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Abstract

Three aspects of applying homotopy continuation, which is commonly used to solve param-
eterized systems of polynomial equations, are investigated. First, for parameterized systems
which are homogeneous, we investigate options for performing computations on an adaptively
chosen affine coordinate patch. Second, for parameterized systems which are overdetermined,
we investigate options for adaptively selecting a well-constrained subsystem to restore numer-
ical stability. Finally, since one is typically interested in only computing real solutions for
parameterized problems which arise from applications, we investigate a scheme for heuristically
identifying solution paths which appear to be ending at nonreal solutions and truncating them.
We demonstrate these three aspects on two problems arising in computer vision.
Keywords. Numerical algebraic geometry, homotopy continuation, parameter homotopy, over-
determined system, algebraic vision
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1 Introduction

Parameterized systems of polynomial equations arise in many applications including computer vi-
sion [15,19,26], chemistry [1,22], and kinematics [12,31]. For a general setup, we assume that F px; pq
is a system which is polynomial in the variables x P CN and analytic in the parameters p P CP .
Typically, one is interested in efficiently computing the solutions for many instances of the param-
eters. For example, in computer vision, algorithms are used to solve the same system at many
parameter values in order to employ the RANSAC algorithm [9,17].

An approach to repeatedly solve many instances of a parameterized system is to utilize a so-
called Gröbner trace approach, e.g., see [17]. That is, one first performs algebraic manipulation of
the equations at a randomly selected parameter value to discover how to reduce the corresponding
system to a Gröbner basis from which the solutions can be efficiently extracted. The identification
of the algebraic manipulation steps form the ab initio phase and is completed “offline.” The “online”
phase is to repeat these same manipulations for each given parameter instance. This approach can

∗Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame,
IN 46556 (hauenstein@nd.edu, www.nd.edu/~jhauenst). This author was supported in part by Army YIP W911NF-
15-1-0219, Sloan Research Fellowship BR2014-110 TR14, NSF grant ACI-1460032, and ONR N00014-16-1-2722.
†Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame,

IN 46556 (mregan9@nd.edu, www.nd.edu/~mregan9). This author was supported in part by Schmitt Leadership
Fellowship in Science and Engineering and NSF grant ACI-1440607.

1

www.nd.edu/~jhauenst
www.nd.edu/~mregan9


Figure 1: Parameter homotopy phase starting with the solutions of F px; p˚q “ 0 and ending with
the solutions of F px; p̂q “ 0.

lead to efficient solvers in computer vision with many potential problems including the need for
specialized software, a propagation of errors, instability, and expensive computations [17].

Rather than employ algebraic manipulation, we consider using homotopy continuation in the
form of a parameter homotopy [23] (see also [4, Chap. 6]). To employ a parameter homotopy, the
“offline” ab initio phase computes all solutions at a randomly selected parameter value, say p˚. The
“online” parameter homotopy phase tracks the solution paths using homotopy continuation as p˚

is deformed to the given parameter instance, say p̂, which is shown schematically in Figure 1.
Although parameter homotopies have been used to solve many instances of a parameterized

system [2,3], there are three aspects of this computation that warrant further consideration. First,
it is common for the parameterized system F px; pq to be homogeneous with respect to the vari-
ables x so that one treats the solutions as points in the projective space PN´1 “ PpCN q. For
example, 3ˆ 3 essential matrices in 3D image reconstruction are naturally considered as points in
P8 “ PpC3ˆ3q “ PpC9q [6]. For problems which are naturally formulated affinely, projective space is
used to improve the solving process, particularly for solutions with large norm as well as handling
nongeneric parameter values which have solutions at infinity [21]. Computationally, one natural
approach for handling projective space is to utilize an affine coordinate patch. We will consider
three strategies for selecting an affine patch: a fixed coordinate patch which is used throughout the
computation [21] (Section 3.1), an adaptive orthogonal patch [25] (Section 3.2), and an adaptive
coordinate-wise patch proposed in Section 3.3.

Second, it is common for parameterized problems to be overdetermined. For example, the set
of essential matrices in computer vision consists of 3ˆ 3 matrices of rank 2 where the two nonzero
singular values are equal. Since scaling is irrelevant, as mentioned above, this set is naturally defined
on P8 by the vanishing of the determinant and the 9 cubic Demazure polynomials [6], namely

2EETE ´ tracepEET qE “ 0. (1)

This system of 10 polynomials is overdetermined since it defines an irreducible set of codimension 3.
Due to the numerical instability of solving overdetermined systems, we explore three techniques for
reducing down to solving well-constrained systems: a fixed global randomization [27] (Section 4.1),
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an adaptive pseudoinverse randomization proposed in Section 4.2, and an adaptive leverage score
randomization proposed in Section 4.3.

Third, when solving parameterized problems arising from applications, typically only the real
solutions are of interest. That is, one need not compute the nonreal endpoints of solution paths
defined by a homotopy. We propose a heuristic strategy in Section 6 for identifying and truncating
paths which appear to be ending at nonreal solutions thereby saving computational time.

The remainder of the paper is as follows. Section 2 provides a short introduction to parameter
homotopies and path tracking with more details provided in [4, 28]. Section 3 compares the three
strategies for affine patches while Section 4 compares the three strategies for randomizing down to
a well-constrained subsystem. Section 5 presents pseudocode for the path tracking methods with
Section 6 presenting our heuristic truncation scheme for nonreal solutions. We compare all of the
approaches on two applications in computer vision in Section 7. The paper concludes in Section 8.

2 Parameter homotopies and path tracking

Throughout, we assume that the parameterized system F px; pq is polynomial in the variables x P CN
and analytic in the parameters p P CP . This setup ensures that the number of nonsingular isolated
solutions of F “ 0 has a generic behavior with respect to the parameter space CP , e.g., [28,
Thm. 7.1.5]. This enables path tracking on the parameter space via a parameter homotopy [23]
described below. We note that one could also consider positive-dimensional components using
linear slicing and singular isolated solutions using deflation techniques, e.g., [11, 20], to reduce to
the nonsingular isolated case.

For generic p˚ P CP , the ab initio phase of parameter homotopy continuation is to compute
the isolated nonsingular solutions of F px; p˚q “ 0. This can be accomplished, for example, using
standard homotopy continuation [4, 28] which is a computation that is performed once “offline.”

Given p̂ P CP , the “online” part is called the parameter homotopy phase which computes the
isolated nonsingular solutions of F px; p̂q “ 0 using the parameter homotopy

Hpx, tq “ F px; tp˚ ` p1´ tqp̂q. (2)

In particular, for each nonsingular solution x˚ of F px; p˚q “ 0, one considers the solution path xptq
defined by xp1q “ x˚ and Hpxptq, tq ” 0. Genericity of p˚ ensures that each solution path xptq is
smooth for t P p0, 1s and satisfies the Davidenko differential equation

JxHpx, tq ¨ 9xptq “ ´JtHpx, tq (3)

where JxHpx, tq and JtHpx, tq are the Jacobian matrix with respect to x and Jacobian vector with
respect to t, respectively. Hence, one can employ a predictor-corrector tracking strategy starting

Figure 2: A schematic view of predictor-corrector tracking along a solution path.
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with the initial value xp1q “ x˚ to compute xp0q. A schematic view of predictor-corrector tracking
is provided in Figure 2 with more details provided in [4, 28]. In particular, the predictor follows
from the differential equation (3) while the corrector uses the fact that Hpxptq, tq ” 0. Since,
for t P p0, 1s, xptq is a nonsingular isolated solution of Hp‚, tq “ 0, Newton’s method is locally
quadratically convergent. Hence, our computations will utilize classical 4th order Runge-Kutta
prediction method with the corrector being several iterations Newton’s method.

3 Affine patches

The projective space PN is the set of lines in CN`1 passing through the origin. In particular, there
is a choice to be made for performing computations on PN due to selecting a representation of each
point in PN . One standard approach is to utilize an affine coordinate patch where a Zariski open
dense subset of PN is represented by a hyperplane in CN`1 as illustrated in the following.

Example 3.1 Consider intersecting the twisted cubic curve C Ă P3 with the hyperplane defined by
x0 ` x1 ` x2 ` x3 “ 0, namely computing the three solutions on P3 of the polynomial system

fpxq “

»

—

—

–

x0x2 ´ x
2
1

x1x2 ´ x0x3
x1x3 ´ x

2
2

x0 ` x1 ` x2 ` x3

fi

ffi

ffi

fl

“ 0 (4)

which are
r1,´1, 1,´1s, r1, i,´1,´is, r1,´i,´1, is P P3 (5)

where i “
?
´1. In (5), each point in P3 is represented by a unique vector in C4 using the affine

coordinate patch defined by x0 “ 1, i.e., represented uniquely in the form r1, x1, x2, x3s. The set of
points in rx0, x1, x2, x3s P P3 which cannot be represented in this way is the hyperplane x0 “ 0.

The key to selecting an affine coordinate patch is to make sure that every projective point of
interest, e.g., every point along every homotopy solution path, has a representation in that affine
patch. For example, the first point in (5) cannot be represented in the affine coordinate patch
defined by x0 ` x1 “ 1.

The following describes three strategies for selecting an affine patch. The first uses a fixed
general affine patch [21] while the second and third utilize a locally adapted orthogonal [25] and
coordinate-wise patching strategy, respectively.

3.1 Fixed general affine patch

The approach presented in [21] uses a general affine coordinate patch. That is, for a general
v P CN`1, one performs all computations on the fixed affine coordinate patch defined by

v ¨ x “ vHx “ 1

where vH is the Hermitian (conjugate) transpose of v. See Figure 3(a) for a schematic view.
The advantage of using a fixed affine coordinate patch is that it is chosen at the beginning and

is fixed throughout the computations. Thus, one could perform computations implicitly on the
patch which removes one of the variables, e.g., remove the variable x0 via

x0 “
1

conjpv0q
p1´ conjpv1qx1 ´ ¨ ¨ ¨ ´ conjpvN qxN q .
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(a) (b) (c)

Figure 3: Schematic drawing of (a) fixed affine patch, (b) orthogonal affine patch, and
(c) coordinate-wise affine patch.

The disadvantage of using a fixed patch is that ill-conditioning could artificially be introduced
as shown in the following.

Example 3.2 With fpxq as in (4), consider the system of equations

gpxq “

„

fpxq
v ¨ x´ 1



“ 0. (6)

Table 1 shows the condition number with respect to the 2-norm of the Jacobian matrix of g using
various vectors v at the solution corresponding to r1,´1, 1,´1s in the respective affine patches.

v p1, 0, 0, 0q p0.8695, 0.4670,´0.0231, 0.1592q p0.1947, 0.3999,´0.5268,´0.7243q

CN 10.2 158.2 113,574.2

Table 1: Condition number of the Jacobian matrix of g with respect to different coordinate patches

One can attempt to limit this artificial ill-conditioning by using a locally selected affine co-
ordinate patch, i.e., one which is adapted to the current point to be represented. The next two
subsections consider two methods for selecting local patches.

3.2 Orthogonal affine patches

In [25], computations are performed locally in the Hermitian orthogonal complement of a point in
projective space which Shub and Smale say can be considered as the tangent space of PN . To fix
notation, assume that x˚ P CN`1zt0u such that rx˚s P PN is the current point in projective space
under consideration. To avoid computations on vectors which are too large or too small, we will
assume that x˚ ¨ x˚ “ }x˚}22 “ 1. Thus, with this setup, the orthogonal affine patch is defined by

x˚ ¨ x “ 1.

If y˚ P CN`1 is the another point on this affine patch, let ∆x “ y˚ ´ x˚. Thus, ∆x ¨ x˚ “ 0 so
that ∆x is orthogonal to x˚ giving the method its name. See Figure 3(b) for a schematic view.

Example 3.3 Let gpxq be as in (6) and x˚ “ p1{2,´1{2, 1{2,´1{2q so that x˚ ¨ x˚ “ 1 and
rx˚s “ r1,´1, 1,´1s. Then, the condition number of the Jacobian matrix of g with respect to
the 2-norm with the affine patch defined by x˚ ¨ x “ 1 is 4.37.
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When path tracking, one uses an orthogonal affine coordinate patch based on the current point
on the path and performs a predictor-corrector step in that patch. If the step is successful, the
patch is updated based on the new point on the path (see Section 5).

The advantage of using an orthogonal affine coordinate patch is the typically well-controlled
condition number. When using a fixed patch as in Section 3.1, one can globally remove a variable.
With a locally adapting patch, one is able to locally remove a variable which will typically depend
upon all of the other variables. The next method uses a locally adapted patch that fixes one variable.

3.3 Coordinate-wise affine patches

Coordinate-wise affine patches have the form xj “ 1 for some j P t0, . . . , Nu. For example, the
points in (5) from Ex. 3.1 are represented using the coordinate-wise patch x0 “ 1. The advantage
of using such a coordinate-wise patch is the simplicity of setting a coordinate equal to 1. One
disadvantage could be having the other coordinates be large if the point is “near” the hyperplane
at “infinity,” i.e., xj “ 0. To overcome this, we locally adapt the selection of the coordinate j.
That is, if x˚ P CN`1zt0u corresponds to rx˚s P PN , we can assume that }x˚}8 “ 1 and select one
coordinate j such that x˚j “ 1. Hence, the corresponding coordinate-wise affine patch is ej ¨ x “ 1

where ej is the jth standard coordinate vector. See Figure 3(c) for a schematic view.

Example 3.4 Let gpxq be as in (6) with rx˚s “ r1,´1, 1,´1s. The condition number of the Ja-
cobian matrix of g with respect to the 2-norm is 10.2 when using either x0 “ 1 or x3 “ 1 and 8.5
when using either x1 “ 1 or x2 “ 1.

As with the orthogonal patch in Section 3.2, when path tracking, we utilize a local strategy
which updates the coordinate j defining the affine patch after each successful step (see Section 5).
Although the condition number is typically not as small as the orthogonal case, it is trivial to
remove a variable since xj “ 1 which helps to reduce the cost of linear algebra in taking a step.

3.4 Optimal patching

The affine patches described in Sections 3.1-3.3 are of the form v ¨ x “ 1 for a vector v P CN`1.
Although one would like to minimize the condition number of the Jacobian over all such vectors
v P CN`1 for a given solution, we will efficiently approximate solving this large optimization problem
by considering rescalings. The following demonstrates that this can yield improvements.

Example 3.5 Reconsider the setup from Ex. 3.4. Fix z˚ “ p1,´1, 1,´1q and α “ e0. For
λ P Czt0u, consider v “ λ ¨α and x˚ “ z˚{λ so that the patch is simply defined by v ¨x “ λ ¨x0 “ 1,
i.e., x0 “ 1{λ. When λ “ 1, Ex. 3.4 showed that the condition number is 10.2 with Figure 4 showing
the condition number as a function of λ. When λ “ 1.7, the condition number decreases to 7.2.

Let fpxq be a system of N polynomials, each of degree d ą 0, defined on PN , α P CN`1zt0u,
λ ą 0, and affine patch v ¨ x “ 1 where v “ λ ¨ α. Suppose that z˚ P CN`1 with α ¨ z˚ “ 1
such that rz˚s P PN solves f “ 0. We aim to select the scaling λ to improve the conditioning at
x˚ “ z˚{λ. Since each fi is homogeneous of degree d ą 0, each entry of the gradient ∇fi is either 0
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Figure 4: Plot of condition number as a function of the scaling parameter λ.

or homogeneous of degree d´ 1. Hence, consider the pN ` 1q ˆ pN ` 1q matrix

Mpλq “ λd´1

»

—

—

—

–

∇f1pz˚{λq
...

∇fN pz˚{λq
λ ¨ αH

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

∇f1pz˚q
...

∇fN pz˚q
λd ¨ αH

fi

ffi

ffi

ffi

fl

“

„

Jfpz˚q
λd ¨ αH



(7)

where Jfpz˚q is the Jacobian matrix of f evaluated at z˚. To further simplify the computation,
we consider minimizing κ8,1pMpλqq “ }Mpλq}8 ¨ }Mpλq

´1}1 which the following shows can be
minimized using data from Mp1q and Mp1q´1.

Theorem 3.6 If Mpλq from (7) is written as Mpλq “

„

J
λd ¨ αH



and Mp1q´1 “
“

K β
‰

where

J P CNˆpN`1q, K P CpN`1qˆN , and α, β P CN , then κ8,1pMpλqq is minimized when

λ “ 2d

d

}J}8 ¨ }β}1
}K}1 ¨ }α}1

.

Proof. From Mp1q´1, it is easy to verify that Mpλq´1 “
“

K β{λd
‰

. Hence,

}Mpλq}8 “ maxt}J}8, λ
d ¨ }α}1u and }Mpλq´1}1 “ maxt}K}1, }β}1{λ

du

so that

κ8,1pMpλqq “ maxt}J}8 ¨ }β}1{λ
d, }J}8 ¨ }K}1, }α}1 ¨ }β}1, λ

d ¨ }K}1 ¨ }α}1u.

Hence, κ8,1pMpλqq is a convex function such that κ8,1pMpλqq “ }J}8 ¨ }β}1{λ
d for 0 ă λ ! 1 and

κ8,1pMpλqq “ λd ¨ }α}1 ¨ }K}1 for λ " 1. Figure 5 presents an example plot of κ8,1pMpλqq. In
particular, we have that the minimum is achieved when

}J}8 ¨ }β}1{λ
d “ λd ¨ }α}1 ¨ }K}1

which occurs when λ “ 2d

b

}J}8¨}β}1
}K}1¨}α}1

. In particular, the minimum of κ8,1 is

maxt
a

}J}8 ¨ }K}1 ¨ }α}1 ¨ }β}1, }J}8 ¨ }K}1, }α}1 ¨ }β}1u.

l
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Figure 5: Plot of κ8,1 a function of the scaling parameter λ.

Example 3.7 To illustrate Theorem 3.6, consider the polynomial system

fpxq “

»

–

x0x2 ´ x
2
1

x20 ` x
2
1 ` x

2
2 ´ x

2
3

x1x2 ` x1x3 ´ x
2
0

fi

fl

using the coordinate-wise patch x3 “ 1 which is defined by α “ p0, 0, 0, 1q with solution

z˚ “ pp
?

5` 1q{4, 1{2, p
?

5´ 1q{4, 1q « p0.8090, 0.5, 0.3090, 1q.

Following the notation of Thm. 3.6, we have

d “ 2, }J}8 “ 5.2361, }K}1 “ 1.2361, }α}1 “ 1, and }β}1 “ 2.6180

so that

λ “ 4

d

}J}8 ¨ }β}1
}K}1 ¨ }α}1

« 1.8249

is the scaling factor to minimize κ8,1 as shown in Figure 5. Hence, we take the affine patch defined
by v ¨ x “ 1 where v “ λ ¨ α « p0, 0, 0, 1.8249q yielding the corresponding point

x˚ “ z˚{λ « p0.4433, 0.2740, 0.1693, 0.5480q.

When using an orthogonal patch, the following shows that we can simplify the computation of λ.
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Corollary 3.8 Using the same setup as Theorem 3.6, if α “ z˚ with αHα “ }α}22 “ 1, then
β “ α “ z˚ so that κ8,1pMpλqq is minimized when

λ “ 2d

d

}J}8
}K}1

.

Proof. Following the notation from (7) and Thm. 3.6, Mp1q “

„

J
αH



and Mp1q´1 “
“

K β
‰

.

Euler’s Theorem yields that Jα “ 0 since each fi is homogeneous and fpz˚q “ 0. Since β is the
unique vector such that Jβ “ 0 and αHβ “ 1, we have α “ β and the result follows from Thm. 3.6.

l

Example 3.9 Reconsider f from Ex. 3.7 with the orthogonal patch α ¨ x “ 1 where α “ z˚ and

z˚ “ pp
?

5` 1q{
?

32, 1{
?

8, p
?

5´ 1q{
?

32, 1{
?

2q « p0.5721, 0.3536, 0.2185, 0.7071q.

By Cor. 3.8, α “ β and we have

d “ 2, }J}8 “ 3.7025, and }K}1 “ 1.7481

so that

λ “ 4

d

}J}8
}K}1

« 1.2064

is the scaling factor to minimize κ8,1. Hence, we take the affine patch defined by v ¨ x “ 1 where
v “ λ ¨ α « p0.6901, 0.4265, 0.2636, 0.8530q yielding the corresponding point

x˚ “ z˚{λ « p0.4742, 0.2931, 0.1811, 0.5861q.

Figure 6 compares κ8,1pMpλqq with the condition number κ2pMpλqq.

4 Randomization

The polynomial system fpxq in Ex. 3.1 is overdetermined since it consists of 4 polynomials defined
on P3. If one considers appending the patch equation x0´ 1 “ 0 to fpxq, the system is still overde-
termined with 5 polynomials defined on C4. The first 3 polynomials define the twisted cubic curve,
which has codimension 2, while the fourth polynomial is a hyperplane that intersects the twisted
cubic curve transversely. Since a general perturbation applied to the first 3 polynomials results
in a system with no solutions, numerically solving inexact overdetermined systems is unstable,
e.g., see [4, § 9.2]. One could recover stability by using Gauss-Newton least-squares approaches,
e.g., see [7]. Another approach for stabilization is to replace overdetermined systems with well-
constrained subsystems. The following is a version of Bertini’s Theorem, e.g., see [28, Thm. A.8.7]
and [4, Thm. 9.3], which permits such replacements using well-constrained subsystems.

Theorem 4.1 (Bertini’s Theorem) If fpxq is a system of n polynomials on CN and 1 ď k ď n,
then there exists a Zariski open dense set U Ă Ckˆn such that for every A P U , each generically
nonsingular irreducible component of the solution set of f “ 0 of codimension at most k is a
generically nonsingular irreducible component of the solution set of A ¨ f “ 0.
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Figure 6: Plot of κ8,1 and κ2 as a function of the scaling parameter λ.

We state Bertini’s Theorem to focus on generically nonsingular irreducible components for path
tracking purposes (see Section 5). One can always reduce to this case using deflation, e.g., [11,20].
We note that randomization could also add extra solutions which do not solve the original system.
Such extraneous solutions can be certifiably identified [10].

Example 4.2 For fpxq as in (4) together with the patch equation x0 ´ 1 “ 0, consider the system

gpxq “

»

—

—

–

2 ´1 ´3 2 2
´2 ´1 0 3 ´4
5 3 ´1 ´2 ´4
´5 3 2 2 0

fi

ffi

ffi

fl

¨

„

fpxq
x0 ´ 1



“ 0 (8)

which is a well-constrained system consisting of 4 polynomial equations on C4. Bertini’s Theo-
rem yields that the three points corresponding to (5) are isolated nonsingular solutions to g “ 0.
Randomization has also added two additional solutions to g “ 0, approximately

p0.7955˘ 0.0744i, 0.3755¯ 0.6315i, ´ 1.2239¯ 0.1598i, ´ 0.6730` 0.9810iq

where i “
?
´1 which are easily identified since x0 ‰ 1.

In (8), we selected the randomizing matrix A to have small integer entries for presentation
purposes. In practice, the matrix A is selected to have random complex entries.

Analogous to the patching strategies described in Section 3, we describe three randomization
strategies. The first is based directly on Theorem 4.1 which utilizes a fixed randomization matrix, a
commonly used technique in numerical algebraic geometry computations, e.g., [4, § 9.2]. The second
utilizes a locally adapted orthogonalization strategy based on the Moore-Penrose pseudoinverse. To
create sparse randomizations, the third utilizes a locally adapted leverage score strategy.
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4.1 Fixed randomization

As described in Bertini’s Theorem (Theorem 4.1), one can utilize a fixed general randomization
matrix A P Ckˆn to yield a well-constrained system. As detailed in [28, § 13.5], one could take A
to have the form A “ rI Qs where I is the k ˆ k identity matrix and Q P Ckˆpn´kq is general to
reduce the number of computations needed to randomize the system.

Similar to the fixed affine coordinate patch in Section 3.1, the disadvantage of using a fixed
randomization is that ill-conditioning can artificially be introduced as demonstrated in the following.

Example 4.3 With fpxq as in (4), consider the system h : C4 Ñ C5 where

hpxq “

„

fpxq
x0 ´ 1



(9)

and isolated nonsingular solution p1,´1, 1,´1q. Table 2 shows the condition number with respect
to the 2-norm of the Jacobian matrix for various randomizations of the form rI Qs ¨ h where I is
the 4ˆ 4 identity matrix and Q P C4ˆ1 at this isolated nonsingular solution.

Q r1, 1, 1, 1sT r´0.0109, 0.5208, 0.4013, 0.7534sT r´0.0889, 0.6266, 0.7152, 0.2966sT

CN 33.3 185.6 67,193.2

Table 2: Condition number of the Jacobian matrix of rI Qs ¨ h for different choices of Q

One can attempt to limit this artificial ill-conditioning by using a randomization which is lo-
cally adapted to the current solution under consideration. The next two subsections consider two
methods for selecting local randomizations.

4.2 Pseudoinverse randomization

At a nonsingular solution, the Jacobian matrix has full rank so that one can use the Moore-Penrose
pseudoinverse to construct a randomization matrix. To that end, assume that f : CN Ñ Cn is a
polynomial system and x˚ P CN is an isolated nonsingular solution of f “ 0, i.e., fpx˚q “ 0 and
rank Jfpx˚q “ N ď n where Jfpx˚q is the Jacobian matrix of f evaluated at x˚. Via the singular
value decomposition, we can find unitary matrices U P CnˆN and V P CNˆN and invertible diagonal
matrix Σ P RNˆN such that

Jfpx˚q “ U ¨ Σ ¨ V H P CnˆN

where V H is the Hermitian (conjugate) transpose of V . The Moore-Penrose pseudoinverse of Jfpx˚q
is Jfpx˚q: “ V ¨ Σ´1 ¨ UH P CNˆn so that

Jfpx˚q: ¨ Jfpx˚q “ I

where I is the N ˆN identity matrix. Therefore, the randomized well-constrained subsystem

gpxq “ Jfpx˚q: ¨ fpxq

has a nonsingular solution at x˚ with Jgpx˚q “ I.
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Example 4.4 With h : C4 Ñ C5 as in (9) and x˚ “ p1,´1, 1,´1q, we have

Jhpx˚q: “

»

—

—

–

0 0 0 0 1
1{6 1{3 1{6 1{2 ´1
1{3 ´1{3 ´2{3 ´1 1
´1{2 0 1{2 3{2 ´1

fi

ffi

ffi

fl

.

Thus, for the randomized well-constrained subsystem gpxq “ Jhpx˚q: ¨hpxq, gpx˚q “ 0 and Jgpx˚q “
I P C4ˆ4.

When path tracking, one uses the pseudoinverse based on the current point on the path and
performs a predictor-corrector step with that randomized system. If the step is successful, the
randomization is updated based on the new point on the path (see Section 5).

The advantage of using the pseudoinverse randomization is that the Jacobian matrix at the
current point of the randomized system is the identity matrix, a perfectly conditioned matrix. The
disadvantage is the extra computations: both in the computation of the pseudoinverse and to utilize
the randomization which is typically dense. The following uses a sparse randomization.

4.3 Leverage score randomization

The randomizations in Sections 4.1 and 4.2 construct a new system which typically depends upon all
of the polynomials in the original system. We aim to design an approach to select a well-constrained
subset which has a nonsingular solution at the current point. For example, if the given system is
vastly overdetermined, we aim to select a subset of polynomials from the system rather than having
to randomize together all of the polynomials. The method that we propose is based on leverage
scores which were originally used to find outliers in data when computing regression analysis [13].
We follow the approach in [14] which states that leverage scores can be used to describe important
data in a matrix. In our case, we aim to locate polynomials in the system whose gradients are
important rows of the Jacobian matrix evaluated at the given point.

Definition 4.5 (Leverage scores) For a matrix M P Cmˆn of rank n ď m, let Q P Cmˆn be any
unitary matrix whose columns form a basis for the column span of M . Then, the leverage scores
`1, . . . , `m P Rě0 for M are defined by

`j “ }Qj}
2
2

where Qj is the jth row of Q.

The definition of leverage scores is basis independent [14, § 5.1] so that that leverage scores are
well-defined. Moreover, since Q is unitary, each `j P r0, 1s with

řm
j“1 `j “ n.

As above, assume that f : CN Ñ Cn is a polynomial system and x˚ P CN is an isolated
nonsingular solution of f “ 0. Rather than perform a singular value decomposition on Jfpx˚q as
in Section 4.2, we perform a (column pivoted) QR factorization of Jfpx˚q, that is, we compute

Jfpx˚q “ Q ¨R ¨ P (10)

where Q P CnˆN is unitary, R P CNˆN is upper triangular and P P RNˆN is a permutation
matrix. The permutation matrix swaps the columns which corresponds with simply reordering the
variables. With this setup, we construct the randomization matrix iteratively based on the largest
values of the leverage scores of Jfpx˚q as follows.
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Definition 4.6 (Leverage score randomization matrix) Following the setup as above, sup-
pose that `1, . . . , `n are the leverage scores of Jfpx˚q. Construct a reordering of the leverage scores
so that they are in decreasing order, say `k1 ě `k2 ě ¨ ¨ ¨ ě `kn ě 0. Fix j1 “ 1. For 1 ď r ă N ,
given j1 ă ¨ ¨ ¨ ă jr, select jr`1 ą jt to be the minimum value such that the kj1 , . . . , kjr`1 rows
of Jfpx˚q are linearly independent. The corresponding leverage score randomization matrix is
A P RNˆn which has the following N nonzero entries:

Ar,kjr “ }Jfpx
˚qkjr }

´1
2 for r “ 1, . . . , N

where Jfpx˚qp is the pth row of Jfpx˚q.

Example 4.7 To illustrate, consider x˚ “ p1, 1q and

fpxq “

»

—

—

–

x1 ´ 1
x1 ´ 1
x2 ´ 1
x2 ´ 1

fi

ffi

ffi

fl

so that Jfpx˚q “

»

—

—

–

1 0
1 0
0 1
0 1

fi

ffi

ffi

fl

“

»

—

—

–

1{
?

2 0

1{
?

2 0

0 1{
?

2

0 1{
?

2

fi

ffi

ffi

fl

„
?

2 0

0
?

2



.

The leverage scores of Jfpx˚q are all equal, namely `1 “ ¨ ¨ ¨ “ `4 “ 1{2. With the trivial ordering
kj “ j, Definition 4.6 produces j1 “ 1 and j2 “ 3 since the first and second rows of Jfpx˚q are not
linearly independent. Since each row of Jfpx˚q has norm 1, the leverage score randomized matrix is

A “

„

1 0 0 0
0 0 1 0



with A ¨ fpxq “

„

x1 ´ 1
x2 ´ 1



.

Proposition 4.8 With the setup described above, if A is a leverage score randomization matrix
for Jfpx˚q, then A ¨ Jfpx˚q has rank N such that each row has unit length in the 2-norm.

Proof. Since Jfpx˚q has rank N , matrix Q in (10) has rank N . In particular, at least N rows of
both Jfpx˚q and Q must be nonzero with `k1 ą 0. Moreover, since R ¨P is invertible, Jfpx˚qj “ 0 if
and only if Qj “ 0, i.e., `j “ 0. Thus, if j1, . . . , jN are selected as in Defn. 4.6, then }Jfpx˚qkjr }2 ą 0
for r “ 1, . . . , N . Hence, it follows that the rows of A ¨ Jfpx˚q have unit length in the the 2-norm.

The fact that the resulting matrix A ¨ Jfpx˚q has rank N using such a greedy selection of rows
is classical in linear algebra and follows from the dimension of the row span of Jfpx˚q being N . l

Example 4.9 With hpxq as in (9) and x˚ “ p1,´1, 1,´1q, the leverage scores of Jhpx˚q are
`1 “ `2 “ `3 “ 2{3 and `4 “ `5 “ 1. Regarding leverage scores as a measure of importance, this
shows that the fourth and fifth polynomials in h, namely x0` x1` x2` x3 and x0´ 1, respectively,
are equally the two most important at x˚. The other three polynomials which define the twisted
cubic are equally important to each other, but less than the two linear polynomials. By taking the
reordering k1 “ 4, k2 “ 5, k3 “ 1, k4 “ 2, and k5 “ 3, we have the randomized system

gpxq “

»

—

—

–

0 0 0 1{2 0
0 0 0 0 1

1{
?

6 0 0 0 0
0 1{2 0 0 0

fi

ffi

ffi

fl

¨ hpxq “

»

—

—

–

px0 ` x1 ` x2 ` x3q{2
x0 ´ 1

px0x2 ´ x
2
1q{
?

6
px1x2 ´ x0x3q{2

fi

ffi

ffi

fl

so that each row of

Jgpx˚q “

»

—

—

–

1{2 1{2 1{2 1{2
1 0 0 0

1{
?

6 2{
?

6 1{
?

6 0
1{2 1{2 ´1{2 ´1{2

fi

ffi

ffi

fl

has unit length in the 2-norm and its condition number with respect to the 2-norm is 8.8.
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Similar to the pseudoinverse randomization when path tracking, one uses the leverage score
randomization based on the current point on the path and performs a predictor-corrector step with
that randomized system. If the step is successful, the randomization is updated based on the new
point on the path (see Section 5).

The advantage of using a leverage score randomization is that the randomizing matrix is sparse
and selects a well-constrained subset of the original polynomials. Thus, one saves computational
time by only evaluating the polynomials and their gradients of the polynomials which are selected.

5 Path tracking algorithms

We now aim to incorporate the patching and randomization strategies into path tracking. Suppose
that F px; pq is a parameterized system which is polynomial in the variables x P X and analytic in
the parameters p P CP . Depending on the structure of F , we may regard X as a projective or affine
space, or, more generally, as a product of such spaces. Suppose that p˚ P CP is generic and Spp˚q
consists of the isolated nonsingular solutions of F px; p˚q “ 0. As mentioned in Section 2, there is
a generic behavior of F with respect to the parameter space CP so that, for given p̂ P CP , we can
use the parameter homotopy H defined in (2) with start points Spp˚q at t “ 1 to compute Spp̂q,
the set of all nonsingular isolated solutions of F px; p̂q “ 0. In particular, for each x˚ P Spp˚q, there
is a smooth homotopy path xptq for t P p0, 1s such that xp1q “ x˚ and Hpxptq, tq ” 0. Since xptq
could be defined on products of projective and affine spaces, and F could be overdetermined, we
utilize patching and randomization strategies to track xptq. To avoid having to deal with paths with
divergent and singular endpoints, which can be handled using endgames [28, Chap. 10], we assume
that xptq exists and is smooth on r0, 1s in Algorithm 1. By working intrinsically on the affine patch,
one could attempt to reduce the linear algebra cost of performing a predictor-corrector step.

The justification for Algorithm 1 follows from Bertini’s Theorem (Theorem 4.1) and the use
of affine coordinate patches which permits computations regarding the path xptq to be performed
using a well-constrained subsystem on an affine space. By having local control on the condition
number, we aim to perform fewer operations when path tracking as exemplified in Section 7.

Example 5.1 To illustrate Algorithm 1, we consider the parameterized system

F px; pq “

»

—

—

–

x0x2 ´ x
2
1

x1x2 ´ x0x3
x1x3 ´ x

2
2

x2 ` p1x0 ` p2x1 ` p3x3

fi

ffi

ffi

fl

where x P X “ P3 and p P C3. Thus, F px; pq “ 0 defines the intersection of the twisted cu-
bic with a parameterized family of hyperplanes which clearly has 3 nonsingular isolated solutions
generically. In the following, we consider tracking the 3 solution paths as p˚ “ p1, 1, 1q deforms to
p̂ “ p´1, 0.1i, 0q, where i “

?
´1, starting with the 3 points in (5). This setup ensures that we will

need to use an affine patch followed by a randomization.
For the fixed general affine patch, we used the randomly selected patch

p0.3509` 0.1476iqx0`p0.4524´ 0.4487iqx1´p0.4159` 0.2470iqx2`p0.4609` 0.0523iqx3 “ 1 (11)

where i “
?
´1.
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Algorithm 1 Path Tracker

Input: A parameterized system F px; pq that is polynomial in x P X and analytic in p P CP
where X is a product of projective and affine spaces; a generic parameter value p˚ P CP and a
target parameter value p̂ P CP ; an isolated nonsingular singular x˚ of F px; p˚q “ 0 such that
the solution path xptq defined by xp1q “ x˚ and Hpxptq, tq ” 0 where H as in (2) is smooth
for t P r0, 1s.

Output: An isolated nonsingular solution in of F px; p̂q = 0.

Initialize z˚ “ x˚, q˚ “ p˚, t “ 1, and select an initial step size dt ą 0, e.g., dt “ 0.1.

while t ą 0 do
Apply a patching strategy (Section 3), possibly adaptively using the current point z˚, to the
projective spaces in X so that all computations are performed on an affine space. Update z˚ to
lie on the selected patches. Construct Gpx; pq which is F px; pq together with the added patch
equations.

Apply a randomization strategy (Section 4), possibly adaptively using the current point z˚

and parameter value q˚, to Gpx; pq to create a well-constrained subsystem A ¨Gpx; pq such that
A ¨JxGpz

˚; q˚q is nonsingular, where JxGpx; pq is the Jacobian matrix of G with respect to x.

Construct the homotopy Hpx, tq “ A ¨ Gpx; tp˚ ` p1 ´ tqp̂q and perform a predictor-corrector
step from t to maxtt´ dt, 0u using the homotopy H with start point z˚ at t yielding y˚.

if predictor-corrector step is successful then
Update z˚ “ y˚, t “ maxtt´ dt, 0u, and q˚ “ tp˚ ` p1´ tqp̂.

Consider increasing the step size if multiple successful steps in a row, e.g., update dt “ 2 ¨ dt
if 3 consecutive successful steps.

Consider applying early truncation (see Section 6).
else

Decrease the step size, e.g., set dt “ dt{2.
end if

end while
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In Figures 7, 8, and 9, we compare the condition number with respect to the 2-norm of the
Jacobian matrix along the three paths using the different patching and randomization strategies.
For the fixed randomization, we used A “ rI Qs P C4ˆ5 with the randomly selected

Q “ r0.1792´ 0.1432i,´0.7159´ 0.5784i, 0.1866´ 0.4692i, 0.4524` 0.9864isT .

(a) (b)

Figure 7: Plot of the condition numbers along the first path. (a) Using a fixed randomization, Green:
fixed affine patch, Red: orthogonal affine patch, Blue: coordinate-wise affine patch. (b) Green: fixed
randomization with fixed affine patch, Red: pseudoinverse randomization with orthogonal affine
patch, Blue: leverage score randomization with coordinate-wise affine patch.

(a) (b)

Figure 8: Plot of the condition numbers along the second path. (a) Using a fixed randomiza-
tion, Green: fixed affine patch, Red: orthogonal affine patch, Blue: coordinate-wise affine patch.
(b) Green: fixed randomization with fixed affine patch, Red: pseudoinverse randomization with
orthogonal affine patch, Blue: leverage score randomization with coordinate-wise affine patch.
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(a) (b)

Figure 9: Plot of the logarithm of the condition numbers along the third path. (a) Using a fixed
randomization, Green: fixed affine patch, Red: orthogonal affine patch, Blue: coordinate-wise affine
patch. (b) Green: fixed randomization with fixed affine patch, Red: pseudoinverse randomization
with orthogonal affine patch, Blue: leverage score randomization with coordinate-wise affine patch.

6 Truncation

In many applications, one is interested in computing real solutions. For a parameterized system, we
are typically deforming from a complex parameter value p˚ to a real parameter value p̂ and we would
like a heuristic approach that could help identify which paths are headed to nonreal endpoints. The
paths with (potentially) nonreal endpoints will be truncated to limit wasted computation.

The idea of our proposed test is to consider how the size of the imaginary part of the points
on the path is changing with respect to t. Since real endpoints have imaginary part equal to 0,
we want to make a heuristic decision based on the data along the path to decide if the imaginary
part could reasonably limit to 0. If this is not reasonable, then we consider the path to be heading
towards a nonreal endpoint. There is a trade-off between when to start applying this test. If the
test is applied far from t “ 0, then the imaginary part will be significantly impacted by the starting
parameter p˚. If the test is applied very close to t “ 0, then there is little computational savings
in truncation. In our experiments, we start testing when t ă 0.3. See Algorithm 1 for the location
of truncation in the path tracking algorithm.

Our proposed truncation test takes as input two points along the path, say xpt1q and xpt2q
where 0 ă t2 ă t1 and makes a decision based on the angle between the following two lines:

• line connecting pt1, } imag xpt1q}2q and pt2, } imag xpt2q}2q, and

• line connecting pt2, } imag xpt2q}2q and p0, 0q

as shown in Figure 10. A large angle suggests that it is realistic to believe that the path is heading
towards a nonreal endpoint. In our testing, we considered “large” to be at least 5π

6 in which case
that path was truncated from further computation.
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(a) (b)

Figure 10: Schematic representation of (a) large angle leading toward a non-real solution and (b)
small angle that leads to a real solution.

Figure 11: Schematic drawing of the 5-point image reconstruction problem.

7 Applications in computer vision

In order to demonstrate the three aspects of homotopy continuation investigated, namely adaptive
affine coordinate patches, adaptively selected well-constrained subsystems, and truncation for paths
heading to nonreal solutions, we consider two problems in computer vision. These problems are
so-called minimal problems in computer vision in that they generically have finitely many solutions
with the current techniques unstable for small problem sizes as well as require many assumptions
and simplifications [17, 18]. We describe two minimal problems in Sections 7.1 and 7.2, with
Section 7.3 presenting the computational results.

7.1 5-point problem

The 5-point problem involves two cameras where both images have 5 corresponding points mapping
from a 3D object in space [8,16,24,29]. With the 5 corresponding point pairs xi for camera C and
yi for camera C 1 as shown in Figure 11, this problem computes the relative position and orientation
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Figure 12: Image reconstruction with radial distortion.

of two calibrated cameras using the polynomial system:

„

2EETE ´ tracepEET qE
yTi Exi i “ 1, . . . , 5



.

As written, this system consists of 14 polynomials defined on P8 so that it is an overdetermined
parameterized system defined on projective space which generically has 10 solutions.

7.2 6-point problem

The 6-point problem involves two cameras where both images have 6 corresponding points mapping
from a 3D object in space with a radial distortion parameter λ [5, 18, 30]. Figure 12 shows images
which have radial distortion. With the 6 corresponding point pairs xi for camera C and yi for
camera C 1, this problem computes the relative position and orientation of two calibrated cameras
using the polynomial system:

„

2EETE ´ tracepEET qE
pipλq

TEqipλq i “ 1, . . . , 6



where

pipλq “

„

yi
1` λ||yi||

2
2



and qipλq “

„

xi
1` λ||xi||

2
2



. (12)

As written, this system consists of 15 polynomials defined on P8 ˆ C so that it is an overdeter-
mined parameterized system defined on a product of a projective space and an affine space which
generically has 52 solutions.

7.3 Results

We implemented Algorithm 1 to solve the 5-point and 6-point problems1 using homotopy contin-
uation with the data resulting from solving 100 random instances are summarized Tables 3 and 4,
respectively. In Algorithm 1, the predictor-corrector step we utilized was the classical 4th order
Runge-Kutta predictor with a maximum of 3 Newton iterations. These tables summarize average
number of steps per path, average number of arithmetic operations per parameter instance to be
solved, and average time (in seconds) per instance for various patching (Section 3) and randomiza-
tion (Section 4) strategies together with path truncation (Section 6).

1Available at http://dx.doi.org/10.7274/R0C53HXK.
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FP/FR OP/FR CWP/FR OP/PIR CWP/LSR CWP/LSR/ET

Avg. # steps/path 14.127 11.261 10.026 10.859 9.224 8.338
Avg. # operations 53,646 53,886 34,733 41,038 30,827 44,908
Avg. time (sec) 0.3641 0.4449 0.3611 0.4637 0.2862 0.2608

Table 3: Summary of solving 100 random instances of the 5-point problem

FP/FR OP/FR CWP/FR OP/PIR CWP/LSR CWP/LSR/ET

Avg. # steps/path 29.667 23.361 24.717 20.224 21.721 15.746
Avg. # operations 11,649,000 9,029,600 7,289,400 7,740,500 6,340,300 4,700,900
Avg. time (sec) 5.810 4.526 5.302 4.259 4.832 3.707

Table 4: Summary of solving 100 random instances of the 6-point problem

FP = fixed random patch (Section 3.1), OP = adaptive orthogonal patch (Section 3.2),
CWP = adaptive coordinate-wise patch (Section 3.3), FR = fixed randomization (Section 4.1),
PIR = adaptive pseudoinverse randomization (Section 4.2), LSR = adaptive leverage score ran-
domization (Section 4.3), and ET = early truncation (Section 6).

The results show that the combination of adaptive coordinate-wise patching, leverage score
randomization, and early truncation had both the lowest average number of steps per path and
average solving time for both the 5-point and 6-point problems. In particular, for the 5-point
problem, this combination yielded about a 40% decrease in average number of steps per path
over tracking using a fixed random patch with fixed randomization. For the 6-point problem, the
decrease was 47% due to the larger size and more paths which could be truncated. In particular,
every adaptive method results in reducing the average number of steps per path compared with
using a fixed random patch with fixed randomization.

8 Conclusion

Three aspects of using homotopy continuation to solve parameterized systems were investigated:
selecting affine coordinate patches, selecting well-constrained subsystems, and truncating paths
which appear to be ending at nonreal solutions. The results in Section 7 demonstrate substantial
improvement by using adaptive selections over fixed random choices in path tracking.
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