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Abstract

For a smooth hypersurface defined by a homogeneous polynomial with real coefficients, algo-
rithms are presented to determine the connected components and compute the Euler character-
istic for both the real part of the hypersurface and its complement in real projective space. A
bipartite graph, which describes the boundary relationships amongst all connected components,
is also computed, which, for example, can be used to determine if a connected component of the
real hypersurface is one-sided or two-sided. For curves, the nesting structure and dividing type
are also considered. Several examples are used to demonstrate the numerical computations.

Keywords. Real hypersurfaces, nesting structure, Euler characteristic, real algebraic sets,
polynomial systems, real numerical algebraic geometry, numerical algebraic geometry

1 Introduction

A classical problem in real algebraic geometry is to determine the topological types of smooth curves
in the real projective plane P2

R. For instance, Hilbert’s 16
th problem asks to classify the topological

types for smooth curves of degree d, which has been solved for d ď 7, and similarly for surfaces, e.g.,
see surveys [12, 14] and the many references therein. Harnack’s curve thereom [6], the foundation
for this problem from Hilbert, posits that the maximum number of connected components of the
real part of curve of degree d in the real projective plane is 1 `

`

d´1
2

˘

, and this bound is sharp.
Rather than provide new theoretical results about Hilbert’s 16th problem in general, the aim

of this paper is to describe how to perform explicit computations associated with real projective
hypersurfaces. For a real hypersurface H Ă Pn

R, the first computation determines the connected
components of H and Pn

RzH and corresponding Euler characteristics. Then, for each connected
component of Pn

RzH, one can determine which connected components of H are contained in its
boundary. Such relationships between the connected components of a real hypersurface and its
complement can be represented by a bipartite graph, called a connectivity graph. In particular, a
connectivity graph can be used to determine which connected components of the real hypersurface
divides Pn

R into two connected components, called two-sided, or does not divide Pn
R, called one-

sided. See [11] for more details about the mutual position of hypersurfaces in Pn
R. In fact, for

the curve case, the two-sided components are called ovals and the connectivity graph can be used
to determine the nesting structure of ovals via Theorem 3.8. Figure 1 illustrates the connectivity
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Figure 1: Connectivity graph for two curves, H1 and H2, in the real projective plane with each
having 2 two-sided connected components, i.e., two ovals. (a) Ovals in H1 are nested since C1 is
contained in the inside of C2. (b) Ovals in H2 are not nested since the inside of the ovals C1 and C2,
namely S1 and S3, respectively, do not intersect.

graph for two curves in P2
R, each having two ovals C1 and C2. In Figure 1(a), the two ovals are

nested with C1 nested in C2. However, the connectivity graph in Figure 1(b) shows that ovals C1
and C2 in H2 are not nested.

Let f P Rrx0, x1, x2s be homogeneous and consider the corresponding complex and real curves:

Cpfq “ tx P P2 | fpxq “ 0u and CRpfq “ Cpfq X P2
R “ tx P P2

R | fpxq “ 0u. (1)

The case of interest below is when the algebraic curve Cpfq is smooth. Then, one can view Cpfq as
a Riemann surface with CRpfq being a curve on this surface. The polynomial f is said to be non-
dividing if CpfqzCRpfq is connected, and dividing otherwise. Theorem 4.1 and Corollary 4.3 describe
computational approaches to compute the dividing type of f using Whitney’s embedding [13] of P2

into R7, which addresses a problem stated in [7].
The key to the algorithms presented below is the recently developed approach for computing

the smoothly connected components of a real algebraic variety described in [5]. In particular, this
approach uses a routing function to represent each smoothly connected component with a finite set of
critical points, called routing points, along with a finite set of gradient ascent/descent paths between
the critical points, called routing paths. The Euler characteristic of each connected component
naturally arises as the alternating sum from the indices of the corresponding routing points.

Since studying real projective hypersurfaces is such a classical problem, many approaches have
been utilized. The following summarizes a few related approaches. In [7], curves of degree six in
the real projective plane are investigated via a cylindrical algebraic decomposition (CAD)— see [3]
for a general overview, which can be computed efficiently for plane curves [4]. A computational
approach based on homology basis is described in [8]. Although not a computational approach, we
note that statistics on the number of connected components was considered in [9].

The rest of the paper is organized as follows. Section 2 contains background information about
routing functions and computing connected components. Section 3 considers connectivity graphs
and, for the curve case, the nesting of ovals. Section 4 considers computing the dividing type for
curves. Examples are presented in Section 5, and short conclusion is provided in Section 6.
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2 Hypersurfaces, routing functions, and connectivity

The following provides necessary background information regarding hypersurfaces, n-spheres, rout-
ing functions, and connectivity. For general details about real algebraic geometry, see, e.g., [1, 3].

2.1 Hypersurfaces and spheres

Suppose that f P Rrx0, . . . , xns is homogeneous of degree d ě 1 such that the hypersurface defined
by f , namely

VPpfq “ tx P Pn | fpxq “ 0u,

is smooth, i.e.,

VPp∇fq “

n
č

i“0

VP

ˆ

Bf

Bxi

˙

“ H

where ∇f is the gradient of f . When n “ 2, VPpfq is called a curve while VPpfq is called a surface
when n “ 3.

Example 2.1 The curve defined with f “ x0x1 ´ x22, which is a parabola, is smooth since

x1 “ x0 “ ´2x2 “ 0

has no solutions in P2. However, the curve defined by g “ x21´x22, which consists of two intersecting
lines, is not smooth with a singularity at r1, 0, 0s P P2.

One approach to perform computations on Pn
R is to perform computations on the n-sphere

Sn “ tx P Rn`1 | x20 ` ¨ ¨ ¨ ` x2n ´ 1 “ 0u

which naturally provides a double cover of Pn
R by identifying antipodal points. In particular, define

VSpfq “ tx P Sn | fpxq “ 0u.

Throughout, we will utilize
Spxq “ x20 ` ¨ ¨ ¨ ` x2n ´ 1 (2)

and corresponding complex and real varieties, respectively:

VCpf, Sq “ tx P Cn`1 | fpxq “ 0, Spxq “ 0u and VRpf, Sq “ tx P Rn`1 | fpxq “ 0, Spxq “ 0u. (3)

Example 2.2 Continuing with Example 2.1, Figure 2 plots VRpf, Sq and VRpg, Sq. In particu-
lar, VRpf, Sq is smooth while VRpg, Sq has a singularity.

Another approach to perform computations on both Pn
R and Pn simultaneously is to utilize an

embedding into a suitable real affine space, e.g., Whitney’s embedding [13]. For Pn
R, this avoids

having to identify antipodal points at the cost of having to compute images under the embedding
and then perform additional computations in an ambient space of higher dimension. Thus, Section 3
will perform computations in P2

R using the double cover provided by S2. However, since Section 4
considers CpfqzCRpfq where Cpfq Ă P2 and CRpfq Ă P2

R, we utilize Whitney’s embedding [13] to
compute the connected components of CpfqzCRpfq via computations performed in R7.
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(a) (b)

Figure 2: Plot of (a) parabola on unit sphere and (b) two intersecting lines on unit sphere.

2.2 Routing functions, Euler characteristic, and membership testing

Since all computations related to connected components will be performed on a subset in some
real affine space, suppose that F “ tf1, . . . , fℓu Ă Rrx1, . . . , xns is a collection of polynomials where
VCpF q is pure-dimensional of codimension k and VRpF q is a smooth subset of VCpF q. That is,
rank Jpxq “ k for every x P VRpF q where Jpxq is the ℓ ˆ n Jacobian matrix of F evaluated at x.
Given a nonzero polynomial g P Rrx1, . . . , xns, the key computation is to determine the connected
components ofX “ VRpF qzVRpF, gq. For example, if gpxq ” 1, then VRpF, gq “ H so that one simply
computes the connected components of VRpF q. Although [5] considers smoothly connected compo-
nents, connected and smoothly connected are equivalent here based on the smoothness assumption
on VRpF q. In particular, as in [5], the connected components of X will be computed using a routing
function rpxq so that each connected component of X is represented by a finite set of points, called
routing points, that are connected via a finite set of gradient ascent/descent paths associated with
rpxq on X, called routing paths. Each routing point has an index associated with r on X and the
Euler characteristic of the connected component is simply the alternating sum from the indices of
the corresponding routing points, i.e., even index contributes `1 and odd index contributes ´1.
Routing paths emanate along the unstable eigenvector directions at each routing point.

Let c P Rn and d P Zą0 such that 2d ą deg g. As in [5], the routing function used here is

rpxq “
gpxq

p1 ` px1 ´ c1q2 ` ¨ ¨ ¨ ` pxn ´ cnq2qd
. (4)

By [5, Thm. 3.4], r is a routing function on X for a Zariski open dense subset of c P Rn. In
particular, we assume that a random number generator used to select c P Rn will yield an element
in this Zariski open dense subset with probability one. The routing points of r on X are simply the
critical points of r on X, that is, satisfy

x P X with rank

„

∇rpxq

Jpxq

ȷ

“ k.
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Since X is smooth, there is a well-defined gradient ∇Xr of r on X and the routing points of r
on X are precisely where ∇Xr “ 0 on X. A routing function has finitely many routing points on
X and each is nondegenerate, i.e., the corresponding pn ´ kq ˆ pn ´ kq Hessian matrix of r on X,
denoted HXr, is invertible at each routing point of r on X. Moreover, the index of a routing point
x is the number of eigenvalues of HXrpxq which have the same sign as rpxq. Eigenvalues of HXrpxq

with the same sign as rpxq are called unstable eigenvalues and the corresponding eigenvectors are
called unstable eigenvectors. For instance, if x is a routing point with rpxq ą 0, then the index of
x is the number of positive eigenvalues so that, in particular, a local maximum has index 0.

The final piece is to partition the routing points into subsets which lie on the same connected
component of X. This is accomplished using gradient ascent (when r ą 0)/descent (when r ă 0)
paths of r on X starting at the routing points of positive index along the unstable eigenvector
directions. In particular, suppose that x is a routing point and v is an unstable eigenvector. Then,
for every ϵ ą 0, the solution zϵptq to

9zptq “ signprpxqq ¨ ∇Xrpzq

zp0q “ x ` ϵ ¨ v
(5)

is well-defined. Moreover, the routing path zptq “ limϵÑ0` zϵptq is also well-defined which starts
(t “ 0) at x and ends (t “ 8) at another routing point on the same connected component of X.
One also obtains a routing path associated with ´v which may or may not end at the same
routing point as the one associated with v. Thus, looping over routing points and corresponding
unstable eigenvectors v and ´v, one obtains a finite collection of routing paths which yields the
same connectivity structure as the connected components of X. This is summarized in Algorithm 1
which arises from [5, Alg. 1] and is justified by [5, Thm. 4.4].

Example 2.3 For fpxq “ x0x1 ´ x22 as in Example 2.1 and Spxq “ x20 ` x21 ` x22 ´ 1, the fol-
lowing illustrates using Algorithm 1 to compute the connected components of VRpf, Sq and the
connected components of VRpSqzVRpf, Sq. For simplicity of presentation, fix c “ p1{2,´1{3,´1{5q.
The number of routing points depends on the choice of c, but, of course, the corresponding Euler
characteristics are independent of c.

Figure 3: Plot of parabola defined by f “ x0x1 ´x22 (red) on the unit sphere S2. Routing points for
the parabola VRpf, Sq and complement of the parabola VRpSqzVRpf, Sq are shown with blue points
having index 0 and green points having index 1. Routing paths for the complement are black.
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Input: A collection of polynomials F “ tf1, . . . , fℓu Ă Rrx1, . . . , xns such that VCpF q is
pure-dimensional and VRpF q is a smooth subset of VCpF q, and routing function r.

Output: Euler characteristic of X “ VRpF qzVRpF, rq and partitioned subset of the routing
points of r on X corresponding to the connected components of X.

1 Compute the routing points of r on X, say p1, . . . , pm, and corresponding indices, say
i1, . . . , im.

2 Compute χ “
řm

j“1p´1qij .

3 Initialize A “ Im, the m ˆ m identity matrix.
4 for j “ 1, . . . ,m do
5 foreach unstable eigenvector v for HXrppjq do
6 Compute limit routing point from pj in the direction v with respect to r, say pw`

.
7 Set Ajw`

“ Aw`j “ 1.
8 Compute limit routing point from pj in the direction ´v with respect to r, say pw´

.
9 Set Ajw´

“ Aw´j “ 1.

10 end

11 end
12 Set M to be the transitive closure of A.
13 Partition tp1, . . . , pmu based on the connected components of M , say C1, . . . , Cs.
14 for j “ 1, . . . , s do

15 Compute χj “
řm

a“1 1paPCj ¨ p´1qia where 1yPW “

"

1 y P W
0 y R W.

16 end
17 return (χ,ttC1, χ1u, . . . , tCs, χsuu)

Algorithm 1: Euler characteristic and connected components

For VRpf, Sq, one can take the routing function rpxq “ p1`px0´c0q2`px1´c1q2`px2´c2q2q´1.
Since VRpf, S, rq “ H, X “ VRpf, Sq as in Algorithm 1. There are four routing points of r on X,
two each of index 0 and index 1 so that χ “ 0 as expected. To four decimal places, we have

p1 “ p0.9861, 0.0272,´0.1638q, p2 “ p´0.0214,´0.9891,´0.1455q, p3 “ ´p1, p4 “ ´p2,

with corresponding indices i1 “ i2 “ 0 and i3 “ i4 “ 1. Both unstable directions from p3 end at p2
and similarly for p4 ending at p1 yielding the connectivity matrix

M “

»

—

—

–

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

fi

ffi

ffi

fl

.

Hence, Algorithm 1 obtains two connected components of X corresponding to C1 “ tp1, p4u with
χ1 “ 0 and C2 “ tp2, p3u with χ2 “ 0. Figure 3 shows these four routing points on VRpf, Sq with
the routing paths simply tracing out VRpf, Sq.

For VRpSqzVRpf, Sq, one can take the routing function

rpxq “
x0x1 ´ x22

p1 ` px0 ´ c0q2 ` px1 ´ c1q2 ` px2 ´ c2q2q2
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with X “ VRpSqzVRpS, rq “ VRpSqzVRpf, Sq. There are four routing points of r on X, three of
index 0 and one of index 1 so that χ “ 2 as expected. To four decimal places, we have

p1 “ p0.8646, 0.4989,´0.0596q, p2 “ p0.5992,´0.4977,´0.6271q,
p3 “ p´0.6762, 0.7319, 0.0839q, p4 “ p´0.5214,´0.8517,´0.0520q,

with corresponding indices i1 “ i2 “ i4 “ 0 and i3 “ 1. Both unstable directions from p3 end at p2
yielding the connectivity matrix

M “

»

—

—

–

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

fi

ffi

ffi

fl

.

Hence, Algorithm 1 obtains three connected components of X corresponding to C1 “ tp1u with
χ1 “ 1, C2 “ tp2, p3u with χ2 “ 0, and C3 “ tp4u with χ3 “ 1. Figure 3 shows these four routing
points on VRpSqzVRpf, Sq together with the routing paths.

Given a point y P X, the output of Algorithm 1 can be used to determine which connected
component contains y. Of course, if y is a routing point, membership is trivial so assume that y is
not a routing point. Adapting (5) yields

9zptq “ signprpyqq ¨ ∇Xrpzq

zp0q “ y
(6)

where the routing point x “ limtÑ8 zptq and y are in the same connected component [5, Thm. 4.4].

Remark 2.4 One way in which membership testing will be used is to test which components are
identified under the antipodal action on Sn. Suppose that F “ tf1, . . . , fℓu Ă Rrx0, . . . , xns is a
collection of homogeneous polynomials and S as in (2) such that VCpF, Sq is pure-dimensional and
VRpF, Sq is a smooth subset of VCpF, Sq. Let g P Rrx0, . . . , xns be nonzero and homogeneous. Then,
X “ VRpF, SqzVRpF, S, gq is invariant under the antipodal action, i.e., ´x P X if and only if x P X.
Moreover, membership testing permits identifying the orbits of the connected components of X under
the antipodal action. For a connected component of X, one simply selects a corresponding routing
point x and applies membership testing to its antipodal point ´x. If x and ´x lie in the same
connected component, then that component is invariant under the antipodal action. Otherwise, x
and ´x lie on two different connected components which are identified under the antipodal action.

Example 2.5 From Example 2.3, the routing points associated with VRpf, Sq are antipodal and
thus the corresponding components C1 and C2 are identified under the antipodal action.

For VRpSqzVRpf, Sq, membership testing using (6) starting at ´p1 yields p4 showing that C1

and C3 are identified under the antipodal action. However, starting at ´p2 yields p2 showing
that C2 is invariant under the antipodal action.

3 Connectivity graphs and topological type

Building on the computational approaches described in Section 2, the following first considers
the case where f P Rrx0, x1, x2s is nonconstant and homogeneous such that Cpfq as in (1) is
smooth. In particular, for CRpfq Ă P2

R, Section 3.1 considers determining the connected components
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of CRpfq and P2
RzCRpfq along with computing a bipartite graph, called a connectivity graph, that

describes which connected components of CRpfq lie in the boundary of each connected component
of P2

RzCRpfq. Remark 3.7 highlights that all such computations, including the connectivity graph,
can be trivially extended to Pn

R with examples presented in Section 5.1.
Section 3.2 uses the connectivity graph associated with f in P2

R to determine the nesting struc-
ture of the ovals in CRpfq Ă P2

R yielding its topological type.

3.1 Connectivity graph

For a randomly selected value c P R3, as illustrated in Example 2.3, Algorithm 1 can be applied to
compute the connected components of VRpf, Sq Ă S2 using the routing function

r1pxq “
1

p1 ` px0 ´ c0q2 ` px1 ´ c1q2 ` px2 ´ c2q2q
,

say C1, . . . , Cs. Similarly, the connected components of S2zVRpfq “ VRpSqzVRpf, Sq can be computed
using the routing function

r2pxq “
fpxq

p1 ` px0 ´ c0q2 ` px1 ´ c1q2 ` px2 ´ c2q2qd

where 2d ą deg f , say S1, . . . ,St. Even though S2 is compact, the denominators are used to provide
enough genericity to ensure that both r1 and r2 are routing functions for a randomly selected c P R3

with probability one [5].
One way to describe the relationship between C1, . . . , Cs and S1, . . . ,St is via a bipartite graph,

called a connectivity graph, with the two parts of size s and t corresponding with C1, . . . , Cs and
S1, . . . ,St, respectively. The edges of this graph are determined based on whether Ci is contained
in the boundary of Sj .

To avoid some subscripts, suppose that C is a connected component of VRpf, Sq and x P C
is a routing point with respect to r1. Select a plane P Ă R3 passing through the origin and x
such that P intersects VRpf, Sq transversely, which is an open condition. In particular, the points
in VRpf, SqXP, say p1, . . . , pu, can be cyclically ordered around the circle S2XP with p1 “ x “ pu`1

as illustrated in Figure 4. Therefore, every point on the open arc on the circle S2 X P between p1
and p2, denoted pp1, p2q, lies in the same connected component of VRpSqzVRpf, Sq and similarly for
the arc between pu and p1, denoted ppu, p1q. Hence, one simply selects y P pp1, p2q P VRpSqzVRpf, Sq

and applies membership testing to determine the value of j such that y P Sj . Similarly, one repeats
for y1 P ppu, p1q to determine the value of j1 such that y1 P Sj1 . This process is summarized
in Algorithm 2 with the following verifying correctness.

Theorem 3.1 Algorithm 3.1 correctly determines the connectivity graph associated to f in S2 with
probability one.

Proof. In Step 4 of Algorithm 2, a random plane is transverse to VRpf, Sq with probability
one. In Step 6 of Algorithm 2, since the open arc pp1, p2q Ă VRpSqzVRpf, Sq is connected, every
point in this open arc must be contained in the same connected component of VRpSqzVRpf, Sq,
say Sj . Since x “ p1 P VRpf, Sq, it immediately follows that x must be contained in the boundary
of Sj Ă VRpSqzVRpf, Sq. Since both Ci and Sj are smooth and connected, it follows that Ci
must therefore also be contained in the boundary of Sj . One simply repeats this argument for
Step 8. Smoothness and connectivity ensure that there can be no other connected component of
VRpSqzVRpf, Sq whose boundary contains Ci besides Sj and Sj1 . l
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Figure 4: Illustrating cyclical ordering of points around a circle.

Input: Homogeneous polynomial f P Rrx0, x1, x2s such that VCpf, Sq is irreducible of
codimension 2 and VRpf, Sq is smooth where S “ x20 ` x21 ` x22 ´ 1, routing
functions r1 for VRpf, Sq and r2 for VRpSqzVRpf, Sq, and corresponding partitioned
subsets of routing points tC1, . . . , Csu for VRpf, Sq and tS1, . . . , Stu for
VRpSqzVRpS, fq associated with connected components tC1, . . . , Csu and
tS1, . . . ,Stu, respectively.

Output: Bipartite graph with the two parts corresponding to the connected components
of VRpf, Sq and the connected components of VRpSqzVRpf, Sq with edges
determined based on if Ci is contained in the boundary of Sj .

1 Initialize an s ˆ t matrix G with all entries 0.
2 for j “ 1, . . . , s do
3 Select a routing point x P Ci.
4 Select a random plane P Ă R3 passing through the origin and x.
5 Compute the points in VRpf, Sq X P, say p1, . . . , pu, which are ordered cyclically around

the circle S2 X P with x “ p1 “ pu`1.
6 Select the midpoint of the arc pp1, puq, say y, and perform membership testing using r2

to determine j such that y P Sj .
7 Set Gij “ 1.
8 Select the midpoint of the arc ppu, p1q, say y1, and perform membership testing using r2

to determine j1 such that y1 P Sj1 .
9 Set Gi1j1 “ 1.

10 end
11 return bipartite graph associated with matrix G

Algorithm 2: Connectivity graph in S2

Remark 3.2 Membership testing on VRpSqzVRpf, Sq can be performed using spherical coordinates
so that ∇X in (6) is transformed into a standard unconstrained gradient in spherical coordinates.
Of course, a similar statement holds when there is a known global analytic parameterization.

Example 3.3 With the setup from Example 2.3, let C1 and C2 denoted the two connected compo-
nents of VRpf, Sq and S1, S2, and S3 denote the three connected components of VRpSqzVRpf, Sq.
Using Algorithm 1, one determines that C1 is in the boundary of both S1 and S2, and C2 is in the

9



S1χ “ 1

VRpSqzVRpf, Sq
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S3χ “ 1
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S1χ “ 1
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C1 χ “ 0
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(a) (b)

Figure 5: Bipartite connectivity graph arising in (a) S2 for Example 3.3 and (b) P2
R for Example 3.5.

boundary of both S2 and S3. This yields the corresponding matrix

G “

„

1 1 0
0 1 1

ȷ

with corresponding bipartite connectivity graph shown in Figure 5(a).

To determine the corresponding bipartite connectivity graph in P2
R, one simply needs to iden-

tify the corresponding components in S2 under the antipodal action using Remark 2.4. This is
summarized in Algorithm 3 with the following verifying correctness.

Theorem 3.4 With probability one, Algorithm 3 correctly determines the bipartite connectivity
graph associated with CRpfq and P2

RzCRpfq and corresponding Euler characteristics.

Proof. The functions r1 and r2 are routing functions associated with VRpf, Sq and VRpSqzVRpf, Sq,
respectively, with probability one by [5, Thm. 3.4]. The rest follows from Theorem 3.1 and the
relationship between S2 and P2

R. l

From the output of Algorithm 3, if a connected component C of CRpfq is contained in the
boundary of two different connected components of P2

RzCRpfq, then C is called two-sided or an oval.
Otherwise, it is called one-sided or a pseudoline. If f has even degree, all connected components
of CRpfq are ovals. There is exactly one pseudoline when f has odd degree and all other connected
components of CRpfq are ovals.

Example 3.5 Continuing with Example 3.3, antipodal membership testing in Example 2.5 with
Algorithm 3 produces G “

“

1 1
‰

with corresponding connectivity graph shown in Figure 5(b).

Example 3.6 Applying Algorithm 3 to fpxq “ x0x
2
2 ´ x31 ` 2x20x1 yields the connectivity graph

displayed in Figure 6. In particular, CRpfq consists of one oval C1 and one pseudoline C2.
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Input: Nonconstant homogeneous polynomial f P Rrx0, x1, x2s such that Cpfq is smooth.
Output: Bipartite graph with the two parts corresponding to the connected components

of CRpfq and the connected components of P2
RzCRpfq with edges determined

based on if a connected component of CRpfq is contained in the boundary of a
connected component of P2

RzCRpfq, and corresponding Euler characteristics.
1 Randomly select c P R3 and construct functions

r1pxq “ p1 ` px0 ´ c0q2 ` px1 ´ c1q2 ` px2 ´ c2q2q´1 and r2pxq “ fpxq ¨ r1pxqd

where d “ rdeg f{2s ą 0. Construct Spxq “ x20 ` x21 ` x22 ´ 1.
2 Apply Algorithm 1 to tf, Su with r1 yielding the connected components of VRpf, Sq.
3 Apply Algorithm 1 to tSu with r2 yielding the connected components of VRpSqzVRpf, Sq.
4 Apply Algorithm 2 yielding the connectivity graph G associated with VRpf, Sq and

VRpSqzVRpf, Sq in S2.
5 Set E to be the set whose elements are the connected components of VRpf, Sq.
6 while E ‰ H do
7 Select C from E and set E “ EztCu.
8 Select a routing point x P C and perform a membership test with ´x to determine

connected component C1 of VRpf, Sq containing ´x.
9 if C ‰ C1 then

10 Set E “ EztC1u.
11 Merge the vertices in G corresponding with C and C1 and set the corresponding

Euler characteristic of C in P2
R to χpCq “ χpC1q “ pχpCq ` χpC1qq{2.

12 else
13 Set the corresponding Euler characteristic of C in P2

R to χpCq{2.
14 end

15 end
16 Set E to be the set whose elements are the connected components of VRpSqzVRpf, Sq.
17 while E ‰ H do
18 Select S from E and set E “ EztSu.
19 Select a routing point x P S and perform a membership test with ´x to determine

connected component S 1 of VRpSqzVRpf, Sq containing ´x.
20 if S ‰ S 1 then
21 Set E “ EztS 1u.
22 Merge the vertices in G corresponding with S and S 1 and set the corresponding

Euler characteristic of S in P2
R to χpSq “ χpS 1q “ pχpSq ` χpS 1qq{2.

23 else
24 Set the corresponding Euler characteristic of S in P2

R to χpSq{2.
25 end

26 end
27 return bipartite graph associated with matrix G along with corresponding Euler

characteristics
Algorithm 3: Connectivity graph in P2

R

Remark 3.7 Since Euler characteristic and connected component decomposition computed in Al-
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S1χ “ 1

P2
RzCRpfq

S2χ “ 0

C1 χ “ 0

CRpfq

C2 χ “ 0

Figure 6: Bipartite connectivity graph arising in P2
R for Example 3.6.

gorithm 1 applies in arbitrary dimensions, the computation of connectivity graphs in Algorithms 2
and 3 can be trivially extended to Sn and Pn

R, respectively. In particular, the connectivity graph
in Pn

R arising from Algorithm 3 can be used to determine two-sidedness and one-sidedness.

3.2 Nesting of ovals and topological type

Each oval, which is two-sided, has an inside and an outside. The connectivity graph and cor-
responding Euler characteristics on P2

R computed by Algorithm 3 can be used to determine the
Euler characteristic of the two sides. In fact, the inside is homeomorphic to a disk and has Euler
characteristic 1, while the outside is homeomorphic to a Möbius strip with Euler characteristic 0.

Theorem 3.8 Suppose that G is the connectivity graph associated with CRpfq computed from Al-
gorithm 3. If C is an oval in CRpfq, then removing the vertex corresponding with C and two edges
emanating from C in G yields a graph G1 with two connected components G1

1 and G1
2. If X1 and X2

are the union of corresponding vertices in G1
1 and G1

2 respectively, then tχpX1q, χpX2qu “ t0, 1u.
Upon relabeling, assume that χpX1q “ 1 and χpX2q “ 0. Then, I “ X1 is the inside of C and
O “ X2 is the outside of C.

Proof. Since C is an oval, there is an inside and outside. In particular, P2
RzC must have two

connected components having Euler characteristics 0 and 1. Since the union of the corresponding
vertices in G is P2

R, removing the vertex corresponding to C shows that X1 and X2 are precisely the
two connected components of P2

RzC. Since Euler characteristic is additive, χpX1q and χpX2q are
trivially obtained by summing the Euler characteristics of the corresponding vertices. l

Example 3.9 Consider the connectivity graph shown in Figure 1(a). Deleting the vertex associated
with C1 and the two emanating edges shows that the inside of C1 is IpC1q “ S1 while the outside
is OpC1q “ S2 Y C2 Y S3. Similarly, deleting the vertex associated with C2 and the two emanating
edges shows that the inside of C2 is IpC2q “ S1 Y C1 Y S2 while the outside is OpC2q “ S3.

Two ovals are said to be nested if their insides intersect. Moreover, an oval C is nested in
another oval C1 if IpCq Ă IpC1q. The topological type of a curve corresponds with the number of
ovals and their nesting structure, e.g., see [7], which can be determined directly from the output of
Algorithm 3 in light of Theorem 3.8.

12



Example 3.10 From Example 3.9, since IpC1q X IpC2q “ S1 “ IpC1q, this shows that C1 and C2
are nested. In fact, IpC1q Ă IpC2q shows that C1 is nested in C2.

Example 3.11 For the connectivity graph shown in Figure 1(b), IpC1q “ S1 and IpC2q “ S3

showing that C1 and C2 are not nested since IpC1q X IpC2q “ H.

4 Dividing type for curves

For a homogeoneous polynomial f P Rrx0, x1, x2s such that Cpfq is smooth, the following determines
the dividing type of f . In particular, f is non-dividing if CpfqzCRpfq is connected, and dividing
otherwise. The key to the proposed computation, which addresses a problem stated in [7], is to
represent the Riemann surface Cpfq as a surface in a real affine space where CRpfq is a curve that
lies on this surface so that Algorithm 1 can be used. The following describes using Whitney’s
embedding [13] of P2 into R7 to accomplish this.

Each point px0, y0, x1, y1, x2, y2q P S5 yields rx0`iy0, x1`iy1, x2`iy2s P P2 where i “
?

´1. Each
fiber of this map from S5 to P2 corresponds with a circle. In particular, if px0, y1, x1, y1, x2, y2q P S5,
for every pα, βq P S1, one has

rx0 ` iy0, x1 ` iy1, x2 ` iy2s “ rpα ` iβqpx0 ` iy0q, pα ` iβqpx1 ` iy1q, pα ` iβqpx0 ` iy2qs

“ rpαx0 ´ βy0q ` ipβx0 ` αy0q, pαx1 ´ βy1q ` ipβx1 ` αy1q, pαx2 ´ βy2q ` ipβx2 ` αy2qs P P2

and
pαx0 ´ βy0, βx0 ` αy0, αx1 ´ βy1, βx1 ` αy1, αx2 ´ βy2, βx2 ` αy2q P S5.

One way to identify all such points is via Whitney’s embedding [13] W : S5 ÞÑ R7 defined by

W px0, y0, x1, y1, x2, y2q “

»

—

—

—

—

—

—

—

—

–

x1x2 ` y1y2
y1x2 ´ x1y2
x0x2 ` y0y2
x0y2 ´ y0x2
x0x1 ` y0y1
y0x1 ´ x0y1

x20 ` y20 ´ x21 ´ y21

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

since one can easily check that, for every pα, βq P S1,

W px0, y0, x1, y1, x2, y2q “ W pαx0 ´ βy0, βx0 ` αy0, αx1 ´ βy1, βx1 ` αy1, αx2 ´ βy2, βx2 ` αy2q.

For UR “ W pS5q Ă R7, UR is an embedding of P2 into R7 and defining equations for UR can be
obtained via elimination

@

W px0, y0, x1, y1, x2, y2q ´ u, x20 ` y20 ` x21 ` y21 ` x22 ` y22 ´ 1
D

X Rrus “ Rru1, . . . , u7s (7)

yielding a defining set of 20 cubic polynomials in Rrus. In particular, the vanishing of these 20
cubics yields an irreducible variety U Ă C7 of dimension 4 and degree 6 such that UR “ U X R7.
Moreover, P2

R corresponds with y0 “ y1 “ y2 “ 0 which, via the map W , embeds as the two-
dimensional subset UR X VRpu2, u4, u6q “ UR X VRpu22 ` u24 ` u26q Ă R7.

Now, to embed Cpfq into R7, one simply determines polynomials fR and fI from f such that

fpx0 ` iy0, x1 ` iy1, x2 ` iy2q “ fRpx0, y0, x1, y1, x2, y2q ` ifIpx0, y0, x1, y1, x2, y2q. (8)
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The vanishing of f on P2 corresponds with the vanishing of fR and fI on px0, y0, x1, y1, x2, y2q P S5
which W then embeds in R7 as a surface in UR. That is, defining equations for Cpfq embedded
into R7, which by abuse of notation will also be called Cpfq, is obtained from (7) via

B

W px0, y0, x1, y1, x2, y2q ´ u, x20 ` y20 ` x21 ` y21 ` x22 ` y22 ´ 1,
fRpx0, y0, x1, y1, x2, y2q, fIpx0, y0, x1, y1, x2, y2q

F

X Rrus “ Rru1, . . . , u7s. (9)

In particular, by assumption on f , Cpfq Ă R7 is a smooth surface. The curve CRpfq, by abuse
of notation, will be viewed as the curve embedded into R7 defined by Cpfq X VRpu2, u4, u6q “

Cpfq X VRpu22 ` u24 ` u26q. This immediately yields an approach for computing the dividing type.

Theorem 4.1 Suppose that f P Rrx0, x1, x2s such that Cpfq P P2 is smooth. Let fR and fI
be as in (8) and f1, . . . , fℓ P Rrus be a generating set of polynomials obtained from (9). Thus,
F “ tf1, . . . , fℓu defines a surface VCpF q, where VRpF q, which corresponds with the embedding
of Cpfq in R7, is a smooth subset of VCpF q. Moreover, the dividing type of CpfqzCRpfq is equivalent
to the dividing type of VRpF qzVRpF, u22 ` u24 ` u26q Ă R7. In particular, for random c P R7 and

rpuq “
u22 ` u24 ` u26

p1 ` pu1 ´ c1q2 ` ¨ ¨ ¨ ` pu7 ´ c7q2q2
, (10)

Algorithm 1 using F and r correctly computes the number of connected components of CpfqzCRpfq

with probability one, which is either 1 and f is non-dividing, or 2 and f is dividing.

Proof. Since Cpfq Ă P2 is a Riemann surface, VRpF q Ă R7 is a smooth subset of VCpF q since VRpF q

is the embedding of Cpfq into R7. Moreover, in R7, P2
R is obtained by the simultaneous vanishing

of u2, u4, and u6 so that CRpfq in R7 corresponds with

VRpF q X VRpu2, u4, u6q “ VRpF, u22 ` u24 ` u26q.

Therefore, CpfqzCRpfq embeds into R7 as VRpF qzVRpF, u22 ` u24 ` u26q. The last statement using
Algorithm 1 follows from [5, Thms. 3.4 & 4.4]. l

Example 4.2 As an illustration, consider fpx0, x1, x2q “ x0x2 ´ x21. Since f has degree 2 and
CRpfq has the maximum number of connected components, namely 1`

`

2´1
2

˘

“ 1, f is known to be
dividing [8]. The following verifies this using Theorem 4.1. From f , one computes

fRpx0, y0, x1, y1, x2, y2q “ x0x2 ´x21 ´ y0y2 ` y21 and fIpx0, y0, x1, y1, x2, y2q “ x0y2 `x2y0 ´2x1y1.

Using (9), one obtains that Cpfq Ă R7 is a surface of degree 8 defined by the following 11 quadratics:

f1 “ 2u1u6 ´ 2u5u6 ´ u4u7, f2 “ 3u4u5 ` 3u3u6 ` u2u7 ´ u6u7 ` u6,
f3 “ 3u3u5 ´ 3u4u6 ´ u1u7 ` u5u7 ´ u5, f4 “ 2u2u5 ´ 2u5u6 ´ u4u7,
f5 “ u1u5 ´ u25 ´ u2u6 ` u26 ` u3u7, f6 “ u23 ` u24 ´ u25 ´ 2u2u6 ` u26 ` u3u7,
f7 “ 3u2u3 ` 3u1u4 ´ 2u2u7 ´ u6u7 ` u6, f8 “ 3u1u3 ´ 3u2u4 ` 2u1u7 ` u5u7 ´ u5,
f9 “ 2u22 ´ 3u25 ` 2u2u6 ´ u26 ´ u27 ` u3 ` u7, f10 “ 2u1u2 ` 4u5u6 ` u4u7 ` u4,

f11 “ 2u21 ` u25 ` 2u2u6 ´ 5u26 ´ 2u3u7 ´ u27 ´ u3 ` u7.

For simplicity of presentation, we took c “ p´1, 1{5,´3{4, 1{3, 2{3,´3{2,´4{3q and applied Algo-
rithm 1 to F “ tf1, . . . , f11u and r as in (10). This produced 4 routing points, three of index 0 and
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Figure 7: Visualization of Cpfq in Example 4.2 projected onto pu1, u2, u3q P R3 with the plane
corresponding to u2 “ 0 dividing the surface into two connected components. The 3 routing points
of index 0 are blue while the routing point of index 1 is green.

one of index 1, which decomposes into two connected components with each having Euler character-
istic 1. In fact, one connected component corresponds with a single routing point of index 0 while
the other corresponds to the remaining routing points: two of index 0 and one of index 1. Figure 7
illustrates the projection of Cpfq onto pu1, u2, u3q P R3 where the plane corresponding to u2 “ 0
cuts the surface into two connected components where the index 0 routing points are shown in blue
and the index 1 is in green. In particular, this shows that CpfqzCRpfq consists of two connected
components verifying that f is dividing.

Two challenges with using Theorem 4.1 are computing the generating set for the elimination
ideal in (9) and then computing routing points for this typically overdetermined system. Another
approach is use the original system with one modification as follows. Upon fixing the routing
function r as in (10), there are finitely-many routing points that we need to compute. As mentioned
above, the fibers of W are circles. Hence, for a general linear form Lpx0, y0, x1, y1, x2, y2q, i.e., a
homogeneous linear polynomial, L vanishes at exactly two points in each fiber over the finitely-many
routing points. Letting

rnpuq “ u22 ` u24 ` u26 and rdpuq “ 1 ` pu1 ´ c1q2 ` ¨ ¨ ¨ ` pu7 ´ c7q2,

we have rpuq “ rnpuq{rdpuq2. For simplicity of presentation, let x “ px0, y0, x1, y1, x2, y2q and

Gpu, xq “

»

—

—

—

—

–

W pxq ´ u
Spxq

fRpxq

fIpxq

Lpxq

fi

ffi

ffi

ffi

ffi

fl

. (11)

Then, the corresponding critical point system associated with rpuq on Gpu, xq “ 0 is the following
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system on pu, x, α, λq P C7 ˆ C6 ˆ C2 ˆ P11 constructed using (homogenized) Lagrange multipliers:

Gpu, x, α, λq “

»

—

—

—

—

–

Gpu, xq

1 ´ α1rnpuq

1 ´ α2rdpuq

λ

„

∇prnqα1 ´ 2∇prdqα2

JGpu, xq

ȷ

fi

ffi

ffi

ffi

ffi

fl

(12)

where the gradient vector and Jacobian matrix are taken with respect to pu, xq. In particular, G is
a well-constrained system with 26 “ 7 ` 6 ` 2 ` 11 polynomials.

Corollary 4.3 With the setup from Theorem 4.1 and randomly selected linear form L, for every
routing point u˚ P R7, there exists px˚, α˚, λ˚

`, λ
˚
´q P C6 ˆC2 ˆP11 ˆP11 such that pu˚,˘x˚, α˚, λ˚

˘q

are two distinct nonsingular solutions of G “ 0 as in (12) with probability one.

Proof. With probability one, L transversely intersects the fibers of the finitely-many routing
points in two distinct points. These points are nonzero since Spxq “ 0 implies x ‰ 0. Moreover,
from (11), Gpu, xq “ 0 if and only if Gpu,´xq “ 0. For each routing point u˚ P R7, there must
exist x˚ P C6zt0u such that x˚ and ´x˚ are the two distinct solutions of Gpu˚, xq “ 0. Since
u˚ P R7, rdpu˚q ‰ 0 with α˚

2 “ rdpu˚q´1. Similarly, since u˚ is a routing point, rpu˚q ‰ 0 yielding
rnpu˚q ‰ 0 with α˚

1 “ rnpu˚q´1. Hence, α˚ “ pα˚
1 , α

˚
2q “ prnpu˚q´1, rdpu˚q´1q. Finally, since the

system G is constructed to compute the critical points of rpuq on Gpu, xq “ 0, there exists Lagrange
multipliers λ˚

` P P11 and λ˚
´ P P11 associated with pu˚, x˚, α˚q and pu˚,´x˚, α˚q, respectively.

Finally, transversality of L and nondegeneracy of routing points ensures that each pu˚,˘x˚, α˚, λ˚
˘q

is a nonsingular solution of G “ 0. l

From W pxq ´ u, one can trivially eliminate u and pλ1, . . . , λ7q to reduce to a well-constrained
system with 26 ´ 14 “ 12 polynomials on C6 ˆ C2 ˆ P4. Additionally, one could intrinsically solve
on Lpxq “ 0 to remove another equation and variable, and also dehomogenize λ via λ0 “ 1 due to
the smoothness assumption.

Remark 4.4 Satisfying G “ 0 is a necessary condition for critical points of r on Cpfq. However,
there can be additional solutions which are not critical points. The number of such additional
solutions is independent of the generic choice of L, but the actual solutions themselves are dependent
on L. Such additional solutions can be easily discarded since the last coordinate of the corresponding
Lagrange multipliers will be nonzero. Of course, one way to avoid these additional solutions would
be to add the condition λ11 “ 0 into G, but this would yield an overdetermined system while G is
already well-constrained and routing points already correspond with nonsingular isolated solutions.

Example 4.5 For a general homogeneous polynomial f of degree d, Table 1 considers solving G “ 0
for 1 ď d ď 6 using Bertini [2]. In particular, for 1 ď d ď 6, the number of extraneous solution
pairs as in Remark 4.4 is d2 while the number of critical points is much larger. Hence, if one
solves G “ 0 directly, this data suggests that the amount of extra computation associated with the
extraneous solutions is small compared with the computation associated with the critical points.
Moreover, one can compute the critical points associated with a given polynomial of degree d using
a parameter homotopy [10] that deforms from a general f to the given polynomial. With such a
parameter homotopy, one does not need to consider the extraneous solutions and only needs to track
one path associated with each critical pair.
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d #VCpGq # critical pairs # extraneous pairs

1 22 10 1

2 152 72 4

3 522 252 9

4 1288 628 16

5 2670 1310 25

6 4932 2430 36

Table 1: Summary of solutions of G “ 0 for a general polynomial f of degree d

To illustrate, consider the setup from Example 4.2. From Table 1, one needs to track 72 paths
using a parameter homotopy and then sort through the set of endpoints to determine the routing
points. In particular, for these 72 paths, 50 converged with four corresponding to routing points. Of
course, these are the same four routing points obtained in Example 4.2 and illustrated in Figure 7.

After computing the routing points using G as in (12), one can also determine the connected
components as in Algorithm 1 as follows. Although the choice of linear form L in G in (11)
was chosen randomly in Corollary 4.3 to ensure transversality associated with every routing point
simultaneously, one can perform the gradient ascent (since r in (10) is always positive) using a
localized version of L that is updated along the trajectory, i.e., L can be chosen to be real and
transverse on a local part of the trajectory. For example, a linear form L that will work locally
near x˚ is Lpxq “ v˚ ¨ x where v˚ is a unit vector perpendicular to x˚. In order to determine
the correct number of components, one simply considers only the coordinates u, i.e., identifies
pu˚, x˚, α˚, λ˚

`q and pu˚,´x˚, α˚, λ˚
´q.

5 Examples

The following considers some additional examples to demonstrate the new methods. All computa-
tions of routing points were performed using Bertini [2] and trajectories computed using Matlab.

5.1 Two tori in space

As highlighted in Remark 3.7, connectivity graphs can be computed for hypersurfaces in higher
dimensions with the following considering two surfaces in P3

R which are both homeomorphic to the
torus as described in [11, § 4.1]. In particular, consider

f1pxq “ px21 ` x22 ` x23 ` 3x20q2 ´ 16x20px21 ` x22q,
f2pxq “ 10px21 ` x22 ´ x23 ´ 1qpx21 ` x22 ` x23 ` 1q ` x43.

The first is directly from [11, § 4.1] while the second is constructed as described in [11, § 4.1] as a
perturbation of the union of a one-sheeted hyperboloid and an imaginary quadric.

For illustration purposes, with c “ p1{2,´1{3,´1{5, 1{7q, VRpf1, Sq has 8 routing points with
two connected components that are identified under the antipodal action each with 4 routing points:
one of index 0, two of index 1, and one of index 2. Thus, each connected component of VRpf1, Sq

has Euler characteristic 0 and the same holds for the corresponding component in P3.
Using the same c, VRpSqzVRpf1, Sq yields 12 routing points and three connected components,

two of which are identified under the antipodal action and the other is invariant. All have Euler
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S1χ “ 0

VRpSqzVRpf1, Sq

S2χ “ 0

S3χ “ 0

C1 χ “ 0

VRpf1, Sq

C2 χ “ 0
S1χ “ 0

VRpSqzVRpf2, Sq

S2χ “ 0

C1 χ “ 0

VRpf2q

ó ó

S1χ “ 0

P3
RzVRpf1q

S2χ “ 0

C1 χ “ 0

VRpf1q

S1χ “ 0

P3
RzVRpf2q

S2χ “ 0

C1 χ “ 0

VRpf2q

(a) (b)

Figure 8: Connectivity graph for two tori in P3
R.

characteristic 0. In fact, the invariant one corresponds with a set of 8 routing points: three
of index 0, four of index 1, and one of index 2. Each of the other two connected components
in S3 correspond with a set of 2 routing points having index 0 and index 1. Figure 8(a) shows
the corresponding connectivity graphs in S3 and P3

R. As expected, this verifies that the Euler
characteristic of both S3 and P3

R are 0.
Similarly, for VRpf2, Sq, there are 4 routing points with a single connected component that is

invariant under the antipodal action. The indices of the routing points are as follows: one of index 0,
two of index 1, and one of index 2. For VRpSqzVRpf2, Sq, there are also 4 routing points and two
connected components that are invariant under the antipodal action. Each connected component
has two routing points having index 0 and index 1. As above, each connected component has Euler
characteristic 0. Figure 8(b) shows the corresponding connectivity graphs in S3 and P3

R.

5.2 Hyperbolic sextic

Consider the hyperbolic sextic

fpxq “ 6px21 ` x22 ´ x20qpx21 ` x22 ´ 2x20qpx21 ` x22 ´ 3x20q ` x31x
3
2
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S1χ “ 1

P2
RzCRpfq

S2χ “ 0

S3χ “ 0

S4χ “ 0

C1 χ “ 0

CRpfq

C2 χ “ 0

C3 χ “ 0

Figure 9: Bipartite connectivity graph arising in P2
R for hyperbolic sextic.

from [7] which is dividing with three nested ovals. As observed in [7, Fig. 1], this is the maximal
nesting for sextics. The following verifies the nesting structure and dividing type.

Using Algorithm 3, the connectivity graph is shown in Figure 9. In particular, CRpfq has three
ovals C1, C2, and C3 with

IpC1q “ S1 Ă IpC2q “ IpC1q Y C1 Y S2 Ă IpC3q “ IpC2q Y C2 Y S3.

Hence, C1 is nested in C2 which is nested in C3.
From Theorem 4.1 and Corollary 4.3, for a fixed but randomly selected c P R7, there were 36

routing points on CpfqzCRpfq: 9 with index 0 and 27 with index 1. A visualization from applying
Algorithm 1 to determine the connected components is provided in Figure 10. In particular,
there are two connected components: one corresponds with 5 routing points of index 0 and 14
routing points of index 1, while the other corresponds with 4 routing points of index 0 and 13
routing points of index 1. Hence, both connected components in R7 have Euler characteristic ´9.
Since CpfqzCRpfq has two connected components, f is dividing.

6 Conclusion

By using routing functions on real algebraic varieties in real affine space following [5], several
algorithms were proposed for performing computations on real projective hypersurfaces. For hy-
persurfaces in Pn

R, an algorithm was described for computing the connectivity graph, which is a
bipartite graph that describes the relationship between connected components of the hypersurface
and connected components of its complement. Such a graph naturally determines the one-sided
and two-sided components of the hypersuface. Moreover, for the curve case, this graph completely
describes the nesting structure of the two-sided components, called ovals, and thus the topological
type of the curve. These computations were performed via the double cover provided by Sn in
which one needs to identify antipodal points. Routing functions naturally provide a membership
test which is used to determine which components in Sn are identified under the antipodal map.
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Figure 10: Visualization of the 36 routing points and gradient ascent paths on CpfqzCRpfq in terms
of the pu2, u4, u6q coordinates. The 9 routing points of index 0 are blue while the 27 routing points
of index 1 are green. The gradient ascent paths are colored red and cyan to distinguish between
the two connected components of CpfqzCRpfq.

A problem stated in [7] is to develop a computational approach for determining the dividing type
of a smooth curve C in P2. The approach presented in Theorem 4.1 and Corollary 4.3 uses Whitney’s
embedding [13] of P2 into R7 and then a routing function [5] to determine the dividing type.

Several examples were used to demonstrate the numerical approaches for performing these
aforementioned computations associated with real projective hypersurfaces.
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