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ALGORITHM XXX: ALPHACERTIFIED: CERTIFYING SOLUTIONS
TO POLYNOMIAL SYSTEMS

JONATHAN D. HAUENSTEIN AND FRANK SOTTILE

Abstract. Smale’s α-theory uses estimates related to the convergence of Newton’s
method to certify that Newton iterations will converge quadratically to solutions to a
square polynomial system. The program alphaCertified implements algorithms based
on α-theory to certify solutions of polynomial systems using both exact rational arith-
metic and arbitrary precision floating point arithmetic. It also implements algorithms
that certify whether a given point corresponds to a real solution, and algorithms to
heuristically validate solutions to overdetermined systems. Examples are presented to
demonstrate the algorithms.

Introduction

Current implementations of numerical homotopy algorithms [1, 32, 38] such as PHC-
pack [41], HOM4PS [27], Bertini [4], and NAG4M2 [28] routinely and reliably solve sys-
tems of polynomial equations with dozens of variables having thousands of solutions. Here,
‘solve’ means ‘compute numerical approximations to solutions.’ In each of these software
packages, the solutions are validated heuristically—often by monitoring iterations of New-
ton’s method. This works well in practice, giving solutions that are acceptable in most
applications. However, a well-known shortcoming of numerical methods for computing
approximate solutions to systems of polynomials is that the output is not certified. This
restricts their use in some applications, including those in pure mathematics. The program
alphaCertified is intended to remedy this shortcoming.

In the 1980’s, Smale [36] and others investigated the convergence of Newton’s method,
developing α-theory [9, Ch. 8]. This refers to a computable positive constant α(f, x)
depending upon a system f : Cn → Cn of polynomials and a point x ∈ Cn such that, if

α(f, x) <
13− 3

√
17

4
≈ 0.157671 ,

then iterations of Newton’s method starting at x will converge quadratically to a solution
to f , which is a point ξ ∈ Cn with f(ξ) = 0. In principle, Smale’s α-theory provides
certificates for validating numerical computations with polynomials.
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Current implementations of numerical homotopy algorithms do not incorporate α-
theory to certify their output or their path-tracking. There have been two projects which
use fixed double precision and focus on certified path-tracking. Malajovich [30] released
the most recent version of his Polynomial System Solver in 2003, which uses α-theory
to certify toric path-tracking algorithms, but he states that “[it] is actually not intended
for an end user.” Beltrán and Leykin [8] have recently shown how to use α-theory to
certify path-tracking, and hence the output of numerical homotopy algorithms. While
they demonstrate that certification can dramatically affect the speed of computation, this
is an important development, as certified path-tracking is necessary for applications such
as numerical irreducible decomposition [37] or computing Galois groups [29]. They are
continuing this line of research.

We describe a program, alphaCertified, that implements elements of α-theory to
certify numerical solutions to systems of polynomial equations using both exact rational
and arbitrary precision floating point arithmetic. As it only certifies the output of a
numerical computation, it avoids the bottlenecks of certified tracking, while delivering
some of its benefits. Given a square polynomial system f : Cn → Cn, alphaCertified uses
Smale’s α-theory to answer the following three questions for a finite set of points X ⊂ Cn:

(1) From which points of X will Newton’s method converge quadratically to some
solution to f?

(2) From which points of X will Newton’s method converge quadratically to distinct
solutions to f?

(3) If f is real ({f1, . . . , fn} = {f1, . . . , fn}), from which points of X will Newton’s
method converge quadratically to real solutions to f?

Often, a sharp upper bound B on the number of roots to a square polynomial system f
is known. Given a set of B points, alphaCertified can be used to certify that iterations
of Newton’s method starting from each point in the set converge quadratically to some
solution to f and that these solutions are distinct. This guarantees that each of the B
roots of f can be approximated to arbitrary accuracy using Newton’s method. Moreover,
alphaCertified can certify how many of the B solutions to f are real when f is real.

A polynomial system f : Cn → CN is overdetermined if N > n, that is, if the number
of polynomials exceeds the number of variables. Dedieu and Shub [12] studied Newton’s
method for overdetermined polynomial systems and gave conditions which guarantee qua-
dratic convergence of its iterations. Unlike square systems, the fixed points of this overde-
termined Newton’s method need not be solutions. For example, x = 1 is a fixed point of

Newton’s method applied to f(x) =

[
x

x− 2

]
.

The program alphaCertified validates solutions to overdetermined systems. Given a
finite set X ⊂ Cn and an overdetermined system, it generates two or more random square
subsystems, answers the three questions above for each, and compares the results. In
particular, given δ > 0, it can certify that, for a given approximate solution to two or
more random subsystems, the associated solutions all lie within a distance δ of each other.
For a given δ, this heuristically validates solutions to overdetermined systems.
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In summary, alphaCertified is novel in each of the following ways. It implements
algorithms from α-theory using either exact rational or arbitrary precision floating point
arithmetic. When using exact rational arithmetic with a square polynomial system, its
implementation of α-theory is completely rigorous. It certifiably determines if an ap-
proximate solution corresponds to a real solution, which may be used to count the real
solutions to a polynomial system, and it uses α-theory to obtain information on the roots
of overdetermined systems. The examples we give demonstrate the practicality of certifi-
cation based on α-theory, and its viability as an alternative to exact symbolic methods, as
the certificates for square systems when using exact rational arithmetic are mathematical
proofs of computed results.

In Section 1, we review the concepts of α-theory utilized by alphaCertified. Section 2
presents the algorithms for square polynomial systems while Section 3 describes our ap-
proach to overdetermined polynomial systems. Implementation details are presented in
Section 4 with examples presented in Section 5 verifying some computational results in
kinematics and generating evidence for conjectures in enumerative real algebraic geometry.

1. Smale’s α-theory

We summarize key points of Smale’s α-theory for square polynomial systems that are
utilized by alphaCertified. More details may be found in [9, Ch. 8].

Let f : Cn → Cn be a system of n polynomials in n variables with common zeroes
V(f) := {ξ ∈ Cn | f(ξ) = 0}, and let Df(x) be the Jacobian matrix of the system f at x.
Consider the map Nf : Cn → Cn defined by

Nf (x) :=

{
x−Df(x)−1f(x) if Df(x) is invertible,

x otherwise.

The point Nf (x) is called the Newton iteration of f starting at x. For k ∈ N, let

Nk
f (x) := Nf ◦ · · · ◦Nf (x)︸ ︷︷ ︸

k times

be the kth Newton iteration of f starting at x.

Definition 1. Let f : Cn → Cn be a polynomial system. A point x ∈ Cn is an approximate
solution to f with associated solution ξ ∈ V(f) if, for every k ∈ N,

(1) ‖Nk
f (x)− ξ‖ ≤

(
1

2

)2k−1

‖x− ξ‖ .

That is, the sequence {Nk
f (x) | k ∈ N} converges quadratically to ξ. Here, ‖ ·‖ is the usual

hermitian norm on Cn, namely ‖(x1, . . . , xn)‖ = (|x1|2 + · · ·+ |xn|2)1/2.

Smale’s α-theory describes conditions that imply a given point x is an approximate
solution to f . It is based on constants α(f, x), β(f, x), and γ(f, x). If Df(x) is invertible,
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these are

α(f, x) := β(f, x)γ(f, x) ,

β(f, x) := ‖x−Nf (x)‖ = ‖Df(x)−1f(x)‖ , and

γ(f, x) := sup
k≥2

∥∥∥∥
Df(x)−1Dkf(x)

k!

∥∥∥∥
1

k−1

.(2)

If x ∈ V(f) is such that Df(x) is not invertible, then we define α(f, x) := β(f, x) := 0
and γ(f, x) := ∞. Otherwise, if x /∈ V(f) and Df(x) is not invertible, then we define
α(f, x) := β(f, x) := γ(f, x) := ∞.

In the formula (2) for γ(f, x), the kth derivative Dkf(x) [26, Chap. 5] to f is the
symmetric tensor whose components are the partial derivatives of f of order k. It is a
linear map from the k-fold symmetric power SkCn of Cn to Cn. The norm in (2) is the
operator norm of Df(x)−1Dkf(x) : SkCn → Cn, defined with respect to the norm on SkCn

that is dual to the standard unitarily invariant norm on homogeneous polynomials [25],
∥∥∑

|ν|=d

aνx
ν
∥∥2

:=
∑

|ν|=d

|aν |2/
(

d
ν

)
,

where ν = (ν1, . . . , νn) is an exponent vector of non-negative integers with xν = xν1
1 · · · xνn

n ,
|ν| = ν1 + · · ·+ νn, and

(
d
ν

)
= d!

ν1!···νn!
is the multinomial coefficient.

The following version of Theorem 2 from page 160 of [9] provides a certificate that a
point x is an approximate solution to f .

Theorem 2. If f : Cn → Cn is a polynomial system and x ∈ Cn with

(3) α(f, x) <
13− 3

√
17

4
≈ 0.157671 ,

then x is an approximate solution to f . Additionally, ‖x− ξ‖ ≤ 2β(f, x) where ξ ∈ V(f)
is the associated solution to x.

Remark 3. If α(f, x) ≥ 1
4
, then x may not be an approximate solution to f . For example,

for f(x) = x2, if x 6= 0, then x is not an approximate solution to f yet α(f, x) = 1
4
.

For a polynomial system f : Cn → Cn and a point x ∈ Cn, we say that x is a certified
approximate solution to f if (3) holds.

Theorem 4 and Remark 6 of [9, Ch. 8] give a version of Theorem 2 that alphaCerti-
fied uses to certify that two approximate solutions have the same associated solution.

Theorem 4. Let f : Cn → Cn be a polynomial system, x ∈ Cn with α(f, x) < 0.03 and
ξ ∈ V(f) the associated solution to x. If y ∈ Cn with

‖x− y‖ <
1

20γ(f, x)
,

then y is an approximate solution to f with associated solution ξ.
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1.1. Bounding higher order derivatives. The constant γ(f, x) encoding the behavior
of the higher order derivatives of f at x is difficult to compute, but it can be bounded
above. For a polynomial g : Cn → C of degree d, say g =

∑
|ν|≤d aνx

ν , define

‖g‖2 :=
∑

|ν|≤d

|aν |2 ν!(d− |ν|)!
d!

.

Then ‖ · ‖ is the standard unitarily invariant norm on the homogenization of g. For a
polynomial system f : Cn → Cn, define

‖f‖2 :=
n∑

i=1

‖fi‖2 where f(x) =




f1(x)
...

fn(x)


 ,

and for a point x ∈ Cn, define

‖x‖2
1 := 1 + ‖x‖2 = 1 +

n∑
i=1

|xi|2 .

Let ∆(d)(x) be the n× n diagonal matrix with

∆(d)(x)i,i := d
1/2
i ‖x‖di−1

1 ,

where di is the degree of fi. If Df(x) is invertible, define

µ(f, x) := max{1, ‖f‖ · ‖Df(x)−1∆(d)(x)‖} .

The following version of Proposition 3 from §I-3 of [35] gives an upper bound for γ(f, x).

Proposition 5. Let f : Cn → Cn be a polynomial system with di = deg fi and D = max di.
If x ∈ Cn such that Df(x) is invertible, then

(4) γ(f, x) ≤ µ(f, x)D
3
2

2‖x‖1

.

2. Algorithms for square polynomial systems

Let f : Cn → Cn be a square polynomial system and X = {x1, . . . , xk} ⊂ Cn be a
set of points. We describe the algorithms implemented in alphaCertified which answer
the three questions posed in the Introduction. These algorithms are stated for a polyno-
mial system with complex coefficients, but are implemented for polynomial systems with
coefficients in Q[

√−1] using both exact and arbitrary precision arithmetic.
For each i = 1, . . . , k, alphaCertified first checks if f(xi) = 0. If f(xi) 6= 0, then

alphaCertified determines if Df(xi) is invertible. If it is, alphaCertified computes
β(f, xi) and upper bounds for α(f, xi) and γ(f, xi) using the following algorithm.

Procedure (α, β, γ) = ComputeConstants(f, x):
Input: A square polynomial system f : Cn → Cn and a point x ∈ Cn such that

Df(x) is invertible.
Output: α := β · γ, β := ‖Df(x)−1f(x)‖, and γ, where γ is the upper bound for

γ(f, x) given in Proposition 5.
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The next algorithm uses Theorem 2 to compute a subset Y of X containing points that
are certified approximate solutions to f .

Procedure Y = CertifySolns(f, X):
Input: A square polynomial system f : Cn → Cn and a set X = {x1, . . . , xk} ⊂ Cn.
Output: A set Y ⊂ X of approximate solutions to f .
Begin:

(1) Initialize Y := {}.
(2) For j = 1, 2, . . . , k, if f(xj) = 0, set Y := Y ∪{xj}, otherwise, do the following

if Df(xj) is invertible:
(a) Set (α, β, γ) := ComputeConstants(f, xj).

(b) If α <
13− 3

√
17

4
, set Y := Y ∪ {xj}.

Return: Y

As alphaCertified uses the upper bound for γ(f, x) of Proposition 5, it may fail to
certify a legitimate approximate solution x to f . In that case, a user may consider retrying
after applying a few Newton iterations to x. The software alphaCertified does not
invoke an automatic refinement to inputs that it does not certify. This is because Newton
iterations may have unpredictable behavior (attracting cycles, chaos) when applied to
points that are not in a basin of attraction. However, alphaCertified does provide the
functionality for the user to do this refinement.

Suppose that x is an approximate solution to f with associated solution ξ such that
Df(ξ) is invertible. Since x is an approximate solution, β(f,Nk

f (x)) converges to zero.

Since γ(f, x) is the supremum of a finite number of continuous functions of x, γ(f,Nk
f (x))

is bounded. In particular, α(f,Nk
f (x)) converges to zero.

Given approximate solutions x1 and x2 to f with associated solutions ξ1 and ξ2, respec-
tively, Theorems 2 and 4 can be used to determine if ξ1 and ξ2 are equal. In particular, if

‖x1 − x2‖ > 2(β(f, x1) + β(f, x2)) ,

then ξ1 6= ξ2 by Theorem 2. If on the other hand we have

α(f, xi) < 0.03 and ‖x1 − x2‖ <
1

20γ(f, xi)

for either i = 1 or i = 2, then ξ1 = ξ2 by Theorem 4. This justifies the following algorithm
which determines if two approximate solutions correspond to distinct associated solutions.

Procedure isDistinct = CertifyDistinctSoln(f, x1, x2):
Input: A square polynomial system f : Cn → Cn and approximate solutions x1 and

x2 to f with associated solutions ξ1 and ξ2, respectively, such that Df(ξ1) and
Df(ξ2) are invertible.

Output: A boolean isDistinct that describes if ξ1 6= ξ2.
Begin: Do the following:

(a) For i = 1, 2, set (αi, βi, γi) := ComputeConstants(f, xi).
(b) If ‖x1 − x2‖ > 2(β1 + β2), Return True.

(c) If αi < 0.03 and ‖x1 − x2‖ <
1

20γi

, for either i = 1 or i = 2, Return False.
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(d) For i = 1, 2, update xi := Nf (xi) and return to (a).

This will halt, determining whether or not ξ1 = ξ2 as β(f,Nk
f (xi)) decreases quadratically

with k, while γ(f, Nk
f (xi)) is bounded.

2.1. Certifying real solutions. A polynomial system f : Cn → Cn is real if {f1, . . . , fn} =
{f1, . . . , fn}. In that case, solutions to f(x) = 0 are either real or occur in conjugate pairs.

Also, Nf (x) = Nf (x) for x ∈ Cn so that Nf : Rn → Rn is a real map. Theorems 2 and 4
can be used to determine if an approximate solution of f is associated to a real solution.
Let x be an approximate solution to f with associated solution ξ. We do not assume
that x is real, for numerical continuation solvers yield complex approximate solutions. By
assumption, x is also an approximate solution to f with associated solution ξ. If

‖x− x‖ > 2 (β(f, x) + β(f, x)) = 4β(f, x) ,

then ξ 6= ξ by Theorem 2 since

‖ξ − ξ‖ ≥ ‖x− x‖ − 4β(f, x) > 0 .

Consider the natural projection map πR : Cn → Rn defined by

πR(x) =
x + x

2
.

Since ‖x− x‖ = 2‖x− πR(x)‖, ξ is not real if

(5) ‖x− πR(x)‖ > 2β(f, x) .

We have both a local and a global approach to show that ξ is real. For the local ap-
proach, Theorem 4 implies that πR(x) is also an approximate solution to f with associated
solution ξ if

(6) α(f, x) < 0.03 and ‖x− πR(x)‖ <
1

20γ(f, x)
.

Since Nf is a real map and πR(x) ∈ Rn, this implies that ξ ∈ Rn.
We could also have showed that both x and x correspond to the same solution to deduce

that ξ = ξ. If

α(f, x) < 0.03 and ‖x− x‖ <
1

20γ(f, x)
,

then Theorem 4 implies that ξ = ξ. This is more restrictive then (6) since ‖x − x‖ =
2‖x− πR(x)‖.

When α(f, x) < 0.03, (5) and (6) yield closely related statements. Since

5

3
β(f, x) =

5α(f, x)

3γ(f, x)
<

5 · 0.03

3γ(f, x)
=

1

20γ(f, x)
,

we know that ξ is real if ‖x− πR(x)‖ ≤ 5
3
β(f, x) and not real if ‖x− πR(x)‖ > 2β(f, x).

The following algorithm uses the local approach of (5) and (6) to determine if an
approximate solution corresponds to a real associated solution.

Procedure isReal = CertifyRealSoln(f, x):
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Input: A real square polynomial system f : Cn → Cn and an approximate solution
x ∈ Cn with associated solution ξ such that Df(ξ) is invertible.

Output: A boolean isReal that describes if ξ ∈ Rn.
Begin: Do the following:

(a) Set (α, β, γ) := ComputeConstants(f, x).
(b) If ‖x− πR(x)‖ > 2β, Return False.

(c) If α < 0.03 and ‖x− πR(x)‖ <
1

20γ
, Return True.

(d) Update x := Nf (x), and return to (a).

For the global approach to certifying real solutions, suppose that we know a priori
that f has exactly k solutions. Suppose that x1, . . . , xk are approximate solutions of f
with distinct associated solutions. If, for all j 6= i, xi and xj also correspond to distinct
solutions, then xi and xi must correspond to the same solution, which is therefore real.
This global approach requires a priori knowledge about V(f) as well as approximate
solutions corresponding to each solution to f . While it cannot be applied to all systems,
it is an alternative to the test based on γ(f, x).

2.2. Certification algorithm. For a given set of points X and a polynomial system f ,
CertifySolns, CertifyDistinctSoln, and CertifyRealSoln answer the three questions
posed in the Introduction. We provide a sketch of the algorithm.

Procedure (A, D,R) = CertifyCount(f, X):
Input: A square polynomial system f : Cn → Cn and a finite set of points X =
{x1, . . . , x`} ⊂ Cn such that if xj is an approximate solution with associated solu-
tion ξj, then Df(ξj) is invertible.

Output: A set A ⊂ X consisting of certified approximate solutions to f , a set
D ⊂ A consisting of points which have distinct associated solutions, and, if f is a
real map, a subset R ⊂ D consisting of points which have real associated solutions.

Begin:
(1) Set A := CertifySolns(f,X).
(2) Set nA := |A| and enumerate the points in A as a1, . . . , anA

.
(3) For j = 1, . . . , nA, set sj := True.
(4) For j = 1, . . . , nA and for k = j + 1, . . . , nA, if sj and sk are True, set

sk := CertifyDistinctSoln(f, aj, ak).
(5) Set D := {aj | sj = True}.
(6) Initialize R := {}.
(7) If f is a real polynomial system, do the following:

(a) Set nD := |D| and enumerate the points in D as d1, . . . , dnD
.

(b) For j = 1, . . . , nD, if CertifyRealSoln(f, dj) is True, update R :=
R ∪ {dj}.
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3. Overdetermined polynomial systems

When N > n, the polynomial system f : Cn → CN is overdetermined. Dedieu and
Shub [12] studied the overdetermined Newton’s method whose iterates are defined by

(7) Nf (x) := x−Df(x)†f(x) ,

where Df †(x) is the Moore-Penrose pseudoinverse of Df(x) [17, § 5.5.4] to determine
conditions that guarantee quadratic convergence. Since the fixed points of Nf may not
be solutions to the overdetermined polynomial system f , this approach cannot certify
solutions to overdetermined polynomial systems.

We instead certify that points are associated solutions to two or more random square
subsystems using the algorithms of Section 2. An additional level of security may be
added by certifying that, for a given point which is an approximate solution to two or
more random square subsystems, the associated solutions lie within a given distance of
each other. As with the overdetermined Newton’s method (7), this also cannot certify
solutions to overdetermined polynomial systems, which is still an open problem.

Let R : CN → Cn be a linear map, considered as a matrix in Cn×N . Then R(f)(x) =
R ◦ f(x) gives a square polynomial system R(f) : Cn → Cn. Since V(f) ⊂ V(R(f)) for
any R, we call R(f) a square subsystem of f . There is a nonempty Zariski open subset
A ⊂ Cn×N such that for every R ∈ A and every x ∈ V(f), null Df(x) = {0} if and only if
DR(f)(x) is invertible. Moreover, for every x ∈ V(R(f)) \ V(f), DR(f)(x) is invertible.
See [38] for more on square subsystems R(f).

Define L = {f(x) | x ∈ Cn} ⊂ CN which has dimension at most n possibly passing
through the origin. A dimension-counting argument yields that there is a nonemtpy
Zariski open set B ⊂ A × A ⊂ Cn×N × Cn×N such that, for every (R1, R2) ∈ B, K =
null R1 ∩ null R2 ⊂ CN is a linear space of dimension max{N − 2n, 0} passing through
the origin and K ∩ L ⊂ {0}. In particular, if Ri(f) = Ri ◦ f , then

V(R1(f)) ∩ V(R2(f)) = V(f) .

In addition, suppose that x is an approximate solution to both R1(f) and R2(f) with
associated solutions ξ1 and ξ2, respectively. For k ∈ N, define xi,k = Nk

Ri(f)(x) for i = 1, 2.
If ξ1 6= ξ2, there exists k ∈ N such that

‖x1,k − x2,k‖ > 2(β(R1(f), x1,k) + β(R2(f), x2,k)) ,

certifying that ‖ξ1 − ξ2‖ > 0.
If ξ1 = ξ2, then, for any δ > 0, there exists k ∈ N such that

(8) ‖x1,k − x2,k‖+ 2(β(R1(f), x1,k) + β(R2(f), x2,k)) < δ

certifying that ‖ξ1 − ξ2‖ < δ. In particular, this certifies that the solutions ξ1 and ξ2 to
R1 and R2 associated to the common approximate solution x lie within a distance δ of
each other. For δ ¿ 1, this heuristically shows that ξ1 = ξ2.

In summary, if x is a certified approximate solution to two different square subsystems
with distinct associated solutions, a certificate can be produced demonstrating this fact.
Also (but not conversely), for any given tolerance δ > 0, a certificate can be produced
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that the distance between the associated solutions to the two square subsystems is smaller
than δ.

An additional test using the function residual could be added to this process. The
following lemma describes such a test.

Lemma 6. Let f : Cn → CN be an overdetermined polynomial system, R ∈ Cn×N ,
and x be an approximate solution to R(f) := R ◦ f with associated solution ξ such that
α(R(f), x) ≤ 0.0125. Then there exists ε > 0 such that if there exists y ∈ Cn satisfying

‖x− y‖ ≤ 1

40γ(R(f), x)
and ‖f(y)‖ < ε ,

then ξ ∈ V(f).

Proof. Define ν =
1

40γ(R(f), x)
and B(x, ν) = {y ∈ CN | ‖x− y‖ ≤ ν}. We note that if

γ(R(f), x) = ∞, since B(x, ν) = {x}, it is easy to verify that we can take

ε =

{
1 if f(x) = 0,

‖f(x)‖
2

otherwise.

Hence, we can assume that γ(R(f), x) < ∞. Since

‖x− ξ‖ ≤ 2β(R(f), x) =
2α(R(f), x)

γ(R(f), x)
≤ 0.025

γ(R(f), x)
= ν ,

ξ ∈ B(x, ν). Moreover, Theorem 4 yields that B(x, ν) ∩ V(R(f)) = {ξ}.
Assume ξ /∈ V(f). Since V(f) ⊂ V(R(f)), B(x, ν) ∩ V(f) = ∅. In particular, g(z) =

‖f(z)‖ is positive on the compact set B(x, ν). Thus, there exists ε > 0 such that ‖f(y)‖ ≥
ε for all y ∈ B(x, ν). ¤
Remark 7. For Lemma 6 to give an algorithm, we would need a general bound for the
minimum of a positive polynomial on a disk. In cases when such a bound is known, e.g.,
[24], it is too small to be practical.

4. Implementation details for alphaCertified

The program alphaCertified is written in C and depends upon GMP [19] and MPFR
[14] libraries to perform exact rational and arbitrary precision floating point arithmetic.
When using rational arithmetic, all internal computations are certifiable. Because of the
bit length growth of rational numbers under algebraic computations, alphaCertified al-
lows the user to select a precision and use floating point arithmetic in that precision to
facilitate computations. Since floating point errors from internal computations are not
fully controlled, alphaCertified only yields a soft certificate when using the floating point
arithmetic option. When the polynomial system is overdetermined, alphaCertified dis-
plays a message informing the user about what it has actually computed.

Three input files are needed to run alphaCertified. These files contain the polynomial
system, the list of points to test, and the user-defined settings. See [22] for more details
regarding exact syntax of these files. The polynomial system is assumed to have rational
complex coefficients and described in the input file with respect to the basis of monomials.
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That is, the user inputs the coefficient and the exponent of each variable for each monomial
term in each polynomial of the polynomial system.

The set of points to test are assumed to have either rational coordinates if using rational
arithmetic or floating point coordinates if using floating point arithmetic. When using
floating point arithmetic, the points are inputted in the precision selected by the user.

The list of user-defined settings includes the choice between rational and floating point
arithmetic, the floating point precision to use for the basic computations if using floating
point arithmetic, and which certification algorithm to run. The user can also define
a value, say τ > 0, such that, for each certified approximate solution, the associated
solution will be approximated to within 10−τ and printed to a file.

The specific output of alphaCertified depends upon the user-defined settings. In each
case, an on-screen table summarizes the output as well as a file that contains a human-
readable summary for each point. The other files created are machine-readable files that
can be used in additional computations.

Linear solving operations are performed using an LU decomposition and the spectral
matrix norm is bounded above using the Frobenius norm. This choice further worsens the
approximation of γ described in Proposition 5, which has two direct consequences on the
performance of the algorithms. First, this requires that the value of β must be smaller
in order to certify approximate solutions in CertifySolns. Second, algorithms Certify-
DistinctSoln and CertifyRealSoln may need to utilize extra Newton iterations. Apart
from the added computational cost, the use of GMP and MPFR allows alphaCertified to
still perform these computations even when using such an approximation of γ.

When using rational arithmetic, alphaCertified avoids taking square roots when test-
ing the required inequalities. When using floating point arithmetic, as an effort to con-
trol the floating point errors, the internal working precision is increased when updating
the point via a Newton iteration, for instance in Step (d) of CertifyDistinctSoln and
Step (d) of CertifyRealSoln.

The software alphaCertified determines if a square polynomial system f in n variables
is real using two tests. The first test determines if the coefficients of f are real. The
second selects a pseudo-random point y ∈ Qn and determines if {f1(y), . . . , fn(y)} =

{f1(y), . . . , fn(y)}.
The user either instructs alphaCertified to bypass all tests and declare that f is real,

or which tests to use. If all tests fail, then alphaCertified bypasses the real certification.
Otherwise, for each approximate solution x with associated solution ξ, alphaCertified de-
termines if there exists a real approximate solution that also corresponds to ξ. If the user
incorrectly identified f as real, then ξ may not be real. Therefore, alphaCertified dis-
plays a message informing the user about what it actually has certified.

For an overdetermined polynomial system f , alphaCertified only checks to see if all
of the coefficients of f are real. In this case, alphaCertified randomizes f using real
matrices to obtain real square subsystems.
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5. Computational examples

We used alphaCertified to study four polynomial systems whose number of real solu-
tions is relevant. Two are from kinematics and two are from enumerative geometry. All
involve polynomial systems that are not easily solved using certified methods from sym-
bolic computation. The files used in the computations, as well as instructions for their
use, are found on our website [22]. Computations of Sections 5.3 and 5.4 used nodes of the
Brazos cluster [10] that consist of two 2.5 GHz Intel Xeon E5420 quad-core processors.

5.1. Stewart-Gough platform. The Stewart-Gough platform is a parallel manipulator
in which six variable-length actuators are attached between a fixed frame (the ground)
and a moving frame (the platform) [18, 40]. Each position of the platform uniquely
determines the lengths of the six actuators. However, the lengths of the actuators do not
uniquely determine the position and orientation of the platform, as there are typically
several assembly modes, called positions.

A generic platform with generic actuator lengths has 40 complex assembly modes.
Dietmaier [13] used a continuation method to find a platform and leg lengths for which
all 40 positions are real. While his formulation as a system of polynomial equations
and conclusions about their solutions being real have been reproduced numerically (this
is a problem in Verschelde’s test suite [42]), these computations only give a heuristic
verification of Dietmaier’s result.

We modified the polynomial system from Verschelde’s test suite, which uses the parame-
ters obtained by Dietmaier, by converting the floating point numbers to rational numbers.
We then ran PHCpack [41] on the resulting polynomial system to obtain 40 numerical
solutions to the system, each of which it identified as real. After converting the floating
point coordinates of the solutions to rational numbers, we ran alphaCertified using these
rational polynomials and rational points. It verified that these 40 points correspond to
distinct real solutions. This gives a rigorous mathematical proof of Dietmaier’s result.

5.2. Four-bar linkages. A four-bar linkage is a planar linkage consisting of a triangle
with two of its vertices connected to two bars, whose other endpoints are fixed in the
plane. The base of the triangle, the two attached bars, and the implied bar between the
two fixed points are the four bars.

A general linkage has a one-dimensional constrained motion during which the joints may
rotate, and the curve traced by the apex of the triangle is its workspace curve.

The nine-point path synthesis problem asks for the four-bar linkages whose workspace
curve contains nine given points. Morgan, Sommese, and Wampler [33] used homotopy
continuation to solve a polynomial system which describes the four-bar linkages whose
workspace curves pass through nine given points. They found that for nine points P =
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{P0, . . . , P8} ⊂ C2 in general position, there are 8652 isolated solutions. Due to a two-
fold symmetry, there are 4326 distinct four-bar linkages which appear in 1442 triplets,
called Roberts cognates. We used alphaCertified to produce a soft certificate that the
polynomial system has at least 8652 isolated solutions and, for a specific set of nine real
points, certified the number of real solutions among these 8652 solutions.

If P ⊂ R2, the formulation of [33] is not a real polynomial system. The usual approach
of writing the variables using real and imaginary parts gives a real polynomial system
fP consisting of four quadratic and eight quartic polynomials. For nine points P =
{P0, . . . , P8} ⊂ C2, the polynomial system fP : C12 → C12 depends upon the variables

{a1, a2, n1, n2, x1, x2, b1, b2, m1, m2, y1, y2} .

Define the complex numbers

a = a1 +
√−1 · a2, n = n1 +

√−1 · n2, x = x1 +
√−1 · x2,

b = b1 +
√−1 · b2, m = m1 +

√−1 ·m2, y = y1 +
√−1 · y2,

whose complex conjugates are a, n, x, b, m, y, respectively. These correspond to the vari-
ables used in the formulation in [33]. The four quadratic polynomials of fP are

f1 = n1 − a1x1 − a2x2 , f2 = n2 + a1x2 − a2x1 ,
f3 = m1 − b1y1 − b2y2 , f4 = m2 + b1y2 − b2y1 .

The eight quartic polynomials depend upon the displacements from P0 to the other points
Pj. For j = 1, . . . , 8, define Qj := (Qj,1, Qj,2) = Pj − P0 and write each displacement Qj

using isotropic coordinates, namely (δj, δj) where

δj = Qj,1 +
√−1 ·Qj,2 and δj = Qj,1 −

√−1 ·Qj,2.

For j = 1, . . . , 8, the quartic polynomial f4+j of fP is

f4+j := γjγj + γjγ
0
j + γjγ

0
j

where

γj := qx
j ry

j − qy
j r

x
j , γj := rx

j p
y
j − ry

j p
x
j , γ0

j := px
j q

y
j − py

jq
x
j

and

px
j := n− δjx, qx

j := n− δjx, rx
j := δj(a− x) + δj(a− x)− δjδj,

py
j := m− δjy, qy

j := m− δjy, ry
j := δj(b− y) + δj(b− y)− δjδj.

We first certified that, for nine randomly selected points in the complex plane, the
resulting polynomial system has at least 8652 isolated solutions. Since the displacements
Qj define the polynomial system, we choose them to be points of Q[

√−1]2 with each
coordinate having unit modulus of the form

t2 − 1

t2 + 1
+
√−1 · 2t

t2 + 1

where t was a quotient of two ten digit random integers. We used regeneration [21] in
Bertini [4] to compute 8652 points that were heuristically within 10−100 of an isolated
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solution for fP . Then, alphaCertified produced a soft certificate using 256-bit precision
that these 8652 points are approximate solutions to fP with distinct associated solutions.

We next certified the number of real solutions for a specific set of nine real points,
namely Problem 3 of [33]. The nine real points are listed in Table 2 of [33], which, for
convenience, we list the values of δj in Table 1. Since the points are real, δj is the conjugate

Table 1. Values of δj for Problem 3 of [33]

j δj

1 0.27 + 0.1
√−1

2 0.55 + 0.7
√−1

3 0.95 +
√−1

4 1.15 + 1.3
√−1

5 0.85 + 1.48
√−1

6 0.45 + 1.4
√−1

7 −0.05 +
√−1

8 −0.23 + 0.4
√−1

of δj. We used parameter continuation in Bertini to solve the resulting polynomial system
starting from the 8652 solutions to the polynomial system solved in the first test. This
generated a list of 8652 points which alphaCertified soft certified using 256-bit precision
to be approximate solutions that have distinct associated solutions of which 384 are real.
In particular, this confirms the results reported in Table 3 of [33] for Problem 3, namely,
that 64 = 384/6 of the 1442 mechanisms are real.

Figure 1 shows three of the 64 real mechanisms that solve this synthesis problem, to-
gether with their workspace curves. The first has two assembly modes with the workspace

Figure 1. Three solutions.

curve of one mode a simple closed curve that contains the nine target points. This mech-
anism is the only viable mechanism among the 64 real mechanisms. The second has only
one assembly mode, but its workspace curve is convoluted and does not meet the target
points in a useful order. The third has two assembly modes, and each only reaches a
proper subset of the target points.
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5.3. Lines, points, and conics. We consider geometric problems of plane conics in C3

that meet k points and 8−2k lines for k = 0, . . . , 4. When the points and lines are general,
the numbers of plane conics are known and presented in Table 2.

Table 2. Numbers of plane conics

k 4 3 2 1 0
Number of conics 0 1 4 18 92

This problem is from a class of problems in enumerative geometry—counting rational
curves—that has been of great interest in recent years [15]. For problems of enumerating
rational curves of degree d in the plane that interpolate 3d−1 real points, Welschinger [43]
defined an invariant Wd which is a lower bound on the number of real rational curves,
and work of Mikhalkin [31] and of Itenberg, Kharlamov, and Shustin showed that Wd is
positive and eventually found a formula for it [23].

We used alphaCertified to investigate the possible numbers of real solutions to these
problems of conics when their input data (points and lines) are real. Of particular interest
is the minimum number of solutions that are real. Our experimental data suggests that
when k = 1 at least two of the solutions will be real, and it shows that for k = 0, 2, it is
possible to have no real solutions.

This experiment computed random instances of the problem. The coordinates of points
were taken to be the quotient of two random ten digit integers, and the real lines were
taken to be lines through two such points. The resulting polynomial system was square.
Each real instance was solved by Bertini [4] using a straight line parameter homotopy
starting with a fixed random complex instance (see [38] for more details). This gave points
that were heuristically within 10−75 of each isolated solution. Then alphaCertified used
256-bit precision to softly certify that the points computed by Bertini were approximate
solutions corresponding to distinct solutions, and to count the number of real solutions.
Since enumerative geometry provides the generic root count, this yields a post-processing
certificate that Bertini has indeed computed an approximate solution corresponding to
each solution to the polynomial system.

In every instance that Bertini successfully tracked every path, the heuristic results of
Bertini matched the certified results of alphaCertified. Out of the over 1,450,000,000
paths tracked, 76 paths were truncated by Bertini due to a fail-safe measure. Thirty-
two paths were truncated since they needed more than the fail-safe limit of 10,000 steps
along the path. Each of these paths were successfully tracked when the limit was raised
to 25,000 steps. Forty-four paths were truncated since the adaptive precision tracking
algorithm [5, 6, 3] requested to use more than the fail-safe limit of 1024-bit precision.
Each of these paths were successfully tracked when the fail-safe limit was raised to 1284-
bit precision.

The first interesting case is when k = 2 and there are four conics meeting two points and
four lines. We solved 500 random real instances using the Brazos cluster. Each instance
took an average of 0.7 seconds for Bertini to solve and 0.1 seconds for alphaCertified to
certify the results. We found that there can be 0, 2, or 4 real solutions. Table 3 presents
the frequency distribution of these 500 instances for this case.
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Table 3. Frequency distribution for conics through two points and four lines

# real 0 2 4 total

frequency 12 221 267 500

When k = 1, there are 18 conics meeting a point and six lines in C3. We solved
1,000,000 random real instances using the Brazos cluster. Each instance took an average
of 1.6 seconds for Bertini to solve and an average of 0.1 seconds for alphaCertified to
certify the results. Every real instance that we computed had at least 2 real solutions.
Table 4 presents the frequency distribution of these 1,000,000 instances for this case.

Table 4. Frequency distribution for conics through a point and six lines

# real 0 2 4 6 8 10 12 14 16 18 total

frequency 0 3281 21984 88813 193612 261733 226383 137074 53482 13638 1000000

To compare the performance of alphaCertified to symbolic methods, we computed
40,000 instances of the conic problem with k = 1 using Singular [11] to compute an
eliminant that satisfies the Shape Lemma [7] and Maple to count the number of real
roots of the eliminant, which is a standard symbolic method to determine the number of
real solutions to a zero-dimensional system of polynomial equations. The coordinates of
points were taken to be rational numbers p/q where p, q were integers with |p| < 4000 and
0 < q < 1000. Each computation took approximately 661 seconds on a single node of a
server with four six-core AMD Opteron 8435 processors and 64 GB of memory. Table 5
presents the frequency distribution of these 40,000 instances for this case.

Table 5. Frequency distribution for conics through a point and six lines

# real 0 2 4 6 8 10 12 14 16 18 total

frequency 0 146 892 3558 7739 10575 8965 5488 2089 548 40000

Finally, when k = 0, there are 92 plane conics meeting eight general lines in C3. We
solved 15,662,000 random real instances using the Brazos cluster. On average, each in-
stance took 8.8 seconds for Bertini to solve and 0.7 seconds for alphaCertified to certify
the results. Table 6 presents the frequency distribution of these instances.

5.4. A Schubert problem. Our last example concerns a problem in the Schubert calcu-
lus of enumerative geometry, which is a rich class of geometric problems involving linear
subspaces of a vector space. Many problems in the Schubert calculus are naturally formu-
lated as overdetermined polynomial systems. We investigate one such problem that can
also be formulated as a square polynomial system using the approach of [2]. In particu-
lar, we demonstrate alphaCertified’s algorithms for overdetermined systems as well as
investigate a conjecture on the reality of its solutions.

This problem involves four-dimensional linear subspaces (four-planes) H of C8 that
have a non-trivial intersection with each of eight general three-planes K0, . . . , K7. The
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Table 6. Frequency distribution for conics through eight lines

# real 0 2 4 6 8 10 12 14

frequency 1 8 26 65 466 1548 4765 11928

# real 16 18 20 22 24 26 28 30

frequency 26439 52875 98129 167932 270267 404918 569891 756527

# real 32 34 36 38 40 42 44 46

frequency 942674 1114033 1246533 1332289 1355320 1319699 1226667 1091019

# real 48 50 52 54 56 58 60 62

frequency 932838 762463 596174 449021 323927 223455 149629 95740

# real 64 66 68 70 72 74 76 78

frequency 59141 34834 19516 10672 5671 2744 1290 530

# real 80 82 84 86 88 90 92 total

frequency 204 90 26 11 3 2 0 15662000

Schubert calculus predicts 126 such four-planes. To formulate this Schubert problem,
consider H to be the column space of a 8× 4 matrix in block form

H =

[
I4

X

]
,

where I4 is the 4×4 identity matrix and X is a 4×4 matrix of indeterminates. Represent
a three-plane K as the column space of a 8× 3 matrix of constants. Then the condition
that H meets K non-trivially is equivalent to the vanishing of the determinants of the
eight 7× 7 square submatrices of the 8× 7 matrix

(9) A = [H K] .

In this standard formulation, the Schubert problem is a system of 64 equations in 16
indeterminates. Using a total degree homotopy to solve this would follow 416 paths.

There is a second formulation which we used. Write K in block form,

K =

[ K1

K2

]
,

where K1 and K2 are 4 × 3 matrices. A linear dependency among the columns of A (9)
is given by vectors v ∈ C4 and w ∈ C3 such that Hv + Kw = 0. Applying this to the
different blocks of H and K gives

I4v +K1w = 0 and Xv +K2w = 0 ,

which is equivalent to Âw = 0, where Â := K2 − XK1. Thus H meets K non-trivially

if and only if each 3 × 3 minor of Â vanishes. This gives a system FO(x) of 32 cubic
polynomials in 16 indeterminates, which is more compact than the original formulation.

We certified solutions to this overdetermined polynomial system FO. We randomized
FO to maintain the structure of the equations as follows. For each i = 0, . . . , 7 and
j = 1, 2, 3, 4, let fi,j be the determinant of the submatrix created by removing the jth

row of the matrix Âi corresponding to the ith three-plane. Then, for each j, we take
four random linear combinations of the polynomials f0,j, f1,j, . . . , f7,j. This preserves the
multilinear structure of the equations in the four variable groups corresponding to the
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columns of X. Solving this system using regeneration [21] finds 22,254 solutions of which
alphaCertified soft certified using 256-bit precision that 126 of these are approximate
solutions to two different random square subsystems of FO with associated solutions within
a distance of δ = 10−10 of each other. The same result was also obtained using δ = 10−5.
Thus, alphaCertified provided a soft certificate based on the heuristic algorithm for
overdetermined systems that we found all 126 solutions to the Schubert problem.

This Schubert problem has an equivalent formulation as a square system. The columns

of Â are linearly dependent if and only if there exists 0 6= v ∈ C3 such that Âv = 0. For
generic α1, α2 ∈ C, this occurs if and only if there exists y1, y2 ∈ C such that

Â ·



y1

y2

α1y1 + α2y2 + 1


 = 0 .

This yields a system of 32 polynomials in 32 indeterminates, say FS(x, y(0), . . . , y(7)). This
polynomial system consists of four bilinear polynomials in x and y(i) for each i = 0, . . . , 7.

Since y(i) consists of two indeterminates, namely y
(i)
1 and y

(i)
2 , a 9-homogeneous homotopy

used to solve FS would follow
(
4
2

)8
= 68 paths. As described in [2], we are interested in the

components of V(FS) having fibers with generic dimension zero. For generic K0, . . . , K7,
since V(FS) is zero-dimensional, V(FO) and V(FS) both consist of 126 isolated points and
V(FS) naturally projects onto V(FO).

We also investigated the number of real solutions when the three planes Ki are as
follows. For t ∈ R, let γ(t) = (1, t, t2, . . . , t7) ∈ R8 be a point on the moment curve. Select
24 rational numbers t1, . . . , t24 and for i = 0, . . . , 7, let Ki be the span of the three linearly
independent vectors γ(t3i+1), γ(t3i+2), and γ(t3i+3). When t1 < t2 < · · · < t24, the Secant
Conjecture [16] posits that all 126 solutions will be real, but if the points are not in this
or some equivalent order, then other numbers of real solutions are possible.

Since K0, . . . , K7 are real, if the constants αi are real, then the real points of V(FO)
correspond to the real points of V(FS). We solved 25000 real instances using random
numbers in the interval [−1, 1] and softly certified that each had 126 real solutions, using
256-bit precision.

Lastly, we investigated the number of real solutions when the three planes Ki are as
follows. For i = 0, . . . , 7, let ti ∈ C be generic under the condition that 2k are complex
conjugate pairs and 8− 2k are real, where 0 ≤ k ≤ 4. Define Ki = T (ti) where

T (t) =




1 0 0
t 1 0
t2 2t 1
t3 3t2 3t
t4 4t3 6t2

t5 5t4 10t3

t6 6t5 15t4




.

Then Ki is the three-plane osculating the moment curve at the point γ(ti). When k = 0,
that is, when each ti is real, this is the Shapiro Conjecture (MTV Theorem) [39, 34]
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and all 126 solutions are real. We tested 1000 such instances and for each, alphaCer-
tified correctly identified all 126 solutions to be real. Our primary interest was when
k > 0, for we wanted to test the hypothesis that there would be a lower bound to
the number of real solutions if the set of osculating three-planes were real (that is, if
{K0, . . . , K7} = {K0, . . . , K7}). This is what we found, as can be seen in the partial fre-
quency table we give below. (To better show the lower bounds, we omit writing 0 in the
cells with no observed instances.) This enumeration of real solutions was softly certified
using 256-bit precision.

Table 7. Frequency distribution for the Schubert problem

# real
k 0 2 4 6 8 10 12 · · · 18 20 22 · · · 124 126 total

0 · · · · · · 1000 1000
1 6 6 10 88 · · · 554 1888 1832 · · · 69 2021 42000
2 2614 3771 · · · 3285 1579 1378 · · · 1 38 24000
3 8896 4479 · · · 1079 721 2586 · · · 23500
4 · · · 19134 · · · 1 22500

This computation was part of a larger test of hypothesized lower bounds [20].

6. Conclusion

Smale’s α-theory provides a way to certify solutions to polynomial systems, determine
if two points correspond to distinct solutions, and determine if the corresponding solu-
tion is real. Using either exact rational or arbitrary precision floating point arithmetic,
alphaCertified is a program which implements these α-theoretical methods.

We have also produced a Maple interface to alphaCertified to facilitate the construc-
tion of the input files needed.
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