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Abstract

The monodromy group is an invariant for parameterized systems of polynomial equations that
encodes structure of the solutions over the parameter space. Since the structure of real solutions
over real parameter spaces are of interest in many applications, real monodromy action is in-
vestigated here. A naive extension of monodromy action from the complex numbers to the real
numbers is shown to be very restrictive. Therefore, we introduce a real monodromy structure
which need not be a group but contains tiered characteristics about the real solutions over the
parameter space. An algorithm is provided to compute the real monodromy structure. In addi-
tion, this real monodromy structure is applied to an example in kinematics which summarizes all
the ways performing loops parameterized by leg lengths can cause a mechanism to change poses.
Keywords. Monodromy group, numerical algebraic geometry, real algebraic geometry, real
monodromy structure, homotopy continuation, parameter homotopy, kinematics
AMS Subject Classification. 65H10, 65H20, 14P99, 14Q99

1 Introduction

For a polynomial system defined over a complex parameter space, the monodromy group encodes
permutations of the solutions over loops in the parameter space and can be viewed as a geometric
counterpart to Galois groups [10, 14] utilized in number theory and arithmetic geometry. Mon-
odromy groups are used in algebraic geometry to view structure of the solutions such as symmetry,
restrictions on the number of real solutions, and decomposition of varieties into irreducible compo-
nents. The complex numbers bestow many properties on the monodromy group such as it is base
point independent and does not change when restricting to a general curve section of the parameter
space [22]. These simplify the computation of the monodromy group [12] summarized in § 2.

Since real solutions over real points in a parameter space are typically of most interest in
many applications, we aim to understand the behavior of the real solutions over real loops in the
parameter space. In kinematics, this is related to nonsingular assembly mode change for parallel
manipulators [5, 7, 13, 15, 16, 19, 23] which is important in calibration due to the possible change of
pose at the “home” position. To illustrate, consider the 3RPR mechanism shown in Figure 1 which
consists of three prismatic legs with revolute joints that are anchored on one side and attached
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to a moving triangular platform on the other. Thus, one aims to identify all the ways that real
motion of the mechanism can lead to different poses in the “home” position defined by a fixed set
of leg lengths. In this context, the main motivation is to develop a mathematical description of all
possible nonsingular assembly mode changes described by real monodromy action.

Figure 1: An example of a 3RPR mechanism.

A naive approach is to utilize a real monodromy group defined similarly as the monodromy
group. This definition leads to heavy restrictions on the construction of real loops and can of-
ten cause no pertinent information to be gained in the computations as discussed in § 3.1. The
main contribution of this paper is to introduce a real monodromy structure to obtain piecewise
information about the permutations of the real solutions outlined in § 3.2. In particular, this
real monodromy structure contains all information regarding nonsingular assembly mode changes.
When the parameter space is R2, an algorithm is described in detail in § 3.3 and illustrated on an
example arising from the Kuramoto model of synchronization [17].

The remainder of the paper is as follows. Section 2 describes some background on the mon-
odromy group. Section 3 presents the main results of the paper: the restrictive nature of the real
monodromy group, an introduction of the real monodromy structure, and an algorithm for com-
puting the real monodromy structure. Examples are included to illustrate the ideas. Section 4
describes computing the real monodromy structure of a 3RPR mechanism when two of the legs can
change length via prismatic joints. Finally, a short conclusion is provided in § 5.

2 Monodromy group

The monodromy group encodes the behavior of solutions as one perform loops in the complex pa-
rameter space. In particular, let F px; pq be a polynomial system with variables x P CN and param-
eters p P CP . Assume that F px; p˚q “ 0 has D P N isolated nonsingular solutions in CN for generic
p˚ P CP . That is, there is a Zariski open dense subset U Ă CP such that F px; p˚q “ 0 has D non-
singular isolated solutions in CN for every p˚ P U . Fix a point b P U and let xp1q, . . . , xpDq P CN be
the D nonsingular isolated solutions to F px; bq “ 0. Denote the symmetric group on D elements
by SD. Then, each loop γ Ă U starting and ending at b generates a permutation σγ P SD where
σγpiq “ j provided that the solution path of F px; pq “ 0 over γ starting at xpiq ends at xpjq. The
monodromy group is simply the collection of all such permutations, namely

tσγ P SD | γ Ă U is loop starting and ending at bu. (1)
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The group structure arises naturally from concatenation of loops.
The monodromy group is independent of the choice of base point b P U . Moreover, the mon-

odromy group of F px; pq for p P CP is equal to the monodromy group of Gpx; tq “ F px; `ptqq where
` : CÑ CP is a general affine linear function [22]. Since Gpx; tq depends on t P C, its monodromy
group is generated by the permutations arising from the finitely many loops that generate the
fundamental group of the intersection of U to the line parameterized by `ptq. This is described in
detail with numerical algebraic geometric computations in [12] and illustrated in the following.

Example 2.1 Consider the parameterized polynomial system

F px; pq “

„

x21 ´ x
2
2 ´ p1

2x1x2 ´ p2



“ 0

and U “ tp P C2 | p21` p
2
2 ‰ 0u Ă C2. Thus, for every p˚ P U , F px; p˚q “ 0 has D “ 4 nonsingular

isolated solutions in C2. We take b “ p1, 0q P U with corresponding solutions:

xp1q “ p1, 0q, xp2q “ p´1, 0q, xp3q “ p0,
?
´1q, xp4q “ p0,´

?
´1q.

Consider restricting the parameter space to the line L Ă C2 parameterized by `ptq “ p1 ´ t, 2tq

so that `p0q “ b. In particular, U X L – Cztt`, t´u where t˘ “
1˘2

?
´1

5 . Let γ˘ Ă C be a
simple loop starting and ending at 0 which encircles t˘ but not t¯, respectively. The corresponding
permutations, written in cycle notation, are

σγ`
“ p1 3qp2 4q and σγ´

“ p1 4qp2 3q

which are illustratively shown in Fig. 2. Therefore, the monodromy group is generated by the two
permutations σ˘ yielding the Klein group on four elements K4 “ Z2 ˆ Z2 Ă S4, namely

K4 “ tp1q, p1 2qp3 4q, p1 3qp2 4q, p1 4qp2 3qu. (2)

(a) (b)

Figure 2: Illustration of (a) loop γ` and permutation σγ`
and (b) loop γ´ and permutation σγ´
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The reason that the monodromy group is not S4 can be observed from eliminating x2 yielding

4x41 ´ 4x21p1 ´ p
2
2 “ 0

which shows that the solutions arise in two pairs with

x1 “ ˘

d

p1 ˘
a

p21 ` p
2
2

2
.

When all of the D nonsingular solutions to F px; p˚q “ 0 are known, one can compute corre-
sponding permutations for a few random loops. When the monodromy group is the full symmetric
group, a few random loops are generally sufficient to verify it is the full symmetric group [18].
We note that another application of random loops is decomposition of varieties into irreducible
components first proposed in [20] (see also [2, Chap. 10] and [21, Chap. 15]).

Conversely, if only a subset of the D nonsingular solutions to F px; p˚q “ 0 are known, one can
try to utilize random loops starting at the known solutions of F px; p˚q “ 0 with the aim of ending
at previously unknown solutions of F px; p˚q “ 0. When the monodromy group is transitive, all D
solutions could be obtained in this way by starting from one solution of F px; p˚q “ 0. This idea
has been employed in various settings, e.g., [3, 4, 9, 11].

3 Monodromy over the real numbers

Since many applications, particularly ones arising in science and engineering, are only interested in
the real solutions, we consider monodromy action of real solutions over a real parameter space for a
real polynomial system F px; pq where x P RN and p P RP . Section 3.1 describes a naive extension of
the monodromy group to the real numbers. Since this is shown to be very restrictive, § 3.2 introduces
an alternative definition, called the real monodromy structure, for describing monodromy action
of real solutions over real parameter space. When the parameter space is R2, § 3.3 describes a
complete algorithm for computing the real monodromy structure and demonstrates the algorithm
on the Kuramoto model with 3 oscillators.

3.1 Real monodromy group

Over complex parameter spaces, as summarized in § 2, loops are taken in the nonempty Zariski
open dense subset U Ă CP consisting of parameter values where the number of nonsingular isolated
complex solutions is constant. One can naively take a similar approach over the real numbers as
follows. Fix a base point b P U XRP and let R be the number of nonsingular isolated real solutions
to F px; bq “ 0. Hence, there is a connected open subset Ub Ă U X RP containing b such that the
number of nonsingular isolated real solutions of F px; p˚q “ 0 is equal to R for all p˚ P Ub. Similar
to the complex case, each loop γ Ă Ub starting and ending at b yields a permutation σγ P SR.
Following (1), the collection of all such permutations

tσγ P SR | γ Ă UR is loop starting and ending at bu (3)

is the real monodromy group of F px; pq with base point b. This group is naturally independent of
the choice of base point b inside of Ub.
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Example 3.1 Reconsider F px; pq from Ex. 2.1 with b “ p1, 0q. There are R “ 2 real solutions
to F px; bq “ 0, namely xp1q “ p1, 0q and xp2q “ p´1, 0q. Since, for all p˚ P Ub “ R2ztp0, 0qu,
F px; p˚q “ 0 has 2 real solutions, the corresponding real monodromy group is generated by the loop
γ : r0, 1s Ñ UR where γptq “ pcosp2πtq, sinp2πtqq with γp0q “ γp1q “ b. This loops yields the
permutation σγ “ p1 2q so that the corresponding real monodromy group is S2 “ tp1q, p1 2qu.

In the complex case, there is a unique monodromy group based on the nonempty Zariski open
dense subset U Ă CP . In the real case, there is a real monodromy group associated to each
connected component of U X RP .

Example 3.2 The polynomial equation F px; pq “ x2 ` 1 ´ p2 “ 0 has 0 real solutions when
´1 ă p ă 1 and 2 real solutions when either p ă ´1 or p ą 1. Thus, for b P p´1, 1q, the real
monodromy group for Ub “ p´1, 1q is empty since there are no real solutions. For b ă 1 and c ą 1,
we have Ub “ p´8,´1q and Uc “ p1,8q with real monodromy group tp1qu Ă S2 for both.

The previous examples suggest the following.

Theorem 3.3 Suppose that F px; pq is a real polynomial system with x P RN and p P RP . Let
b P RP such that F px; bq “ 0 has R ą 0 nonsingular isolated real solutions and Ub Ă RP which
is a connected open set containing b such that the number of nonsingular isolated real solutions
of F px; p˚q “ 0 is equal to R for all p˚ P Ub. If the fundamental group of Ub is trivial, then the
corresponding real monodromy group is tp1qu Ă SR. In particular, if P “ 1, then the corresponding
real monodromy group is tp1qu Ă SR.

Proof. If the fundamental group of Ub is trivial, then all loops in Ub are contractible yielding only
the identity permutation in the real monodromy group. In particular, when P “ 1, then Ub is an
interval where all loops are contractible. l

The system from Ex. 3.1 was specifically designed to have a nontrivial real monodromy group.
Since one often expects each corresponding set Ub to be a cell thereby having a trivial fundamental
group, one typically expects trivial real monodromy groups. Nonetheless, the following has a
connected component with a nontrivial fundamental group but has a trivial real monodromy group.

Example 3.4 The Kuramoto model [17] provides a mathematical model of synchronous behavior
of coupled oscillators. We consider n “ 3 oscillators and avoid the trivial rotation by fixing θ3 “ 0.
For parameters ω “ pω1, ω2q, the steady-state solutions of the Kuramoto model satisfy

„

sinpθ1 ´ θ2q ` sinpθ1 ´ θ3q ´ 3ω1

sinpθ2 ´ θ1q ` sinpθ2 ´ θ3q ´ 3ω2



“ 0.

We convert to a polynomial system by taking si “ sinpθiq and ci “ cospθiq, namely

F ps1, c1, s2, c2;ω1, ω2q “

»

—

—

–

ps1c2 ´ c1s2q ` ps1c3 ´ c1s3q ´ 3ω1

ps2c1 ´ c2s1q ` ps2c3 ´ c2s3q ´ 3ω2

s21 ` c
2
1 ´ 1

s22 ` c
2
2 ´ 1

fi

ffi

ffi

fl

. (4)

Figure 3 adapted from [6, Fig. 2] colors the parameters based on the number of real solutions. In
particular, the connected set having 6 real solutions and each of the six connected sets having 4 real
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Figure 3: Parameter space R2 colored by number of nonsingular real solutions to (4).

solutions have trivial fundamental group and thus trivial real monodromy group by Theorem 3.3.
The connected set having 2 real solutions has a nontrivial fundamental group, but one can easily
check that this set also has a trivial real monodromy group. The reason for this will become apparent
in Ex. 3.15. Note that the monodromy group computed using [12] is S6, which is not a solvable group.

The condition that the number of nonsingular real solutions along loops in the real parameter
space remain constant is a restriction that both ensures a group structure (due to concatenation of
loops) and is responsible for often having a trivial real monodromy group. The following provides
an illustration of this restriction.

Example 3.5 Consider the parameterized polynomial system

F px; pq “

„

px21 ´ x
2
2 ´ p1qpx

2
1 ` p1q

2x1x2 ´ p2



“ 0 (5)

which is a modification of the system considered in Ex. 2.1 and 3.1. For b “ p´1, 0q, there are
R “ 4 nonsingular real solutions, namely:

xp1q “ p1, 0q, xp2q “ p´1, 0q, xp3q “ p0, 1q, xp4q “ p0,´1q.

In this case, Ub “ tp1 ă 0u Ă R2 which has a trivial fundamental group and thus the real monodromy
group is trivial by Theorem 3.3. Figure 4 illustrates the decomposition of the parameter space based
on the number of real solutions.

Consider the loop γptq “ p´ cosp2πtq, sinp2πtqq for t P r0, 1s starting and ending at b. If we only
focus on the two solution paths starting at xp1q and xp2q, these paths remain nonsingular over the
loop and the endpoints interchange as one would expect from the real monodromy group in Ex. 3.1.
The two solution paths starting at xp3q and xp4q are nonsingular and real for t P r0, 1{4q Y p3{4, 1s,
nonsingular and nonreal for t P p1{4, 3{4q, and at infinity for t P t1{4, 3{4u.

Example 3.4 shows that important information about the connections between some of the real
solutions can be obtained by relaxing the requirement that all real solutions remain nonsingular
along the path. With this relaxation, one may lose the group structure, but obtains a complete pic-
ture of the interconnections between the real solutions over a base point b, which is described next.
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Figure 4: Parameter space R2, colored by number of nonsingular real solutions for F px; pq in (5):
2 on tp1 ą 0u (green) and 4 on tp1 ă 0u (blue), base point b “ p´1, 0q, and loop γptq.

3.2 Real monodromy structure

The monodromy group and real monodromy group are encoded as a group of permutations where
concatenation of loops corresponds with composition of permutations. By relaxing the condition
that all real solutions remain nonsingular along a real loop, the resulting action no longer needs
to be a group. Thus, the following proposes a structure, called the real monodromy structure, to
encode the resulting action on the real solutions.

The following summarizes some sets of interest.

Definition 3.6 For a nonnegative integer R, let PowpRq be the power set of t1, . . . , Ru, which is
the set of all subsets of t1, . . . , Ru. Let OPowpRq be the ordered power set of t1, . . . , Ru, which is
the set of all ordered subsets of t1, . . . , Ru. For 0 ď k ď R, let OPowkpRq be the k-ordered power
set of t1, . . . , Ru, which is the set of all ordered subsets of t1, . . . , Ru of size k. Let IPowkpRq be the
subset of OPowkpRq consisting of the elements in which the entries are listed in increasing order.

The cardinality for each set defined in Defn. 3.6 in terms of R ě 0 and 0 ď k ď R is:

#PowpRq “ 2R, #OPowkpRq “
R!

pR´ kq!
, #IPowkpRq “

R!

k!pR´ kq!
, #OPowpRq “

R
ÿ

k“0

R!

pR´ kq!
.

Example 3.7 To illustrate, for R “ 2, we have:

• Powp2q “ tH, t1u, t2u, t1, 2uu and OPowp2q “ tH, t1u, t2u, t1, 2u, t2, 1uu;

• OPow0p2q “ tHu “ IPow0p2q;

• OPow1p2q “ tt1u, t2uu “ IPow1p2q;

• OPow2p2q “ tt1, 2u, t2, 1uu and IPow2p2q “ tt1, 2uu.

In particular, order does not matter in the elements of the power set. However, order does matter
for elements in the ordered power set.

The real monodromy structure is defined these sets.
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Definition 3.8 For a real parameterized polynomial system F px; pq, fix a base point b P RP and
let xp1q, . . . , xpRq P RN be the R nonsingular isolated solutions of F px; bq “ 0. The real monodromy
structure of F at b is a collection G‚ “ tG1, . . . ,GRu where, for k “ 1, . . . , R, the function

Gk : IPowkpRq Ñ PowpOPowkpRqq (6)

is constructed as follows. For each Q “ tq1, ..., qku P IPowkpRq, GkpQq is the collection of subsets
ts1, ..., sku P OPowkpRq such that there exists a loop γ Ă RP starting and ending at b where the
solution path of F px; pq “ 0 over γ starting at xpqiq is nonsingular and ends at xpsiq for i “ 1, . . . , k.

The real monodromy group (see § 3.1) describes how the set of all real nonsingular solutions to
F px; bq “ 0 can be permuted whereas the real monodromy structure describes how each subset of
solutions can be permuted. Hence, the real monodromy group is encoded in GR.

Example 3.9 To illustrate, consider representing the real monodromy group S2 from Ex. 3.1 as a
real monodromy structure.

First, we construct the map G1 which has domain IPow1p2q “ tt1u, t2uu. Since both correspond-
ing solutions can trivially return to themselves or connect to the other, G1 maps both t1u and t2u
to the element tt1u, t2uu P PowpOPow1p2qq.

The domain of G2 is IPow2p2q “ tt1, 2uu. Since the pair of solutions can trivially remain
unchanged or can be permuted, G2 maps t1, 2u to tt1, 2u, t2, 1uu P PowpOPow2p2qq.

For simplicity, we will write G‚ “ tG1,G2u as

• G1

– t1u, t2u Ñ| tt1u, t2uu

• G2

– t1, 2u Ñ| tt1, 2u, t2, 1uu.

Example 3.10 For Ex. 3.5 with b “ p´1, 0q, the real monodromy structure is G‚ “ tG1, . . . ,G4u:

• G1

– t1u, t2u Ñ| tt1u, t2uu

– tq1u Ñ| ttq1uu for all others

• G2

– t1, 2u Ñ| tt1, 2u, t2, 1uu

– tq1, q2u Ñ| ttq1, q2uu for all others

• G3

– tq1, q2, q3u Ñ| ttq1, q2, q3uu

• G4

– tq1, q2, q3, q4u Ñ| ttq1, q2, q3, q4uu.
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This structure shows that there is an interconnection between xp1q and xp2q as described by the loop
γptq in Ex. 3.5, whereas anything involving xp3q or xp4q must be trivial. The function G4 encodes
the triviality of the real monodromy group. Moreover, G‚ does not have a group structure since G4
is trivial while G1 and G2 are not.

Remark 3.11 A nonsingular assembly mode change means that there is a real nonsingular path
between solution xpiq and xpjq where i ‰ j. Hence, nonsingular assembly mode changes are described
by G1, namely i ‰ j such that tju P G1ptiuq.

A group G Ă SR is said to be k-transitive if, for every Q “ tq1, ..., qku P IPowkpRq and
T “ tt1, ..., tku P OPowkpRq, there exists σ P G such that σpqiq “ ti for i “ 1, . . . , k. Clearly, if G is
k-transitive for k ą 1, then G is also pk´1q-transitive. If G is 1-transitive, then G is called transitive.

Example 3.12 The group K4 Ă S4 in (2) is transitive. It is not 2-transitive since there does not
exist σ P K4 which maps the ordered set t1, 2u to the ordered set t1, 3u.

The following extends the notion of transitivity to the real monodromy structure.

Definition 3.13 A real monodromy structure G‚ “ tG1, . . . ,GRu is k-transitive if

GkpQq “ OPowkpRq P PowpOPowkpRqq

for every Q P IPowkpRq.

Clearly, if G‚ is k-transitive for k ą 1, then G‚ is also pk ´ 1q-transitive. Moreover, G‚ is
called transitive if it is 1-transitive. Hence, a real monodromy structure is transitive if and only if
G1ptiuq “ tt1u, . . . , tRuu “ OPow1pRq for all i “ 1, . . . , R meaning that, for every i, j P t1, . . . , Ru,
there is a nonsingular solution path starting at xpiq and ending at xpjq.

Example 3.14 The real monodromy structure G‚ in Ex. 3.9 is 2-transitive and hence 1-transitive.
The real monodromy stucture G‚ in Ex. 3.10 is not transitive.

3.3 Algorithm

This section concludes with Algorithm 1 for computing the real monodromy structure at a base
point b when the parameter space is R2 and using it to compute the real monodromy structure for
the polynomial system F in (4) at b “ p0, 0q.

Algorithm 1 Computing the real monodromy structure

Input: A real polynomial system F px; pq with x P Rn and p P R2, and base point b P R2.
Output: The real monodromy structure G‚ “ tG1, . . . ,GRu for F at b where R is the number of

real nonsingular isolated solutions of F px; bq “ 0.

1: Compute the real nonsingular isolated solutions xp1q, . . . , xpRq of F px; bq “ 0.
2: Decompose the parameter space R2 into connected components based on the number of real

solutions of F px; pq “ 0 and identify the finitely many smooth segments of the boundaries.
3: Collect all data generated from all loops starting and ending at b traversing through smooth

segments of the boundaries into the real monodromy structure G‚.

9



Example 3.15 For the n “ 3 Kuramoto system F in (4), Ex. 3.4 showed that every real mon-
odromy group is trivial and the monodromy group is the full symmetric group S6. The following
computes the real monodromy structure G‚ at b “ p0, 0q, which is nontrivial thereby identifying
interconnections between the real solutions. At b, we label the six solutions as

xp1q “ p0, 1, 0, 1q, xp2q “ p0, 1, 0,´1q, xp3q “ p0,´1, 0, 1q, xp4q “ p0,´1, 0,´1q,

xp5q “ 1
2p
?

3,´1,´
?

3,´1q, xp6q “ 1
2p´

?
3,´1,

?
3,´1q.

A decomposition of the parameter space into connected components based on the number of real
solutions was shown in Fig. 3 which was computed using [8] with Bertini [1]. Since the connected
hexagonal region containing b has a trivial fundamental group, it immediately follows that both G5
and G6 are trivial. Moreover, since the curved “hexagram,” i.e., “six-sided star,” region consisting
of the set of parameter values with at least 4 real solutions also has a trivial fundamental group, G3
and G4 must also be trivial. Hence, we only need to consider G1 and G2.

To help with the bookkeeping, we fix a marked point in each connected component with b being the
one in its component and place an ordering on the real solutions over each marked point. Then, we
identify each of the finitely many smooth segments of the boundaries of the connected components.
Along such smooth segments of the boundary, there is a consistent identification of the real solutions
which are no longer nonsingular at the boundary. Thus, there is an equivalence along each smooth
segment of the boundary. A similar statement holds for smooth regions of the boundary when there
are more than two parameters.

From Fig. 3, there are 18 smooth boundary segments to consider: 6 for the region having 6 real
solutions and two additional ones for each of the 6 regions having 4 real solutions. A homotopy is
used to identify the behavior of the solutions between each boundary segment using the consistent
ordering from the marked point of the region. Intermediate points can be used to assist in this,
which are especially useful in nonconvex regions to connect the marked points as shown in Fig. 5.

Figure 5: A plot of the boundaries of the connected components (black lines) for (4), selected
marked points (red star) in each connected component, all intermediary points (red dot), paths
crossing the boundary (green lines), and connections between intermediate points and the marked
point of the component (blue curves).
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Finally, an analysis of the data generated from traversing the boundaries produces all of the
possible interconnections between the real solutions xp1q, . . . , xp6q at b. In particular, this analysis
shows that the hexagram region consists of two large curved triangles: one pointing northwest and
the other point southeast. On the boundary of the northwest triangle, xp6q always becomes singular
and merges with one of xp2q, xp3q, or xp4q along its three sides. Similarly, for the boundary of the
southeast triangle, xp5q always becomes singular and merges with one of xp2q, xp3q, or xp4q along its
three sides. Since one must cross both triangular boundaries, to possibly have a nontrivial action,
we know that G1 and G2 applied to any set involving either 5 or 6 is trivial.

Furthermore, this analysis shows that the solution sheet corresponding to xp1q over the colored
region of the parameter space in Fig. 3 is nonsingular. In particular, this explains why the real
monodromy group computed in Ex. 3.4 for the connected component having 2 real solutions, which
is colored orange in Fig. 3, is trivial even though the fundamental group for this component is not
trivial. Hence, G1pt1uq “ tt1uu but it is different than xp5q and xp6q in that it can be included in
nontrivial G2 action. In fact, since it is possible to move from b into this orange component using
nonsingular paths starting at xp1q and one of xp2q, xp3q, or xp4q, we have that G1 is transitive on t2u,
t3u, and t4u and G2 is transitive on t1, 2u, t1, 3u, and t1, 4u. This is summarized in the following:

• G1

– t2u, t3u, t4u Ñ| tt2u, t3u, t4uu

– tq1u Ñ| ttq1uu for all others

• G2

– t1, 2u, t1, 3u, t1, 4u Ñ| tt1, 2u, t1, 3u, t1, 4uu

– tq1, q2u Ñ| ttq1, q2uu for all others.

Therefore, the real monodromy structure provides three distinct collections of solutions which have
similar properties: txp1qu, txp2q, xp3q, xp4qu, and txp5q, xp6qu.

4 Real monodromy of the 3RPR mechanism

The 3RPR mechanism, as shown in Fig. 1, is a well-known mechanism that has a nonsingular
assembly mode change [5, 7, 13, 15, 16, 19, 23]. Thus, with an appropriate choice of base point, the
function G1 in the real monodromy structure for this base point will be nontrivial. In this section,
we compute the complete real monodromy structure G‚ using the same base point from [15] when
one of the leg lengths is fixed and the other two legs are free to change lengths.

As shown in Fig. 6, let the leg lengths be `1, `2, and `3. For simplicity, we will consider the
squares of the leg lengths, namely ci “ `2i . In the fixed frame, set the three anchors of the three
legs, respectively, at p0, 0q, pA2, 0q, and pA3, B3q. In the moving frame, set the three connections of
the three legs, respectively, attached to the triangle at P1 “ p0, 0q, P2 “ pa2, 0q, and P3 “ pa3, b3q.
Following the case studied in [15], we take the following constants:

a2 “ 14, a3 “ 7, b3 “ 10, A2 “ 16, A3 “ 9, B3 “ 6, c3 “ `23 “ 100. (7)

For the parameters c “ pc1, c2q, we take the base point, corresponding to the “home” position, to
be b “ p75, 70q as in [15]. The six mechanisms satisfying this setup are shown in Fig. 7.
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Figure 6: An illustration of a 3RPR mechanism.

The variables pp, φq “ pp1, p2, φ1, φ2q of the polynomial system represent the relative position
and rotation between fixed frame and moving frame, respectively. The polynomials constrain the
rotation pφ1, φ2q to a point on the unit circle as well as describe the three leg constraints:

F pp, φ; cq “

»

—

—

—

—

–

φ21 ` φ
2
2 ´ 1

p21 ` p
2
2 ´ 2pa3p1 ` b3p2qφ1 ` 2pb3p1 ´ a3p2qφ2 ` a

2
3 ` b

2
3 ´ c1

p21 ` p
2
2 ´ 2A2p1 ` 2ppa2 ´ a3qp1 ´ b3p2 `A2a3 ´A2a2qφ1
` 2pb3p1 ` pa2 ´ a3qp2 ´A2b3qφ2 ` pa2 ´ a3q

2 ` b23 `A
2
2 ´ c2

p21 ` p
2
2 ´ 2pA3p1 `B3p2q `A

2
3 `B

2
3 ´ c3

fi

ffi

ffi

ffi

ffi

fl

.

At the “home” position b “ p75, 70q, the system F pp, φ; bq “ 0 has 6 nonsingular real solutions

xp1q xp2q xp3q

xp4q xp5q xp6q

Figure 7: The 6 real solutions to F pp, φ; bq “ 0.
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(a) (b)

Figure 8: Regions of the parameter space c “ pc1, c2q colored by the number of real solutions where
(a) is the full view and (b) is a zoomed in view of the lower left corner. The navy blue region has 6
real solutions, the grey blue region has 4 real solutions, the baby blue region has 2 real solutions,
and the white region has 0 real solutions.

which are assigned labels xp1q, . . . , xp6q in Fig. 7. The remaining part of this section describes
computing the real monodromy structure G‚ “ tG1, . . . ,G6u for F at b where we utilize Bertini [1]
to perform the homotopy continuation computations.

First, we compute the boundaries of the subsets of R2 where the number of real solutions change
using [8]. Figure 8 colors the regions in c “ pc1, c2q P R2 having 0, 2, 4, and 6 real solutions, where
b “ p75, 70q lies in the unique connected component having 6 real solutions. In particular, since
this component has a trivial fundamental group, Theorem 3.3 concludes that the real monodromy
group is trivial. It follows that G5 and G6 are also trivial. We note that the monodromy group is S6
showing there is no complex structure in the solutions encoded by the monodromy group.

To help with the bookkeeping, we fix a marked point in each connected component and select
additional intermediate points to simplify the computation of loops as shown in Fig. 9. To com-
pute all possible loops, we need to transverse between the connected components. Since there is
an equivalence by passing through smooth regions of the boundary, there are only finitely many
possible loops of interest. For example, leaving the navy blue region having 6 real solutions and
entering into the largest grey blue connected component that touches it has at most three different
outcomes obtained by crossing through the three different smooth segments of the boundary. The
intermediate points facilitate moving the solutions to the marked point to have consistent ordering.

By tracking solutions along all possible loops and carefully keeping track of those that remain
nonsingular, we obtain the following real monodromy structure where G5 and G6 are trivial:

• G1

– t1u, t2u, t3u Ñ| tt1u, t2u, t3uu

– t4u, t5u, t6u Ñ| tt4u, t5u, t6uu
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(a) (b)

Figure 9: Selected marked points (red star) in each connected component and all intermediary
points (red dot) in (a) full view and (b) zoomed in view of the lower left corner.

• G2

– t1, 4u, t1, 5u, t1, 6u, t2, 5u, t2, 6u, t3, 4u, t3, 5u Ñ|

"

t1, 4u, t1, 5u, t1, 6u, t2, 5u,
t2, 6u, t3, 4u, t3, 5u

*

– t1, 3u, t2, 3u Ñ| tt1, 3u, t2, 3uu

– t4, 6u, t5, 6u Ñ| tt4, 6u, t5, 6uu

– tq1, q2u Ñ| ttq1, q2uu for all others

• G3

– t1, 4, 6u, t1, 5, 6u, t2, 5, 6u Ñ| tt1, 4, 6u, t1, 5, 6u, t2, 5, 6uu

– t1, 3, 6u, t2, 3, 6u Ñ| tt1, 3, 6u, t2, 3, 6uu

– t3, 4, 6u, t3, 5, 6u Ñ| tt3, 4, 6u, t3, 5, 6uu

– tq1, q2, q3u Ñ| ttq1, q2, q3uu for all others

• G4

– t1, 3, 4, 6u, t1, 3, 5, 6u, t2, 3, 5, 6u Ñ| tt1, 3, 4, 6u, t1, 3, 5, 6u, t2, 3, 5, 6uu

– tq1, q2, q3, q4u Ñ| ttq1, q2, q3, q4uu for all others

In particular, G1 shows that there are nonsingular assembly mode changes between xp1q, xp2q, and
xp3q as well as between xp4q, xp5q, and xp6q. Figures 10 and 11 illustrate a nonsingular assembly
mode change between xp4q and xp5q.

The real monodromy structure G‚ identifies that the real solutions arise in two groups of three
solutions coinciding with the results in [15] which showed that there are two disjoint path-connected
components. In fact, in light of this constraint, G1 shows that all possible nonsingular assembly
mode changes can occur. The real monodromy structure G‚ provides additional information be-
yond nonsingular assembly mode changes by considering how other subsets of solutions can be
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Figure 10: A loop starting and ending at base point p75, 70q that yields a nonsingular assembly
mode change. The corresponding linkage pose for the labeled points are shown in Fig. 11.

Figure 11: Solutions along a loop that yields a nonsingular assembly mode change.
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interchanged. For example, G4 shows that it is possible to interchange two solutions xp1q and xp2q

while having three solutions xp3q, xp5q, and xp6q return to themselves with all four paths remaining
real and nonsingular. Additionally, it is also possible to interchange two pairs of solutions xp1q

and xp2q, and xp4q and xp5q while having two solutions xp3q and xp6q return to themselves with all
four paths remaining real and nonsingular.

5 Conclusion

The monodromy group is a classically used invariant in algebraic geometry to study the structure
of solutions to a parameterized system of polynomial equations. Since many applications involve
working with real solution sets over real parameter spaces, an extension of the monodromy action
computations to the real numbers is needed. A naive extension is to consider loops where all real
solutions stay real and nonsingular along the solution path yielding the real monodromy group.
However, this is very restrictive and is often trivial. Thus, we propose a real monodromy structure
that gives tiered information on the monodromy actions for the real solutions. This enables useful
structural information to be obtained and circumvents the restrictiveness of the naive extension by
relaxing the condition that all real paths remain nonsingular.

The real monodromy structure for the 3RPR mechanism allowing two legs to change length
describes how the solutions can interchange thereby providing a complete mathematical general-
ization of nonsingular assembly mode changes. This information can be useful, for example, in
calibration. If no real solutions can interchange, i.e., the real monodromy structure is trivial, then
returning to the “home” position avoiding singularities will always yield the same pose. However, if
the real monodromy structure is not trivial, then it describes all possible interconnections between
poses over the “home” position. Future work includes computing real monodromy structures for
Stewart-Gough platforms.
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