . , Fn), u = λ1x1 + · · ·+λnxn, q(T ) and v(T ) =
(v1(T ), . . . , vn(T )) polynomials over some Euclidean domain R as above. We
assume that

1. q(T ) is monic and has degree d,
2. vi(T ) has degree at most d− 1,
3. ∂q(T )

∂T is invertible modulo q(T ),
4. λ1v1(T ) + · · ·+ λnvn(T ) = T ,
5. JF (v(T )) :=

[
∂Fi
∂xj

(v(T ))
]n
i,j=1

is invertible modulo q(T ).

Our first construction for the update is defined as follows:

Definition 6. Assume that F , u, q(T ) and v(T ) satisfy Assumption 5. Then
we define

u =

nX
i=1

λixi = T

w(T ) := v(T )−
`
JF (v(T ))−1F (v(T )) mod q(T )

´
,

∆(T ) :=

nX
i=1

λiwi(T )− T so far the same as in Definition 3, (6)

Ṽ (T +∆(T )) =

264 Ṽ1(T +∆(T ))
...

Ṽn(T +∆(T ))

375 := w(T ) mod q(T ), (7)

∆Q̃(T +∆(T )) := −(T +∆(T ))d mod q(T ) (8)

Q̃(T ) := ∆Q̃(T ) + T d (9)

Note that in Definition 6 we define Ṽ (T +∆(T )) and not Ṽ (T ), but the coeffi-
cients of Ṽi(T ) can be obtained as solutions of linear systems. Similarly for the
coefficients of ∆Q̃(T ). In the next proposition we examine these linear systems
and give conditions on the existence and uniqueness of their solutions.

Proposition 7. The coefficients of the polynomials Ṽi(T ) in (7) for i = 1, . . . , n,
and the coefficients of the polynomial ∆Q̃(T ) = Q̃(T )−T d in (8) are the solutions
of d×d linear systems with a common coefficient matrix that has columns which
are the coefficient vectors of

(T +∆(T ))j mod q(T ) for j = 0, . . . , d− 1.

This coefficient matrix is non-singular if and only if u is a primitive element for
the ideal 〈q(T ), x1 − w1(T ), . . . , xn − wn(T )〉.
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Proof. A closer look of the definition in (7) and (8) gives the coefficient ma-
trix of the linear systems defining Ṽi(T ) and ∆Q̃(T ) as stated, with a com-
mon coefficient matrix. This linear system has unique solution if and only if
1, T +∆(T ), . . . , (T +∆(T ))d−1 are linearly independent modulo q(T ), and since

T +∆(T ) =
n∑
I=1

λiwi(T ) = u(w(T )), (10)

this is equivalent to u being a primitive element of the updated system.

The following proposition compares Definitions 3 and 6 in cases when the
coefficient ring is R = Q[t]/I2.

Proposition 8. Assume that the conditions of Assumption 2 are satisfied and
that u is a primitive element for 〈q(T ), x1−w1(T ), . . . , xn−wn(T )〉 as in Propo-
sition 7. Let V (T ) and Q(T ) be as in Definition 3 and Ṽ (T ) and Q̃(T ) be as in
Definition 6 for R = Q[t]/I2. Then V (T ) ≡ Ṽ (T ) and Q(T ) ≡ Q̃(T ) mod I2.

Proof. From Proposition 4.(iii) we get Vi(T+∆(T )) ≡ wi(T ) and Q(T+∆(T )) ≡
0 mod q(T ) mod I2. Since Q(T ) is a monic polynomial of degree d, the coeffi-
cients of its degree ≤ d − 1 terms are uniquely determined modulo q(T ), so we
have that

Q(T +∆(T ))− (T +∆(T ))d ≡ −(T +∆(T ))d mod q(T ) mod I2.

Since Ṽ and Q̃ are uniquely defined by these properties, they must be equal to
V and Q respectively.

The following proposition connects the approximate RUR defined in Defi-
nition 6 to the ones obtained by applying one step of Newton iteration on the
approximate roots, as promised in the Introduction:

Proposition 9. Let F = (F1, . . . , Fn) ⊂ K[x1, . . . , xn] as above. Assume that
the polynomials u = λ1x1 + · · · + λnxn, q(T ), v(T ) := (v1(T ), . . . , vn(T ))
satisfy Assumption 5. Let z1, . . . ,zd ∈ Kn

be the exact roots of 〈q(T ), x1 −
v1(T ), . . . , xn− vn(T )〉∩K[x1, . . . , xn] where K is the algebraic closure of K. Let

z̃i := zi − JF (zi)−1F (zi) i = 1, . . . , d

be one step of Newton iteration. Assume that u(z̃i) 6= u(z̃j) for i 6= j. Then
Q̃(T ), Ṽ1(T ), . . . , Ṽn(T ) defined in Definition 6 is the exact RUR of {z̃1, . . . , z̃d},
with

∑n
i=1 λiṼi(T ) = T.

Proof. Using the notation zi = (zi,1, . . . , zi,n) and z̃i = (z̃i,1, . . . , z̃i,n) we define

µi := u(zi) =
n∑
j=1

λjzi,j and µ̃i := u(z̃i) =
n∑
j=1

λj z̃i,j i = 1, . . . , d.
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Then for all i = 1, . . . , d and j = 1, . . . , n we have q(µi) = 0, wj(µi) =
z̃i,j and ∆(µi) = µ̃i − µi. Note that u is a primitive element for 〈q(T ), x1 −
w1(T ), . . . , xn − wn(T )〉 if and only if µ̃i 6= µ̃j for i 6= j. In this case for all
i = 1, . . . , d and j = 1, . . . , n we have from (7), (8) and (9) that

Ṽj(µ̃i) = wj(µi) = z̃i,j and Q̃(µ̃i) = ∆Q̃(µ̃i) + µ̃di = 0.

This proves that Q̃(T ), Ṽ1(T ), . . . , Ṽn(T ) is the exact RUR of {z̃1, . . . , z̃d}. Fi-
nally, the last claim follows from

n∑
i=1

λiṼi(T +∆(T )) =
n∑
i=1

λiwi(T ) = T +∆(T ).

Corollary 10. Let R = K ⊂ C be a field equipped with the usual absolute value,
and consider the Euclidean norm on the coefficient vectors of polynomials over C.
Then the iteration defined by Definition 6 is locally quadratically convergent to
an exact RUR of a component of 〈F 〉 over an algebraic extension of K, as long
as Assumption 5 is satisfied in each iteration.

3.3 Second Construction

Our second variation of Definition 3 will have the property that it can be in-
terpreted as an (n + 1)d dimensional Newton iteration as follows. Given F =
(F1, . . . , Fn) and u =

∑n
i=1 λixi in R[x1, . . . , xn] as before, we define the map

Φ : R(n+1)d → R(n+1)d

as the map of the coefficient vectors of the following degree d− 1 polynomials:

Φ :

26664
v1(T )

...
vn(T )
∆q(T )

37775 7→
26664
F1(v(T ))mod q(T )

...
Fn(v(T ))mod q(T )Pn

i=1 λivi(T )− T

37775 , (11)

where
∆q(T ) := q(T )− T d.

If u, q(T ), v1(T ), . . . , vn(T ) is an exact RUR of a component of 〈F 〉 then

Φ (v1(T ), . . . , vn(T ), ∆q(T )) = 0.

So one can apply the (n+ 1)d dimensional Newton iteration to locally converge
to the coefficient vector of an exact RUR which is a zero of Φ. Note that below
we will consider the map Φ as a map between

Φ : (R[T ]/〈q(T )〉)n+1 → (R[T ]/〈q(T )〉)n+1
,

and note that (R[T ]/〈q(T )〉)n+1 and R(n+1)d are isomorphic as vectors spaces
when R = K a field. Moreover, as we will see below, the Newton iteration for Φ
respects the algebra structure of (R[T ]/〈q(T )〉)n+1 as well.

The first lemma gives the Jacobian matrix of Φ.
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Lemma 11. Let F = (F1, . . . , Fn), u, q(T ), v(T ) and Φ be as above. For i =
1, . . . , n define mi(T ) and ri(T ) as the quotient and remainder in the division
with remainder:

Fi(v(T )) = mi(T )q(T ) + ri(T ). (12)
Then the Jacobian matrix of Φ defined in (11) and considered as a map on
(R[T ]/〈q(T )〉)n+1 is given by

JΦ(v(T ),∆q(T )) :=

n 1
−m1(T )

JF (v(T ))
... n

−mn(T )
λ1 · · · λn 0 1

mod q(T ). (13)

Proof. Using the notation r = (r1(T ), . . . , rn(T )) from (12), we have that

Φ(v(T ), ∆q(T )) = (r(T ),
n∑
i=1

λivi(T )).

Let vi,j be the coefficient of T j in vi(T ) for i = 1, . . . , n and j = 0, . . . , d − 1.
Then for k = 1, . . . , n

∂ rk(T )
∂vi,j

=
∂Fk(v(T ))

∂vi,j
− q(T )

∂mk(T )
∂vi,j

=
∂Fk(v(T ))

∂vi,j
mod q(T )

=
∂Fk
∂xi

(v(T )) · ∂vi(T ))
∂vi,j

mod q(T )

=
∂Fk
∂xi

(v(T )) · T j mod q(T ).

This shows that the block corresponding to the derivatives of vi,j for j =
0, . . . , d−1 defines modular multiplication by the polynomials ∂Fk

∂xi
(v(T )), which

is an entry of JF (v(T )). Furthermore,

∂ (
∑n
k=1 λkvk(T ))
∂vi,j

= λiT
j

which gives the last row of (13). Let qj be he coefficient of T j in ∆q(T ) =
q(T )− T d for j = 0, . . . , d− 1. Then

∂rk(T )
∂qj

=
∂Fk(v(T ))

∂qj
− q(T )

∂mk(T )
∂qj

−mk(T )
∂q(T )
∂qj

= −mk(T )
∂q(T )
∂qj

mod q(T )

= −mk(T )T j mod q(T )

and ∂λkvk(T )
∂qj

= 0 which gives the last column.
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Remark 12. The proof of Lemma 11 shows that the Jacobian matrix of Φ con-
sidered as a map on R(n+1)d is the (n+1)d×(n+1)d matrix obtained from JΦ in
(13) by replacing every entry by the d× d matrix of multiplication modulo q(T )
by the polynomial in that entry. In other words, if the polynomial in the (i, j)-th
entry of Jφ is p(T ) then the k-th column of this d × d block is the coefficient
vector of T k−1p(T ) mod q(T ).

Next, we give explicitly the iteration function corresponding to the Newton
iteration on Φ, using polynomial arithmetic modulo q(T ). We need the following
assumptions:

Assumption 13 Let F (x1, . . . , xn), u =
∑n
i=1 λixi, q(T ) and v(T ) polynomials

over some Euclidean domain R as above. We assume that

1. q(T ) is monic and has degree d,
2. vi(T ) has degree at most d− 1,
3. ∂q(T )

∂T is invertible modulo q(T ),
4. λ1v1(T ) + · · ·+ λnvn(T ) = T ,
5. JF (v(T )) :=

[
∂Fi
∂xj

(v(T ))
]n
i,j=1

is invertible modulo q(T ).

6. JΦ := JΦ(v(T ), ∆q(T )) defined in (13) is invertible modulo q(T ).

Definition 14. Let F (x1, . . . , xn), u(x1, . . . , xn), q(T ) and v(T ) be polynomials
over R satisfying Assumption 13. Then we define

u =

nX
i=1

λixi = T

w(T ) := v(T )−
`
JF (v(T ))−1F (v(T )) mod q(T )

´
,

∆(T ) :=

nX
i=1

λiwi(T )− T same as in Definitions 3 and 6, (14)

r(T ) := F (v(T )) mod q(T ) (15)

U(T ) :=
∂v(T )

∂T
−
„
JF (v(T ))−1 ∂r(T )

∂T
mod q(T )

«
, (16)

Λ(T ) :=

nX
i=1

λiUi(T ) that we will show to be invertible modulo q(T ) (17)

V̄ (T ) := w(T )−
„
∆(T )

Λ(T )
U(T ) mod q(T )

«
, (18)

Q̄(T ) := q(T )−
„
∆(T )

Λ(T )

∂q(T )

∂T
mod q(T )

«
. (19)

Remark 15. Note that in general derivation and modular arithmetic do not com-
mute, i.e.

∂p(T )
∂T

mod q(T ) 6= ∂(p(T ) mod q(T ))
∂T

.

For example if p = T 2 and q = T 2 − 1 then the left hand side is 2T but the
right hand side is 0. That is why we first had to introduce the reduced form of
F (v(T )) modulo q(T ) in (15) and then use its derivative by T in (16).
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Remark 16. Note that if R = Q[t] then and I = 〈tk〉 for some k ≥ 1 then

∆(T )
Λ(T )

≡ ∆(T ) and U(T ) ≡ ∂w(T )
∂T

mod q(T ) mod I2,

thus our second construction is equivalent to the one in Definition 3. However,
when our coefficient ring R is a field K ⊂ C, the polynomials in U(T ) are not
the partial derivatives of the ones in w(T ), so we get a different iteration in
Definition 14 from the one in Definition 3.

The next proposition shows that V̄ (T ) and Q̄(T ) from Definition 14 are the
Newton iterates for the function Φ.

Proposition 17. Let F , u, q(T ), v(T ) and Φ be such that Assumption 13 holds.
Then Λ(T ) defined in (17) is invertible modulo q(T ), and thus V̄ (T ) and Q̄(T )
are well defined in Definition 14. Furthermore»

V̄ (T )

Q̄(T )− T d
–

=

»
v(T )

q(T )− T d
–
− J−1

Φ ·
»

F (v(T ))Pn
i=1 λivi(T )− T

–
mod q(T ), (20)

where the vector on the right hand side is Φ(v(T ), q(T )− T d). Finally, we also
have that

∑n
i=1 λiV̄i(T ) = T.

Proof. Taking derivatives by T of both sides of the equations

Fi(v(T ))−mi(T )q(T ) = ri(T )

for i = 1, . . . n, we get that

JF (v(T ))
∂v(T )
∂T

− ∂q(T )
∂T

m(T ) ≡ ∂r(T )
∂T

mod q(T ),

or equivalently

−m1(T )

JF (v(T ))
...

−mn(T )
·


∂v1(T )
∂T
...

∂vn(T )
∂T
∂q(T )
∂T

 ≡

∂r1(T )
∂T
...

∂rn(T )
∂T

 mod q(T ).

From the definition

U(T ) :=
∂v(T )
∂T

−
(
JF (v(T ))−1 ∂r(T )

∂T
mod q(T )

)
in (16) we get that

−m1(T )

JF (v(T ))
...

−mn(T )
·


U1(T )

...
Un(T )
∂q(T )
∂T

 =

0
...
0

 mod q(T ). (21)
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From this and from the definition

Λ(T ) =
n∑
i=1

λiUi(T )

it is easy to see that

Λ(T ) =
∂q(T )
∂T

· [λ1 · · ·λn] J−1
F (v(T ))

m1(T )
...

mn(T )

 .
Then using Schur complements we get that

Λ(T ) · det JF (v(T )) =
∂q(T )
∂T

· det JΦ,

and since both ∂q(T )
∂T and det(JΦ) are invertible modulo q(T ) by our assumptions,

so is Λ(T ) as was claimed.
To prove the second claim, consider w(T ) = v(T )−JF (v(T ))−1F (v(T )) defined
in (14), and define

W (T ) := JF (v(T ))−1F (v(T )). (22)

Using that
∑n
i=1 λivi(T ) = T we get that

∆(T ) =
n∑
i=1

λiwi(T )− T = −
n∑
i=1

λiWi(T )

and thus
n∑
i=1

λiWi(T ) +
∆(T )
Λ(T )

·
n∑
i=1

λiUi(T ) ≡ 0 ≡
n∑
i=1

λivi(T )− T mod q(T ). (23)

Thus from (21), (22) and (23) we have that modulo q(T )

−m1(T )

JF (v(T ))
...

−mn(T )
λ1 · · · λn 0

·

266664
W1(T ) + ∆(T )

Λ(T )
U1(T )

...

Wn(T ) + ∆(T )
Λ(T )

Un(T )
∆(T )
Λ(T )

· ∂q(T )
∂T

377775 =

26664
F1(v(T ))

...
Fn(v(T ))Pn

i=1 λivi(T )− T

37775 ,

or equivalently
W1(T ) + ∆(T )

Λ(T )U1(T )
...

Wn(T ) + ∆(T )
Λ(T )Un(T )

∆(T )
Λ(T ) ·

∂q(T )
∂T

 = J−1
Φ ·


F1(v(T ))

...
Fn(v(T ))∑n

i=1 λivi(T )− T

 .
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This, together with the definitions of V̄ (T ) in (18) and Q̄(T ) in (19) proves the
second claim. The third claim is immediate from (23), as

n∑
i=1

λiV̄i =
n∑
i=1

λivi(T )−
n∑
i=1

λi

(
Wi(T ) +

∆(T )
Λ(T )

Ui(T )
)

= T − 0.

Corollary 18. Let R = K ⊂ C be a field equipped with the usual absolute value,
and consider the Euclidean norm on the coefficient vectors of polynomials over C.
Then the iteration defined by Definition 14 is locally quadratically convergent to
an exact RUR of a component of 〈F 〉 over an algebraic extension of K, as long
as Assumption 13 is satisfied in each iteration.

4 Example: A cubic-centered 12-bar linkage

To illustrate the application of these techniques, we compute an RUR for a
rational component of a square system to prove that it solves an overdetermined
system of equations arising from a 12-bar spherical linkage. The overdetermined
polynomial system G consists of 17 quadratic and 2 linear polynomials in 18
variables for the linkage first described in [40], which is presented in [39, Fig. 3].
The trivial rotation of the cube is removed by placing the center of the cube
at the origin and fixing two adjacent vertices, say P7 and P8, at (−1, 1,−1)
and (−1,−1,−1), respectively. The 18 variables are the coordinates of the six
remaining vertices of the cube, say P1, . . . , P6 with Pi = (Pix, Piy, Piz). The 17
quadratic conditions force these free vertices to maintain their relative distances:

‖Pi − Pj‖2 − 4 = 0, (i, j) ∈
{

(1, 2), (3, 4), (5, 6), (1, 5), (2, 6), (3, 7),
(4, 8), (1, 3), (2, 4), (5, 7), (6, 8)

}
‖Pi‖2 − 3 = 0, i = 1, . . . , 6.

The irreducible components of these 17 quadratic polynomials was first de-
scribed in [17, Table 1]. This decomposition shows that there is a unique irre-
ducible surface S of degree 16, which is the current focus of study. In particular,
the rational component is the 16 points arising from the intersection of S with
the codimension two linear space defined by:

P3x + P4x + P2z = 0,
P5x − P6x + P3y + P3z + 1 = 0.

In order to compute an RUR for this rational component, we consider the
square polynomial system F consisting of these two linear equations and 16
quadratic equations obtained by adding the last quadratic above, i.e., ‖P6‖2 − 3,
to the other sixteen. Starting with a witness set for S, we used Bertini [4]
to compute numerical approximations of the 16 points of interest. From these
points, we observe that the variable P6z is distinct, so we take the primitive ele-
ment u(P1, . . . , P6) = P6z = T. Next, we produce an initial guess for the monic
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univariate polynomial q(T ) of degree 16. Since q(T ) naturally has small integer
coefficients, this polynomial was computed exactly. We produced an initial guess
for the univariate polynomials v(T ) of degree at most 15 via Lagrange interpola-
tion using the computed numerical approximations. These are polynomials with
rational coefficients having at most 5 digit numerators and denominators. These
initial guesses are:

q(T ) = T16 + 20T15 + 210T14 + 1230T13 + 4212T12 + 4677T11

− 6886T10 − 21389T9 + 58242T8 − 45269T7 − 6118T6

+ 58968T5 − 103014T4 + 119847T3 − 91281T2 + 40466T − 8291
v1x(T ) = −1
v2x(T ) = −1
v3x(T ) = −1/1112T15 − 1/57T14 − 13/72T13 − 139/138T12 − 167/54T11

− 67/60T10 + 1616/117T9 + 3173/120T8 − 3922/63T7

+ 1165/39T6 + 2909/123T5 − 1709/30T4 + 9965/109T3

− 2366/23T2 + 63032/1027T − 1466/99
v4x(T ) = 1/1112T15 + 1/57T14 + 13/72T13 + 139/138T12 + 167/54T11

+ 67/60T10 − 1616/117T9 − 3173/120T8 + 3922/63T7

− 1165/39T6 − 2909/123T5 + 1709/30T4 − 9965/109T3

+ 2366/23T2 − 63032/1027T + 1565/99
v5x(T ) = −1/10090T15 − 1/506T14 − 1/49T13 − 3/26T12 − 33/94T11

− 7/132T10 + 187/83T9 + 538/107T8 − 398/77T7

− 1601/587T6 + 2223/502T5 − 129/113T4 + 544/63T3

− 917/150T2 − 233/97T + 23/36
v6x(T ) = −1/5519T15 − 1/265T14 − 3/73T13 − 31/121T12 − 33/34T11

− 129/79T10 − 37/517T9 + 233/61T8 − 2017/270T7

+ 373/177T6 + 155/53T5 − 2314/271T4 + 705/59T3

− 4487/358T2 + 963/158T − 59/47
v1y(T ) = 1
v2y(T ) = −1

v3y(T ) = −1/2038T15 − 1/103T14 − 17/169T13 − 31/54T12 − 245/132T11

− 120/89T10 + 224/39T9 + 757/60T8 − 581/18T7

+ 3193/184T6 + 1661/150T5 − 21047/654T4 + 7721/163T3

− 7541/138T2 + 2725/78T − 785/94
v4y(T ) = −1/2357T15 − 1/108T14 − 33/314T13 − 39/56T12 − 187/65T11

− 581/95T10 − 2401/600T9 + 930/101T8 − 775/113T7

− 445/44T6 + 1237/142T5 − 1487/168T4 + 1817/150T3

− 462/167T2 − 1489/248T + 494/135
v5y(T ) = 1/12979T15 + 1/694T14 + 1/70T13 + 11/148T12 + 37/177T11

+ 1/107T10 − 213/365T9 + 118/195T8 + 1551/163T7

− 580/67T6 − 531/166T5 + 1893/211T4 − 463/51T3

+ 1090/61T2 − 2787/212T + 258/95
v6y(T ) = 1/5519T15 + 1/265T14 + 3/73T13 + 31/121T12 + 33/34T11

+ 129/79T10 + 37/517T9 − 233/61T8 + 2017/270T7

− 373/177T6 − 155/53T5 + 2314/271T4 − 705/59T3

+ 4487/358T2 − 1121/158T + 12/47
v1z(T ) = −1
v2z(T ) = −1
v3z(T ) = 1/2448T15 + 1/126T14 + 2/25T13 + 13/30T12 + 183/148T11

− 22/95T10 − 1299/161T9 − 553/40T8 + 1259/42T7

− 338/27T6 − 3182/253T5 + 1958/79T4 − 1630/37T3

+ 4292/89T2 − 1084/41T + 1206/221
v4z(T ) = −1/2106T15 − 1/119T14 − 4/53T13 − 23/74T12 − 25/116T11

+ 5654/1131T10 + 2868/161T9 + 1327/77T8 − 7423/134T7

+ 2759/69T6 + 1718/115T5 − 9575/199T4 + 5393/68T3

− 12613/126T2 + 6401/95T − 1883/92
v5z(T ) = 1/5677T15 + 1/292T14 + 7/202T13 + 26/137T12 + 219/391T11

+ 22/353T10 − 139/49T9 − 774/175T8 + 279/19T7

− 587/99T6 − 450/59T5 + 536/53T4 − 3029/171T3

+ 1343/56T2 − 462/43T + 14/13
v6z(T ) = T

We refined the approximate RUR using Algorithm 19, and in 3 iterations
(in roughly 1 second) we found the exact RUR. In the v(T ) polynomials of the
exact RUR, the numerators and denominators of the coefficients have at most
28 digits, namely:
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α = 1/3204471773221369279790658525
v3x(T ) = α(−2881129493593630865610329T15 − 56469358709164889119641644T14

− 578442048083015317390422659T13 − 3227775460749576025678391459T12

− 9909894946587188228883719582T11 − 3578358749346900975113448620T10

+ 44260151084205755500190960589T9 + 84731577601881128711018565420T8

− 199491165378780802464515305188T7 + 95723229838339681423971314578T6

+ 75787130941751596487093105995T5 − 182548470032615020420523374937T4

+ 292959497003500175534452099849T3 − 329643042476857281605069314889T2

+ 196674125364601362085119810025T − 47452126308845628915580789974)
v4x(T ) = α(2881129493593630865610329T15 + 56469358709164889119641644T14

+ 578442048083015317390422659T13 + 3227775460749576025678391459T12

+ 9909894946587188228883719582T11 + 3578358749346900975113448620T10

− 44260151084205755500190960589T9 − 84731577601881128711018565420T8

+ 199491165378780802464515305188T7 − 95723229838339681423971314578T6

− 75787130941751596487093105995T5 + 182548470032615020420523374937T4

− 292959497003500175534452099849T3 + 329643042476857281605069314889T2

− 196674125364601362085119810025T + 50656598082066998195371448499)
v5x(T ) = α/47(−14926508985814692725660295T15 − 297773391799482191643772465T14

− 3081610308415501202687193085T13 − 17389506895894299310438310140T12

− 52870530884177916409158871660T11 − 7985554397153232406118329735T10

+ 339337071563230521110991064610T9 + 757269429739682916272675120805T8

− 778491818056744498922090610960T7 − 410778307074659870607871725630T6

+ 666945252290852928200793739220T5 − 171936037274621562789031991275T4

+ 1300517229936781609262733002915T3 − 920730755436417716152608059995T2

− 361767415638579519536847568045T + 96208631064260278520898204560)
v6x(T ) = α/47(−27287280868886188971151890T15 − 567883140744448436140744235T14

− 6190772706188356762139486930T13 − 38580721830051962511624944735T12

− 146182732583672120750472401420T11 − 245939987210083103698877745635T10

− 10778669490043487418881186945T9 + 575272052935709136436375750005T8

− 1125114039605827435077357466500T7 + 317389390835062387309791675960T6

+ 440466388670191221545685003445T5 − 1286022849359951198330786683160T4

+ 1799659504525177884513418973560T3 − 1887676569404811089807938408490T2

+ 917961856537764412658257692880T − 189055429157249714249696125460)
v3y(T ) = α(−1572062320020980286480607T15 − 31108187322082085458724777T14

− 322297219762495483795767647T13 − 1839326187121146132000755672T12

− 5947630470096723947860088831T11 − 4320609510981215075777569160T10

+ 18405439998982941489139392512T9 + 40429646494515311378527374510T8

− 103433053131401921829654108504T7 + 55608079790549864732386331774T6

+ 35484215857890035406790077085T5 − 103126222378917399950067588446T4

+ 151789772699498984312446113442T3 − 175108178833837080947804129237T2

+ 111951203875666042023358897150T − 26760787199332495231945653817)
v4y(T ) = α(−1359749822277659136367732T15 − 29651222724814187524939277T14

− 336783507299580007515911147T13 − 2231865653484431345450780072T12

− 9219287203307410697519852906T11 − 19597877374389843525839721035T10

− 12823225261355870172371961013T9 + 29506643456688254696406280185T8

− 21977689644205909107128376729T7 − 32409171956862700073069418826T6

+ 27915029062394568996017596135T5 − 28363400298198409791080814221T4

+ 38816863323840423843221276617T3 − 8865121893390327106993539437T2

− 19239716389698007639434041750T + 11725943590084476919258204283)
v5y(T ) = α/47(11603983966259833376058160T15 + 217153170339381974795502905T14

+ 2139063241115082817328441135T13 + 11191289970084093849864343715T12

+ 31486473569992118869518659780T11 + 1401302126019324290665142660T10

− 87890587988818445033654819495T9 + 91139458508898945030483080370T8

+ 1433108663902588131761054475525T7 − 1303792568225360896022867456000T6

− 481771480980237531202595548510T5 + 1351208978813262782720191318100T4

− 1367308841574912038190287285515T3 + 2691219896341123859883175304435T2

− 1979954015860581566552572962955T + 409019746222899610159043835865)
v6y(T ) = α/47(27287280868886188971151890T15 + 567883140744448436140744235T14

+ 6190772706188356762139486930T13 + 38580721830051962511624944735T12

+ 146182732583672120750472401420T11 + 245939987210083103698877745635T10

+ 10778669490043487418881186945T9 − 575272052935709136436375750005T8

+ 1125114039605827435077357466500T7 − 317389390835062387309791675960T6

− 440466388670191221545685003445T5 + 1286022849359951198330786683160T4

− 1799659504525177884513418973560T3 + 1887676569404811089807938408490T2

− 1068572029879168768808418643555T + 38445255815845358099535174785)
v3z(T ) = α(1309067173572650579129722T15 + 25361171387082803660916867T14

+ 256144828320519833594655012T13 + 1388449273628429893677635787T12

+ 3962264476490464281023630751T11 − 742250761634314100664120540T10

− 25854711085222814011051568077T9 − 44301931107365817332491190910T8

+ 96058112247378880634861196684T7 − 40115150047789816691584982804T6

− 40302915083861561080303028910T5 + 79422247653697620470455786491T4

− 141169724304001191222005986407T3 + 154534863643020200657265185652T2

− 84722921488935320061760912875T + 17486867336291764403844477632)
v4z(T ) = α(−1521379671315971729242597T15 − 26818135984350701594702367T14

− 241658540783435309874511512T13 − 995909807265144680227611387T12

− 690607743279777531363866676T11 + 16019518625042942550726272415T10

+ 57083376345561625672562921602T9 + 55224934145192874014612285235T8

− 177513475734574893357386928459T7 + 128132401795202381497040733404T6

+ 47872101879357027491075509860T5 − 154185069734416610629442560716T4

+ 254142633679659751691230823232T3 − 320777920583466954498075775452T2

+ 215913841754299369724553851775T − 65587013445372844394420311307)
v5z(T ) = α/47(26530492952074526101718455T15 + 514926562138864166439275370T14

+ 5220673549530584020015634220T13 + 28580796865978393160302653855T12

+ 84357004454170035278677531440T11 + 9386856523172556696783472395T10

− 427227659552048966144645884105T9 − 666129971230783971242192040435T8

+ 2211600481959332630683145086485T7 − 893014261150701025414995730370T6

− 1148716733271090459403389287730T5 + 1523145016087884345509223309375T4

− 2667826071511693647453020288430T3 + 3611950651777541576035783364430T2

− 1618186600222002047015725394910T + 162200941817234975487984680630)
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We checked F (v(T )) ≡ 0 mod q(T ) and G(v(T )) ≡ 0 mod q(T ) using exact
arithmetics, meaning that we found an exact rational component of our zero
dimensional ideal and proves it satisfies the overdetermined system of equations.

5 Parallel complexity

In this section, we study two parallel algorithms for our two constructions in
Definitions 6 and 14, and analyze their parallel complexity. We express our com-
plexity results as functions of the number of variables n and the number of
roots d. In many applications, the number of roots d is large, possibly being
an exponential function of n. Our goal is to demonstrate that we can efficiently
distribute our computations to polynomially many processors in n and d so that
the parallel computational time is polynomial in log(d) and n.

Note that for large d, the bottleneck of the computation of the formulas of
Definitions 6 and 14 is the parallel computation of modular inverses of poly-
nomials modulo the degree d polynomial q(T ). We consider two approaches to
compute modular inverses, and to modular arithmetic in general:

1. Via the computation of the roots of the modulus q(T ) and using parallel
interpolation algorithms at these roots.

2. Via the parallel solution of Toeplitz-like linear systems.

Our first construction in Definition 6 is particularly well suited for the ap-
proach via the roots of the modulus q(T ) due to Proposition 9. In fact, the roots
of q(T ) are combinations of the coordinates of approximate roots of a component
of the input system F = (F1, . . . , Fn), and according to Proposition 9, the poly-
nomials Q̃(T ), Ṽ (T ) = (Ṽ1(T ), . . . , Ṽn(T )) in Definitions 6 can be obtained from
the coordinates of higher accuracy roots by using the interpolation formulas in
(4) and (5). Thus, we propose to compute one iteration for our first construction
by using the underlying local data and interpolation. Below, in Subsection 5.2,
we analyze the parallel complexity of this algorithm.

For our second construction in Definition 14, unfortunately we do not have
any results to connect the roots of the modulus with the common roots of the
input F = (F1, . . . , Fn). In theory, we could approximate the roots of our modu-
lus q(T ) in each iteration. However, to obtain exact modular arithmetics modulo
q(T ) using these approximate roots would require further considerations, which
we bypass in this paper, offering instead the algorithm for our first construction
outlined above.

Instead, for our second construction we propose the parallel solution of a
general Toeplitz-like linear system of equations, which refines and modifies the
algorithm of [30] by using a more efficient displacement representation with fac-
tor circulant matrices, defined in [31, Example 4.4.2], rather than triangular
Toeplitz matrices. This improvement will reduce the number of required FFT
computations by a factor of 2. Below, in Subsection 5.3, we detail this new mod-
ified algorithm and analyze its parallel complexity. Then, we apply these com-
plexity bounds for the computation of modular inverses and for the computation
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of the polynomials in Definition 14. Finally, we briefly discuss the computation
of modular inverses (or rather cofactors) when all the roots of at least one of the
two associated input polynomials are simple and known.

5.1 Computational model

We have weighed the possibility of using several parallel computational models
in our complexity estimates, including message passing interface (MPI) that
measures communication costs related to passing data, and PRAM (Parallel
Random Access Machine) models that assume that data is readily available to
all processors via shared memory.

From a computational standpoint, the current “gold standard” is a hybrid
model combining both message passing and shared memory. For example, a
realistic cluster (the one that we used) consists of 13 nodes with each node having
64 processors that share memory – one would like parallel programming to send
data between the nodes that is then shared amongst all the local processors.

Beyond choosing between different architectures, we also have to decide be-
tween an algebraic or a Boolean computational model. The algebraic model
assumes that the basic arithmetic operations in the coefficient field can be done
at unit cost, independently of the size of the numbers appearing in the compu-
tation, while under the Boolean model the estimates depend on the size of the
numbers as well.

In our applications, the iterations under study will be conducted using float-
ing point complex numbers as coefficients. However, for the purposes of the
complexity analysis, in each iterations we assume exact rational arithmetic us-
ing the input floating point numbers as exact rational numbers, and at the end
of the iteration we round them to the desired precision. Alternatively, we can
round the numbers after each arithmetic operations to the desired precision.
Thus, up to a constant multiple that depends on the desired precision, we can
assume that at each iteration we are dealing with rational numbers or Gaus-
sian rationals, and arithmetics on them has unit cost (cf. [6]). That is why we
choose the algebraic computational model and not the Boolean one to estimate
the parallel complexity of our iterations.

Ultimately we choose the PRAM arithmetic model [26], in which we more
conveniently expose our complexity estimates, but we can readily obtain from
our algorithms similar estimates in terms of basic operations (like FFT), which
are efficient under any reasonable model. We will invoke Brent’s scheduling prin-
ciple that allows us to save processors by slowing down the computations, so that
OA(t, p) will denote the simultaneous upper bounds O(ts) on the parallel arith-
metic time, and dp/se on the number of processors involved, where any s ≥ 1
can be assumed.

5.2 Parallel complexity of the first construction from the roots

By Proposition 9, the iterates of Definition 6 are the same as the Lagrange
interpolants of the approximate roots obtained from one step local Newton iter-
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ation. We assume here that the coordinates of the approximate roots are given
as floating point complex numbers, thus our base field is K := Q(i). Below we
give estimates on the parallel complexity of the following simple algorithm:

Algorithm 19 Computation of RUR from roots.

Input: A primitive element u = λ1x1 + . . . + λnxn and approximate roots
z1, . . . ,zd ∈ Kn. We assume that the corresponding RUR u, q(T ),v(T ) sat-
isfies Assumption 5 (but need not to be given explicitly).

Output: The updated RUR Q̃(T ), Ṽ (T ) defined in Definition 6, and its com-
mon roots z̃1, . . . , z̃d ∈ Kn.

Computations:
1. Compute z̃i := zi − JF (zi)−1F (zi) i = 1, . . . , d
2. Compute Q̃(T ) :=

∏d
i=1(T − u(z̃i))

3. Interpolate the polynomials Ṽ1(T ), . . . , Ṽn(T ) such that Ṽj(u(z̃i)) = z̃i,j
for i = 1, . . . , d and j = 1, . . . n.

The next proposition gives the complexity bounds for Algorithm 19. In what
follows we use the following notation:

– log(0)(N) := N , log(h)(N) := log2(log(h−1)(N)), for h ≥ 1, and log∗(N) :=
max{h : log(h)(N) > 0};

– We use the exponent ω to denote a number such that O(nω) arithmetic
operations are sufficient for the multiplication of two n × n matrices. Note
that 2 ≤ ω ≤ 2.373.

Proposition 20. Given u =
∑n
i=1 λixi, and z1, . . . ,zd ∈ Kn satisfying the

assumptions of Algorithm 19. Then, we can compute the polynomials Q̃(T ), Ṽ (T )
of Definition 6 and the corresponding approximate roots z̃1, . . . , z̃d ∈ Kn of F
in two stages with respective costs

OA(log2(n), nω+1) and OA(log2(d) log∗(nd), nd/ log∗(d)).

Proof. The OA(log2(n), nω+1) term comes from Step 1 using [5, page 319]. In
Step 2 and 3 we apply the multipoint polynomial evaluation and polynomial
interpolation algorithms in Sec 3.1, 3.3, and 3.13 of [31]. These algorithms es-
sentially amount to O(log(d)) steps each performing concurrent univariate multi-
plications and divisions of polynomials having degrees at most d. We can perform
these operations in time O(log2(d)) using O(nd/ log∗(d)) processors.

5.3 Parallel complexity of the second construction using modular
arithmetics

In this subsection, we analyze the parallel complexity of one iteration defined in
the polynomial arithmetics modulo q(T ) in Definition 14.

In Definition 14, we have to compute two modular inverses:

1
det JF (v(T ))

and
1

Λ(T )
mod q(T ),
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which are the bottleneck of the computation if d = deg q(T ) is large in com-
parison to n. One way to compute modular inverses is via the solution of a
non-singular linear system with Sylvester coefficient matrix, which is a Toeplitz-
like structured matrix.

In what follows, we describe an algorithm for the solution of a general
Toeplitz-like linear system of equations, which refines the algorithm of [30] with
more efficient displacement representation of [31, Example 4.4.2] using factor
circulant matrices. Then, we briefly cover the special case where all roots of the
input polynomials or at least one of them are simple and available, in which case
even more efficient algorithms can be applied.

Parametrized Newton’s iteration. Hereafter Im denotes the m×m identity
matrix. We begin with recalling parametrized Newton’s iteration that computes
a sequence of the powers of a matrix.

Algorithm 21 Parametrized Newton’s iteration.

Input: two positive integers k and m and an m×m matrix B.
Output: the powers Im = B0, B, B2, . . . , Bk, defined as the coefficients of the

matrix polynomial A−1 mod λk+1 for A = Im − λB.
Initialization: Set X0 ← Im, A ← Im − λB for a scalar parameter λ, p ←
dlog2(k + 1)e.

Computations:
Stage i, i = 1, . . . , p. Compute Xi = Xi−1(2Im − AXi−1), the matrix poly-
nomial in λ. Output the matrix polynomial Xp mod λk+1.

Paper [30] first shows that Xi = A−1 mod λ2i =
∑2i−1
j=0 (λB)j for all i

over any ring of constants, then proves correctness of the algorithm, and finally
extends it to solving a nonsingular linear system By = f as follows.

Algorithm 22 Extension to LIN·SOLVE.

Input: two positive integers m, a vector f of dimension m, and the powers
Im = B0, B, B2, . . . , Bm of a nonsingular m×m matrix B, defined as the
coefficients of the matrix polynomial A−1 mod λm+1 for A = Im − λB.

Output: the vector y = B−1f .
Computations:

1. Compute the traces of the matrices Bi, i = 1, 2, . . . ,m as the coefficients
of the trace of the matrix A−1 mod λm+1, which is a matrix polynomial
in λ.

2. Compute the coefficients c0, . . . , cm−1 of the characteristic polynomial
cB =

∑m
j=0 ciλ

i = det(λIm −B)
3. Note that c0 6= 0 because the matrix B is assumed to be nonsingu-

lar, write cm = 1, and compute and output the vector y = B−1f =
−
∑m
j=0(ci/c0)Bi−1f .

There are more efficient parallel algorithms for the solution of a general linear
system of equations, but next we refine it to obtain a superior parallel algorithm
in the case of Toeplitz-like matrices B. We first recall some relevant definitions.
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Toeplitz-like matrices: fundamentals. Write J1 = (1) is a 1 × 1 matrix,

Jk =
(

0T 1
Jk−1 0

)
for k = 2, 3, . . . ,m, J = Jm is the m × m reflection matrix.

Zf =
(

0T f
Im−1 0

)
denotes the n × n matrix of the f -circular shift for a scalar

f 6= 0.
Zf (v) =

∑m−1
i=0 viZ

i
f is an f -circulant matrix, defined by its first column

v = (vi)m−1
i=0 and a scalar f 6= 0 and called circulant for f = 1. These matrices

belong to the class of Toeplitz matrices [ti−j ]
m−1
i,j=0, which in turn can be extended

to the class T of Toeplitz-like matrices. The Sylvester displacements ZeT −TZf
of a Toeplitz-like matrix T has small ranks (meant “small” in context) for a
fixed pair of distinct scalars e and f , e.g., e = 1, f = −1. These ranks are called
displacement ranks. In particular Toeplitz, Sylvester and Frobenius companion
matrices of any size have displacement ranks at most 2.

Recall that an m × m matrix M of a rank at most r can be expressed
nonuniquely through its generator (G,H) of length r,

M =
d∑
i=1

gihTi = GHT (24)

where G = (g1 · · · gr) and H = (h1 · · · hr) and call a generator for a displace-
ment of a matrix a displacement generator for the matrix itself.

Theorem 23. (See [31, Example 4.4.2].) Assume a displacement generator (G,H)
of a length r in (24) for a matrix ZeT −TZf where e 6= f . Then this matrix can
be expressed as follows: (e− f)T =

∑r
i=1 dZe(gi)Zf (Jhi)T .

The latter compressed representation of an m ×m matrix T uses 2rm pa-
rameters rather than m2 entries and enables fast multiplication of the matrix by
a vector if m � r. Indeed, the theorem reduces this operation to r concurrent
multiplications of e-circulant matrices by vectors, followed by r such multiplica-
tions by f -circulant matrices, and finally to the summation of r vectors. Next,
we estimate the computational cost of such a multiplication.

Theorem 24. (See [31, equations (2.4.3) and (2.4.4) and Theorem 2.6.4].)

(i) Multiplication of an m × m Toeplitz matrix by a vector can be reduced to
multiplication of two univariate polynomials of degrees 3m− 3 and m− 1.

(ii) Multiplication of an f -circulant matrix of size m × m by a vector can be
reduced to performing three Fourier transforms at m points and to four mul-
tiplications of vectors, one by a scalar 1/m and three other ones by three
diagonal matrices of size m×m. Two of these matrices turn into the iden-
tity matrix Im if f = 1.

The complexity of Newton’s iteration for Toeplitz-like matrices. We
immediately verify the following result.
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Theorem 25. (See [31, Theorem 1.5.3].) Let M be a nonsingular m×m matrix.
Then VM−1−M−1U = −M−1(UM−MV )M−1 for any pair of m×m operator
matrices U and V , and so if UM−MV = GHT , then VM−1−M−1U = G−H

T
−

where G− = −M−1G and HT
− = HTM−1.

Substitute U = Ze and V = Zf and deduce that the inversion of a nonsingular
matrix given with its displacement does not change the length of this generator
(and consequently does not change the displacement rank), provided that we
reverse the order for the pair of operator matrices (Ze, Zf ), replacing it by the
pair (Zf , Ze). This observation motivates our search for a short displacement
generator of the inverse of a Toeplitz-like matrix. Having such generator avail-
able, we can readily compute the solution y = T−1f of the linear system Ty = f
by applying the algorithms that support Theorem 23.

We can assume that short displacement generators for the input matrix and
for X0 = Im are given (note that ZeI − IZf = Ze − Zf = (e − f)i1iTm where
ih is the hth coordinate vector), and recursively compute short displacement
generators of the matrices Xi+1 = A−1 mod λ2i+1

for i = 0, 1, . . . , p − 1 by
applying the following result.

Theorem 26. Assume that we are given a nonsingular m ×m matrix M , the
matrices Xi, i = 0, 1, . . . ,m of Algorithm 21, and any pair of m ×m operator
matrices U and V . Let UM −MV = GHT for some m× r matrices G and H.
Then, V Xi −XiU = GiH

T
i where Gi = −XiG and HT

i = HTXi for all i.

Proof. The theorem follows from Theorem 25 applied modulo λ2i to the matrices
M = A and M−1 = A−1 = Xi.

We assume m × r matrices G and H of a displacement generator for the
input matrix A, and so for every i, multiplication of each of these matrices by
the matrix Xi = Xi−1(2I−AXi−1) amounts to concurrent multiplication of the
matrix by r vectors. To operate with the matrices Xi−1 we recursively define
their displacement generators of length at most r and then employ the algorithms
supporting Theorem 24. It follows that for every i, i = 1, . . . , p we compute a
short generator of the matrix Xi at the computational cost dominated by the
cost of performing O(r2) multiplications of bivariate polynomials of degrees at
most 2m in both variables. (We can replace these operations by performing
O(r2) times two-dimensional Fourier Transform at m points in each dimension.
We also need to perform some multiplications of vectors by diagonal matrices
and 2r − 2 subtractions of vector polynomials at the dominated computational
cost.) At all p stages of Newton’s iteration we perform O(pr2) multiplications of
bivariate polynomials of degrees at most 2m in both variables.

Corollary 27. Let A = Im − λB an m × m matrix, and assume that ZeA −
AZf = GHT for some m×r matrices G and H. Then the powers B0, B, . . . , Bm

can be computed via Algorithm 21 (k = m) in parallel complexity

OA(log(m)2r2,m2r2/ log(m)).
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The overall complexity of solving a Toeplitz-like linear system of equa-
tions. It remains to estimate the complexity of performing Algorithm 22.

At Stage 1, we compute the trace of the matrix polynomial A−1 mod λm

expressed via its short displacement generator by using Theorem 23. We compute
(modulo λm) inner products of m pairs of vector polynomials of dimension m
and then sum the m computed values. Clearly, the overall computational cost of
this operation is dominated by the estimated cost of performing Algorithm 21.

Next, recall that the trace of the matrix Bk is the kth power sum of the
eigenvalues of the matrix B, which are the roots of its characteristic polynomial
cB . At Stage 1, we produce these traces, equal to the power sums, and at Stage
2, we recover the coefficients of the characteristic polynomial from the power
sums. We apply the solution algorithm for Problem 4.8 on pages 34–35 of [5]
which amounts to performing O(logm) multiplications of polynomials of degrees
at most m. Clearly the cost of performing this stage is even stronger dominated.

Stage 3 is reduced essentially to multiplication of e- and f -circulant matrices
by 2m vectors. The cost of performing this stage is dominated by virtue of
Theorem 24.

Remark 28. Appendix B of [30] extends the expressionB−1 = −
∑m
j=0(ci/c0)Bi−1

used at Stage 3 of Algorithm 22 to express the Moore–Penrose generalized inverse
of a matrix through its characteristic polynomial. By employing this expression
we can follow the paper [30] and readily extends the algorithms and the com-
plexity estimates to the task of computing the least squares solution of a singular
Toeplitz-like linear system of equations.

Parallel complexity of the iteration in Definition 14. Using the results
of this section, we have the following corollary for the parallel complexity of
modular inverse computation:

Corollary 29. Let q(T ) ∈ K(T ) be degree d and p(T ) ∈ K(T ) be degree at most
d− 1 that is relatively prime to q(T ). Then, we can compute p−1(T ) mod q(T )
in parallel complexity OA(log2(d), d2/ log(d)).

Proof. It follows from Corollary 27 and the previous subsection and from the
fact that the Sylvester matrix of p and q has size m ×m with m ≤ 2d − 1 and
displacement rank r ≤ 2.

Besides modular inverses, the computation of the polynomials in Defini-
tion 14 is dominated by the computation of the adjoint of the polynomial
matrix JF (v(T )) modulo q(T ). We can assume that all polynomials in the
polynomial arithmetics involved, as well as our input polynomials in F , have
degree at most 2d. Then, according to [5, page 311], the parallel complex-
ity of division with remainder using degrees at most 2d and d polynomials is
OA(log(d) log∗(d), d/ log∗(d)). Moreover, using [5, page 319], we can compute
the adjoint (and the inverse) of an n × n scalar matrix in OA(log2(n), nω+1).
Thus, the adjoint of JF (v(T )) modulo q(T ) can be computed in

OA(log2(n) log(d) log∗(d), nω+1d/ log∗(d)).
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Combining all the above we get the following proposition. Note that the most
significant difference between its complexity bounds and the ones in Proposi-
tion 20 is the extra d factor in the required number of processors.

Proposition 30. Assume that we are given F , u, q(T ) and v(T ) satisfying As-
sumption 13. Assume further that the polynomials in F have degree at most 2d.
Then we can compute the polynomials Q̄(T ), V̄ (T ) = (V̄1(T ), . . . , V̄n(T )) of Def-
inition 14 with the cost

OA(log2(n) log2(d) log∗(d), nω+1d2/ log∗(d)).

Simplified computation of cofactors from roots. Given two coprime uni-
variate polynomials u = u(x) of a degree d and v = v(x) of a degree m we seek
their cofactors s = s(x) of a degree at most m − 1 and t = t(x) of a degree at
most d−1 such that su+tv = 1. This task amounts to the solution of a Sylvester
linear system of equations, which we can compute by applying the algorithms of
the previous subsections.

Next, we consider the case where we are given d distinct roots x1, . . . , xd of
the polynomial u. (We can proceed similarly where we are given n distinct roots
y1, . . . , ym of the polynomial v.) Then we can devise more efficient algorithms
by applying the evaluation/interpolation techniques of [36] as follows.

Algorithm 31 Computation of cofactors.

Input: two coprime univariate polynomials u = u(x) of degree d and v = v(x)
of degree m ≤ d and d distinct roots y1, . . . , yd of the polynomial u.

Output: two cofactors, s = s(x) of a degree at most m − 1 and t = t(x) of a
degree at most d− 1 such that su+ tv = 1.

Computations:

1. Compute the values t(yi) = 1/v(yi) for i = 1, . . . , d.
2. Interpolate the polynomial t(x).
3. Apply FFT to evaluate the polynomials 1 − tv and u and their ratio

(1− tv)/u at the 2kth roots of unity for k = dlog2(d+m)e.
4. Apply the inverse FFT to interpolate the polynomial s = (1− tv)/u.

At Stages 1 and 2 we apply the efficient known algorithms (see Sections 3.1,
3.3, and 3.13 of [31]) for the solution of both problems of multipoint evaluation
and interpolation. These algorithms essentially amount to O(log(d)) concur-
rent multiplications and divisions of univariate polynomials of degree at most d.
The overall cost of performing these operations is substantially smaller than the
cost of performing the algorithms of the previous subsections for the Sylvester
Toeplitz-like linear systems of equations, and surely so is the cost of the applica-
tion of FFT and inverse FFT at Stages 3 and 4 as well. Summarizing we perform
the computations of the algorithm in O(log2(d) log∗(d), d/ log∗(d)).
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13. M. Giusti, J. Heintz, K. Hägele, J. E. Morais, L. M. Pardo, and J. L.
Montaña. Lower bounds for Diophantine approximations. J. Pure Appl. Alge-
bra, 117/118:277–317, 1997. Algorithms for algebra (Eindhoven, 1996).

14. M. Giusti, J. Heintz, J. E. Morais, J. Morgenstern, and L. M. Pardo. Straight-line
programs in geometric elimination theory. J. Pure Appl. Algebra, 124(1-3):101–146,
1998.

15. M. Giusti, G. Lecerf, and B. Salvy. A Gröbner free alternative for polynomial
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pages 95–106. Birkhäuser Boston, Boston, MA, 1993.
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