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Abstract

In this paper, we study parametric semidefinite programs (SDPs) where the solution space
of both the primal and dual problems change simultaneously. Given a bounded set, we
aim to find the a priori unknown maximal permissible perturbation set within it where
the semidefinite program problem has a unique optimum and is analytic with respect to
the parameters. Our approach reformulates the parametric SDP as a system of partial
differential equations (PDEs) where this maximal analytical permissible set (MAPS) is
the set on which the system of PDEs is well-posed. A sweeping Euler scheme is developed
to approximate this a priori unknown perturbation set. We prove local and global error
bounds for this second-order sweeping Euler scheme and demonstrate the method in
comparison to existing SDP solvers and its performance on several two-parameter and
three-parameter SDPs for which the MAPS can be visualized.
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1. Introduction

The focus of this paper is on parametric semidefinite programming problems (SDPs)
where all coefficients of the SDPs depend linearly on multiple parameters. Such param-
eters are introduced into the SDPs to account for uncertainty about the future, model
uncertainty, data errors, and implementation errors as described in Ben-Tal et al. (1998).

Even though parametric linear programming and its sensitivity are extensively stud-
ied, there has been much less work on parametric SDPs due its complexity. Most of the
work on parametric SDPs focuses on problems with a single parameter that often appears
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only in the coefficients of the objective function or possibly on the the right-hand side
of the constrains of the dual problem. The notion of optimal partition from linear pro-
gram was extended to a single parameter SDP in Goldfarb and Scheinberg (1999). They
showed that the set on which the optimal solution is constant under nondegeneracy can
be found by another SDP and this set is either a singleton or an open interval. However,
these results do not naturally extend to problem with multiple parameters. The optimal
set trajectory of time-varying SDPs under the Slater condition (i.e., either the primal or
dual is strictly feasible) was classified in Bellon et al. (2021). They showed the optimal
solution path has either jump type discontinuity or is piecewise differentiable when there
is a nonsingular point on the interval under consideration. These works usually require
the problem to be nondegenerate and satisfy the strict complementary condition on the
entire parameter set.

Sensitivity analysis of parametric SDPs can be approached with the Jacobian ma-
trix of the corresponding Karush-Kuhn-Tucker (KKT) conditions. There are also some
studies investigating the sensitivity analysis of parametric SDPs when this Jacobian is
singular. In Sekiguchi and Waki (2021), they examined the sensitivity of a particular
parametric SDP which is singular on a given interval. They provided conditions for op-
timal solution continuity when nondegeneracy fails. It was shown in Miller (1997) that,
under certain conditions, the Jacobian matrix can be used to compute the sensitivity
of singular parameter SDPs even when primal nondegeneracy fails. Recently, Hauen-
stein et al. (2022) studied the nonlinearity interval in parametric SDPs and developed
a numerical algorithm to compute the nonlinearity interval and transition points on the
set where the SDP is feasible. However, all of the studies listed above only consider
SDPs with a single perturbation variable except Miller (1997) which only focused on
the computation of the sensitivity of optimal solutions at specific values. In this work,
we extend the algorithm in Hauenstein et al. (2022) to allow multiple parameters with
both perturbations in the objective function as well as on the left and right hand side
of the equality constraints simultaneously. We utilize the sensitivity matrix method and
partial differential equations (PDEs) constructed by the Davidenko differential equation
arising from the primal-dual problem to track the solution of the parametric SDP and
approximate the maximal set on which the optimal solution is analytic.

The reminder of this paper is organized as follows. Section 2 formulates the problem
using SDPs with Section 3 providing a reformulation using algebraic geometry. This refor-
mulation gives rise to a system of quasilinear PDEs whose well-posedness is investigated
in Section 4 and solved using a sweeping Euler scheme in Section 5. Some examples are
considered in Section 6. Finally, we summarize our results and discuss the advantages,
disadvantages, and future directions to improve the sweeping Euler scheme in Section 7.

2. Problem formulation

The following formulates the parametric semidefinite program under consideration. Up-
percase letters are used to represent a matrix or a set. In particular, the identity matrix
of size n is represented by In or just I if the context is clear. Bold lower cases letters
are used represent column vectors, lower case letters (possibly with subscripts) represents
scalars, and 0 represents the zero element of the appropriate size in context. In addition,
for a matrix M ∈ Rp×q, we use its lowercase with index mij to denote the (i, j) entry
of M , M·j to denote the jth column of M , and Mi· to denote the ith row of M .

Let B be a compact subset of R`. We consider the following primal SDP with affine
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perturbation parameter δ ∈ B:

minimize

(
C +

∑̀
j=1

δjDj

)
•X

s.t.

(
Ai +

∑̀
j=1

δjEji

)
•X = bi +

∑`
j=1 δjgij, for i = 1, . . . , k

X � 0.

(1)

The dual SDP can be written as follows:

maximize (b+
∑`

j=1 δjgij)
Ty

s.t. S = C −
k∑
i=1

yiAi +
∑̀
j=1

δj

(
Dj −

k∑
i=1

yiEji

)
,

S � 0.

(2)

Let Sn denote the set of real symmetric n× n matrices. We assume C,Dj, Ai, Eij ∈ Sn,
G ∈ Rk×`, and b,y ∈ Rk. For two symmetric matrices M,N ∈ Sn, the operator • is
defined via

M •N = trace(MN)

and M � 0 denotes that M is a positive semidefinite matrix, i.e., all eigenvalues of M
are nonnegative.

The following defines strict complementarity and nondegeneracy of the optimal solu-
tion based on Alizadeh et al. (1998).

Definition 1. Suppose (X, y, S) solves problems (1) and (2). Complementary slack-
ness holds when XS = 0. If rankS + rankX = n, then strict complementarity holds.
Suppose further that rankX = r and rankS = n− r. Let {wi}n1 be the set of eigenvalues
of S and λ1, . . . , λr be the positive eigenvalues of X. Thus, there is an orthogonal matrix
Q such that

X = QDiag(λ1, . . . , λr, 0, . . . , 0)QT , S = QDiag(w1, . . . , wn)QT .

Let Q be partitioned as [Q1, Q2] where the columns of Q1 are eigenvectors corresponding
to λ1, . . . , λr. If (

QT
1AiQ1 QT

1AiQ2

QT
2AiQ1 0

)
for i = 1, . . . , k

are linearly independent in Sn, then (X, y, S) is primal nondegenerate. Similarly,
if QT

1AiQ1 for i = 1, . . . , k span Sr, then (X, y, S) is dual nondegenerate. Finally,
nondegeneracy means that (X, y, S) is both primal nondegenerate and dual nondegerate.

The following are assumed to hold throughout the paper.

Assumption 1. The compact set B ⊂ R` is a semialgebraic set such that 0 is in the
interior of B.

Assumption 2. The matrices Ai for i = 1, . . . , k are linearly independent.

Assumption 3. At δ = 0, Slater condition, complementary slackness, strict comple-
mentarity, and nondegeneracy all hold.
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From Miller (1997), Assumption 2 guarantees the boundedness of the optimal value
and Assumption 3 ensures that there is a unique optimal solution without perturbation,
i.e., at δ = 0. Let X̂(δ), ŷ(δ), and Ŝ(δ) denote the optimal solution of the prime and dual
problems when the optimal solution is unique. Hence, Assumption 3 yields that X̂(δ),
ŷ(δ), and Ŝ(δ) are all well-defined and analytic with respect to δ in a neighborhood of 0.

The goal of this paper is to compute the maximal analytic perturbation set (MAPS).

Definition 2. The maximal analytic perturbation set with respect to B is the largest
set U ⊂ B containing 0 in which the following conditions holds for all δ ∈ U :

1. δ is path-connected to 0 in U ,

2. there exists a unique primal-dual solution (X̂(δ), ŷ(δ), Ŝ(δ)) to (1) and (2) which
is analytic (i.e., has a convergent Taylor series expansion) at δ.

The set U is maximal in that if W ⊂ B also satisfies the conditions above, then W ⊂ U .

3. Problem reformulation using algebraic geometry

A common technique in semidefinite programming and polynomial optimization is to link
the solution with algebraic geometry via the KKT conditions, e.g., see Blekherman et al.
(2012). For problem (1) and (2), the first-order KKT conditions are

X,S � 0 (3)

F (X, y, S; δ) =


(Ai +

∑̀
j=1

δjEji) •X − bi −
∑`

j=1 δjgij, for i = 1, . . . , k

C −
k∑
i=1

yiAi +
∑̀
j=1

(
δjDj −

k∑
i=1

yiEji

)
− S

XS

 = 0. (4)

Let U be the corresponding maximal analytic perturbation set. Then, Item 2 of Def. 2
yields that the KKT conditions are both necessary and sufficient conditions for optimality
for δ ∈ U .

As listed in (4), F is overdetermined. The first two lines in F are naturally symmetric.
For the third, namely the complementary slackness condition XS = 0, there are different
approaches that one can utilize to create a well-constrained polynomial system involving
k + n2 + n polynomials and variables. One approach is to simply take the (n2 + n)/2
equations corresponding to the upper triangular part of XS. Another approach is to take
the upper triangular part of a symmetric version of this equation:

1

2
(SX +XS) = 0.

A review of different primal-dual interior point path-following methods in Alizadeh et al.
(1998) showed that algorithms using the upper triangular part of of this symmetric version
were the most stable in computations. They also proved that the Jacobian matrix of the
corresponding well-constrained KKT equality conditions being full rank was equivalent to
complementary slackness and nondegeneracy of the optimal solution to the SDP. Thus,
we will follow this approach and their notation to yield a well-constrained polynomial
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system encoding the KKT conditions. For succinctness, let c = k + n + n2 and v(δ) be
the vector of length c corresponding to the variables of F, namely

v(δ) =

 svec(X(δ))
y(δ)

svec(S(δ))

 ,

where the operator svec is defined as

svec(M) = (m11,
√

2m12, . . . ,
√

2m1n,m22, . . . ,
√

2m2n, . . . ,mnn)T .

We collect all solutions to the equality conditions of the KKT system in the set

V(δ) = {v ∈ Cc | F (v; δ) = 0}.

Hence, optimal solutions are those in V(δ) ∩ Rc which satisfy the inequalities in (3).
Moreover, convexity shows that if there are finitely many points in V(δ), only one of
them can be in V(δ) ∩ Rc and satisfy the inequalities in (3), which will be denoted by
v̂(δ). By Assumption 3, v̂(δ) is well-defined in a neighborhood of 0.

Writing A(δ) =
(
svec(A1 +

∑`
j=1 δjEj1), . . . , svec(Ak +

∑`
j=1 δjEjk)

)T
, the equality

conditions (4) can be reformulated as

F (v; δ) =

 A(δ)svec(X)− (b+Gδ)

svec(C +
∑`

j=1 δjDj)−A(δ)Ty − svec(S)

svec(SX +XS)/2

 = 0 (5)

and its Jacobian matrix with respect to the variables v is

JvF (v; δ) =

 A(δ) 0 0
0 A(δ)T In+n2

2

S ⊗s In 0 X ⊗s In

 . (6)

For any two square matrices K1 and K2 and a symmetric matrix J , the symmetric
Kronecker product, denoted by ⊗s, can be defined as a mapping on a vector svec(J):

(K1 ⊗s K2)svec(J) :=
1

2
svec

(
K2JK

T
1 +K1JK

T
2

)
,

see de Klerk (2006); Todd et al. (1998) for more details. Let

D = (svec(D1), . . . , svec(D`)),

E = (svec(E11), . . . , svec(E1k), svec(E21), . . . , svec(E2k), . . . , svec(E`k)),

and Ē be the k×` matrix whose (i, j)th entry is svec(Eji)
T svec(X). The partial derivative

of F with respect to δ is

∂F

∂δ
=

 Ē −G
D − E(I` ⊗ y)

0

 . (7)

By Assumption 3 and the implicit function theorem, JvF (v̂(0); 0) is nonsingular so that
JvF (v̂(δ); δ) is nonsingular for δ in a neighborhood of 0. In particular, by (Haeberly,
1998, Theorem 3.1), one can replace the analytic condition in Def. 2 with JvF (v̂(δ); δ)
being nonsingular so that the implicit function theorem provides the analyticity of v̂(δ).
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Figure 1: The x11 entry of the two solution paths of F = 0.

Example 3.1. For the compact set B = [−2, 1] ⊂ R, we aim to find the MAPS of B
containing the origin for the following:

C = I2, D1 = 0, A1 =

(
0 1
1 0

)
, E11 =

(
0 1
1 0

)
, G = 0, and b1 = 2

so that (1) and (2) yield

minimize x11 + x22 maximize 2(1 + δ)y
s.t. 2(1 + δ)x12 = 2 s.t.

X =

[
x11 x12

x12 x22

]
� 0 S =

[
1 y

−(1 + δ)y 1

]
� 0.

(8)

The corresponding KKT equality conditions are:

F =



√
2(1 + δ)x12 −

√
2

s11 − 1√
2s12 +

√
2(1 + δ)y

s11x11 + s12x12
1√
2
(s11x12 + s12x22 + x11s12 + x12s22)

s12x12 + s22x22

 = 0. (9)

There are two sets of parameterized solutions, namely

vi(δ) = (xi11(δ), xi12(δ), xi22(δ), yi(δ), si11(δ), si12(δ), si22(δ))

for i = 1, 2 with

v1(δ) =
(

1
1+δ

, 1
1+δ

, 1
1+δ

, 1
1+δ

, 1,−1, 1
)

and v2(δ) =
(
− 1

1+δ
, 1

1+δ
,− 1

1+δ
,− 1

1+δ
, 1, 1, 1

)
.

Figure 3.1 plots the x11 entry with respect to δ for the two solutions of F = 0. Since
x11 ≥ 0 is a necessary condition for X � 0, it is easy to verify that

v̂(δ) =

{
v1(δ) if δ > −1,
v2(δ) if δ < −1.

In particular, Figure 3.1 clearly shows that the optimal solution path v̂(δ) is not analytic
at δ = −1. Relating to the invertibility of the Jacobian, this also matches since

det JvF (v1(δ); δ) = 4(1 + δ) = − det JvF (v2(δ); δ)

vanishes at δ = −1. Thus, the MAPS with respect to B = [−2, 1] is U = (−1, 1] which is
open relative to B with boundary ∂U = {−1, 1}.
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We first establish an important result regarding limiting behavior of nonsingularity
of the Jacobian matrix and feasibility. It is well known that the limiting point of feasible
points need not be feasible. However, with the extra condition of the nonsingularity of
the Jacobian matrix at these feasible points, the limiting point must be feasible.

Lemma 1. Let δ : [0, 1]→ U be a semialgebraic path with v(δ(t)) = v̂(δ(t)) for t ∈ [0, 1).
If JvF (v̂(δ(t)); δ(t)) is nonsingular for t ∈ [0, 1], then limt→1− v(δ(t)) = v̂(δ(1)).

Proof. Let X(δ(t)) and S(δ(t)) be the corresponding matrices described by v(δ(t)).
Note that the nondegeneracy and complimentary slackness of the optimal solution are
equivalent to the Jacobian matrix (6) being full rank. Along with lower semicontinuity
of matrix ranks, this shows that, for t ∈ [0, 1),

rankX(δ(t)) + rankS(δ(t)) = n

and thus both rankX(δ(t)) and rankS(δ(t)) are constant on t ∈ [0, 1). Since all of the
nonzero eigenvalues of X(δ(t)) and S(δ(t)) are positive at t = 0, they must remain posi-
tive for all t ∈ [0, 1) showing that (3) holds for t ∈ [0, 1). Thus, the inequalities must hold
in the limit as t approaches 1. Hence, v(δ(1)) is also feasible and since JvF (v̂(δ(t)); δ(t))
is nonsingular, v(δ(1)) = v̂(δ(1)) is the unique optimal solution.

The following describes the boundary ∂U of the maximal analytic perturbation set U .

Proposition 1. If δ∗ ∈ ∂U , then one of the following must hold:

(a) δ∗ ∈ ∂B,

(b) lim
δ∈U→δ∗

v̂(δ) diverges, or

(c) lim
δ∈U→δ∗

v̂(δ) exists, say v̂(δ∗), such that JvF (v̂(δ∗); δ∗) is singular.

Proof. If δ∗ 6∈ ∂B and v̂(δ∗) exists, then it immediately follows from the implicit
function theorem that JvF (v̂(δ∗); δ∗) must be singular.

In particular, these conditions yield that the boundary is semialgebraic.

Corollary 1. The boundary of U is a semialgebraic set.

Proof. Since the boundary of B is a semialgebraic set by Assumption 1, the three items
in Proposition 1 describing ∂U are clearly semialgebraic conditions.

The following shows that MAPS are open relative to the compact bounding set B.

Theorem 2. The maximal analytic perturbation set U ⊂ B is open relative to B.

Proof. Fix δ∗ ∈ U . Since U is a connected set containing 0 in the interior and the
boundary of U is a semialgebraic set, we know that the interior of U is path connected.
Hence, let δ : [0, 1] 7→ U be a smooth path such that δ(0) = 0, δ(1) = δ∗, and δ(t)
is in the interior of U for t ∈ [0, 1). Since JvF (v̂(δ(0)); δ(0)) is invertible, the implicit
function theorem yields that there exists a function v(δ(t)) which is analytic for t ∈ [0, ε)
for some ε > 0 such that v(δ(0)) = v̂(δ(0)), i.e., the optimal solution at 0, such that
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F (v(δ(t)); δ(t)) = 0 and JvF (v(δ(t)); δ(t)) is full rank for all t ∈ [0, ε). Since δ(t) lies
in the interior of U for t ∈ [0, 1), one immediately has ε ≥ 1 so that by Lemma 1,
v(δ(1)) = limt→1− v(δ(t)) is well-defined.

Hence, repeating a similar argument as above, the implicit function theorem shows
that there is an open neighborhood of δ∗, say Uδ∗ , such that δ∗ ∈ Uδ∗ ∩ B ⊂ U ∩ B.
Therefore, U is open in B.

Remark 1. The MAPS U differs from the maximum set where a robust solution exists,
e.g., see Ben-Tal et al. (1998); EL Ghaoui et al. (1998), as this does not consider the feasi-
bility of v̂(0) for perturbations δ ∈ U . Rather, the MAPS exams when there is no longer
any feasible solutions connecting smoothly. Moreover, Hauenstein et al. (2022) explores
the nonlinearity interval studied which is the MAPS restricted to a single parameter.

With these characterizations of U and ∂U , the aim is to simultaneously compute v̂(δ)
on U and identify the boundary ∂U . Our approach for this computation is to utilize
derivative information of the solution and recover the solution along different pertur-
bation directions. In particular, the following uses the Davidenko differential equation
to convert the problem of solving a system of polynomials with changing coefficients to
solve a system of first-order quasilinear partial differential equations (PDEs) with the
perturbation parameters as variables.

The Davidenko equation from Kalaba et al. (1977) together with the implicit function
theorem provides that the total derivative of the ith equation in (5) with respect to δj is

dδjFi =
∂Fi
∂v

dv

dδj
+
∂Fi
∂δj

= 0.

This equation governs how the solution of (5) travels along any scalar perturbation vari-
able. Assembling all these differential equations with index (i, j) yields the system

DF = JvF
∂v

∂δ
+
∂F

∂δ
= 0 (10)

Since JvF is invertible in U , multiplying by (JvF )−1 on the left yields

∂v

∂δ
= −(JvF )−1∂F

∂δ
. (11)

Since the highest order derivatives, namely ∂v
∂δ

, appear linearly while v(δ) appears nonlin-
early on the right-hand side, namely −(JvF )−1 ∂F

∂δ
, (11) is a system of quasilinear PDEs.

Although not linear, quasilinearity still provides a wealth of results, e.g., see Evans (2010).
In particular, the solving scheme described in Section 5 considers solving along directions
α emanating from the origin. Thus, one can multiply both sides of (11) by α to yield

∂v

∂δ
α = −(JvF )−1∂F

∂δ
α. (12)

To properly define the domain and boundary for this PDE system, let U = U \∂U be
the maximum proper open subset of U . Then, by (Moerdijk and Reyes, 1991, Lemma 1.4),
there exists a smooth characteristic function K whose support is U . Since K does not
vanish on U , K has the same sign at all points of U . By replacing K by −K if necessary,
we can assume without loss of generality that K > 0 on U . With this, we can define a
family of subsets {Wε}ε>0 contained in U as follows:

Wε = {δ ∈ U | K(δ) > ε}.
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Lemma 3. There exists η > 0 such that, for all ε ∈ (0, η), the boundary, ∂Wε, of Wε is
smooth and Wε → U as ε→ 0+ in Hausdorff distance.

Proof. By Sard’s theorem, e.g., see Sard (1942), there exists η > 0 such that, for
all ε ∈ (0, η), K(δ) = ε defines a smooth curve. By definition of K, the closure of Wε,
namely W̄ε, is a proper closed subset of U with smooth boundary. The Hausdorff distance
between the set Wε and U is defined as

dK(U,Wε) = max

{
sup
δ∈U

d(δ,Wε), sup
δ′∈Wε

d(δ′, U)

}
,

where the distance between a point x and a set Y is defined as

d(x, Y ) = inf
y∈Y

d(x, y)

with d(x, y) = ||x−y|| being the Euclidean distance. Since U = ∪α>0K
−1(α)∩U and, for

ε > 0, Wε ⊂ U with Wε = ∪α>εK−1(ε) ∩ U , one clearly has lim
ε→0+

dK(U,Wε) = 0 since K

is a C∞ function.

It immediate follows from Lemma 3 and Theorem 2 that the function Gε = v̂|∂Wε

obtained by restricting v̂(δ) to ∂Wε is analytic as summarized in the following.

Corollary 2. There exists η > 0 such that for all ε ∈ (0, η), Gε is analytic on ∂Wε.

4. Well-posedness of the governing PDE

With a smooth boundary condition, the following shows that the optimal solution is
the unique solution to the system of quasilinear PDEs. Although Corollary 1 shows
that the boundary is semialgebraic, the current aim is not to directly compute a closed
form description of the boundary. Instead, the current aim here is the well-posedness
of the governing PDEs to provide theoretical support for numerically approximating the
maximum analytic perturbation set in Section 5, which presents a numerical algorithm
to solve such a system of PDEs with a priori unknown boundary.

Theorem 4. The following is well-posed and its unique solution is the optimal solution v̂
on W̄ε: 

∂v

∂δ
= −(JvF )−1 ∂F

∂δ
in Wε,

v(0) = v0.
(13)

Proof. First, it is clear from the derivation of system (13) that the optimal solution v̂
is a solution. So, it suffices to prove that it is unique. To that end, assume u also

solves (13). Then, w = v̂−u satisfies
∂w

∂δ
= 0 on Wε and w(0) = 0. Integration and the

initial condition imply w = 0 on W̄ε. Thus, the optimal solution is the unique solution
to the system (13) on W̄ε.

Note that system (13) is not a “typical” PDE system as the initial condition is defined
at a point rather than the boundary of the domain of the governing system. However,
with knowledge of the derivative in all directions at any given point in Wε, methods
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(0,
0)

α1

α2

α3

α4

Figure 2: Illustration of approximating the boundary of Wε along different choices of characteristics.

can be employed to systematically solve this system. One crude approach would be to
establish a mesh on B and solving at each of the mesh points starting at the origin. The
approach in Section 5 is to utilize polar coordinates and sweep through the parameter
space along different choices of characteristics via (12) as illustrated in Figure 2.

In order to make Theorem 4 effective, we need a concrete criteria to determine whether
a point along the characteristic curve is within the set or not. By Assumption 3 and
Theorem 2, we have the following property of the solution to (1) and (2) which will be
used in Section 5.3 to numerically identify the boundary.

Proposition 2. The minimum eigenvalues, λms(δ) and λmx(δ), of matrices S(δ) and
X(δ), respectively, are identically zero in U . In addition, along any direction α, the
derivative of λms(δ) and λmx(δ) along any characteristic curve with respect to its param-
eter is zero in W ε.

Proof. This trivially follows from the complimentary slackness condition XS = 0.

5. Sweeping Euler scheme

Building on the theoretical foundation, the following develops a second-order numeri-
cal scheme, namely a Sweeping Euler Scheme (SES), to solve the parametric SDPs (1)
and (2). This scheme consists of three components: discretization of the parameter space,
local solver, and a boundary threshold criterion.

5.1. Discretization

The first component is to discretize the parameter space. We first reparameterize the
parameter space using spherical coordinates with the following representation:

δ(θ1, θ2, . . . , θ`−1) = sα = s



cos(θ1)
sin(θ1) cos(θ2)
sin(θ1) sin(θ2) cos(θ3)
...
sin(θ1) · · · sin(θ`−2) cos(θ`−1)
sin(θ1) · · · sin(θ`−2) sin(θ`−1)


.
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For θ1, . . . , θ`−2 ∈ [0, π) and θ`−1 ∈ [0, 2π), the direction vector α sweeps the entire
(`− 1)-dimensional unit sphere. Let R be the radius of an sphere centered at the origin
in R` which contains B. Thus, we discretize both in the directions with step size ∆θi and
the length on [0, R] using step size ∆s.

5.2. Local solver

The second component is solving (12) iteratively along each direction selected by the
directional sweeping component. In our computations, we apply Heun’s method to (12)
along the characteristic determined by the direction α starting at the origin. Here, we
abuse the notation of the directional vector α to denote α(k1∆θ1, k2∆θ2, . . . , k`−1∆θ`−1).
Then, the ith mesh point along a given direction α is represented by si = i∆s. Let
δi = siα and suppose that Vi to represent the approximation of v(δ) at δi along α. In
addition, we use Hi(Vj) to represent the approximation of −(JvF )−1 ∂F

∂δ
α at δi and Vj.

The numerical scheme solving (12) starting at 0 is

V0 = v0

Ṽi+1 = Vi + ∆sHi(Vi)

Vi+1 = Vi +
∆s

2

(
Hi(Vi) +Hi+1(Ṽi+1)

)
for i ≥ 0.

(14)

Although this numerical scheme is known to have global order two, e.g., see Ackleh et al.
(2009), to the best of our knowledge, an explicit upper bound on the global error of
this method for a system of ODEs has not been provided. We provide such a bound
in the following with Ei = ‖v(δi) − Vi‖ denoting the global error at s = si while erri
denotes the local error at si. In the following, we let h = ∆s, v(s) = v(δ(s)), and

H(s,v(s)) = −(JvF )−1 ∂F
∂δ
α
∣∣∣(
δ(s),v(δ(s))

)for simplicity.

Theorem 5. For (14), there exist constants M and D, defined in (16) and (20), respec-
tively, which are independent of step size h such that the local error satisfies

erri ≤ Dh3,

and the global error satisfies

Ei ≤
D

M
(eMsi − 1)h2.

Proof. Consider the function Φ : R× Rc × R→ Rc defined by

Φ(s,v(s), h) = H(s,v(s)) +H(s+ h, hH(s,v(s)) + v(s)).

On the MAPS U , H(s,v(s)) is analytic, thus Lipschitz continuous in s and v, so we can
obtain that

‖Φ(s,v1, h)− Φ(s,v2, h)‖ ≤M‖v1 − v2‖, (15)

where

M = max
t∈[0,1]

( ∥∥∥∥∂H∂v (s, tv1 + (1− t)v2)

∥∥∥∥ ,∥∥∥∥∂H∂v (s+ h, tv1 + (1− t)v2)

∥∥∥∥ ). (16)

Next, we consider the function

d(s,v(s), h) = v(s+ h)− v(s)− h

2
Φ(s,v(s), h).
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For j = 1, . . . , c, let vj and Hj denote the jth element in the corresponding vector. By
Taylor expansion,

vj(s+ h) = vj(s) + hdv
j

ds
(s) + h2

2
d2vj

ds2
(s) + h3

3!
d3vj

ds3
(s) + h4

4!
d4vj

ds4
(η1) (17)

and

Hj
(
s+ h,v(s) + hH(s,v(s))

)
= Hj(s,v(s))

+ h∂H
j

∂s
(s,v(s)) + ∂Hj

∂v
(s,v(s))hH(s,v(s))

+ h2

2
∂2Hj

∂s2
(s,v(s)) + 2h

2
∂2Hj

∂s∂v
hH(s,v(s))

+ 1
2

(
hH(s,v(s))

)T ∂2Hj

∂v2
(s,v(s))hH(s,v(s))

+ h3

3!
∂3Hj

∂s3
(η2,v(s)) + 3h

2

3!
∂3Hj

∂s2∂v
(η3, ξ1)hH(s,v(s))

+ 3 h
3!

(
hH(s,v(s))

)T ∂3Hj

∂s∂v2
(η4, ξ2)hH(s,v(s))

+ 1
3!
∂3Hj

∂v3
(s, ξ3)⊗

(
hH(s,v(s))

)
,

(18)
where ηk ∈ [s, s + h] for k = 1, . . . , 4 and ξq for q ∈ 1, 2, 3 is a point on the line segment

connecting v(s) and v(s) +hH(s,v(s)). The matrix ∂2Hj

∂v2
and tensor ∂3Hj

∂v3
are the second

and third derivative of Hj with respect to V , respectively. In particular, if A is a p×p×p
tensor and b ∈ Rp, then

A⊗ b =

p∑
i,j,k

aijkbibjbk

From (12), we have that

dvj

ds
(s) = Hj(s,v(s))

d2vj

ds2
(s) = dHj

ds
(s,v(s)) = ∂Hj

∂s
(s,v(s)) + ∂Hj

∂v
(s,v(s))H(s,v(s))

d3vj

ds3
(s) = ∂2Hj

∂s2
(s,v(s)) + 2∂

2Hj

∂s∂v
(s,v(s))H(s,v(s))

+ ∂Hj

∂v
(s,v(s))∂H

∂v
(s,v(s))H(s,v(s))

+ ∂Hj

∂v
(s,v(s))∂H

∂s
(s,v(s)) +

(
H(s,v(s))

)T ∂2Hj

∂v2
(s,v(s))H(s,v(s)).

(19)

Using (17)-(19), we have

dj(s,v(s), h) = h3

6
∂Hj

∂v
(s,v(s))∂H

∂v
(s,v(s))H(s,v(s)) + h3

6
∂Hj

∂v
(s,v(s))∂H

∂s
(s,v(s))

− h3

12
∂2Hj

∂s2
(s,v(s))− h3

6
∂2Hj

∂s∂v
(s,v(s))H(s,v(s))

− h3

12

(
H(s,v(s))

)T ∂2Hj

∂v2
H(s,v(s)) + h4

4!
d4V
ds4

(s)−R

where R represents the last four terms in (18). Define

L = max
1≤j≤c

max
s∈[0,sα,δ0 ]

|vj(s)|,

L1 = max
1≤i,j≤c

max
s∈[0,sα,δ0 ]

{∣∣∣∂Hi

∂vj
(s,v(s))

∣∣∣ , ∣∣∣∂Hi

∂s
(s,v(s))

∣∣∣} ,
L2 = max

1≤i,j,k≤c
max

s∈[0,sα,δ0 ]

{∣∣∣ ∂2Hi

∂vk∂vj
(s,v(s))

∣∣∣ , ∣∣∣ ∂2Hi

∂s∂vj
(s,v(s))

∣∣∣ , ∣∣∣∂2Hi

∂s
(s,v(s))

∣∣∣} .
Then, for sufficient small h and j = 1, . . . , c, we have

|dj(s,v(s), h)| ≤ h3

6
LL2

1c
2 +

h3

6
L2

1c+
h3

12
L2 +

h3

6
LL2c+

h3

12
L2L2c

2 + h3
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showing that

‖d(s,v(s), h)‖ ≤ Dh3 where D =
1

6
LL2

1c
2+

1

6
L2

1c+
1

12
L2+

1

6
LL2c+

1

12
L2L2c

2+1. (20)

From the numerical scheme (14), we have

Vi+1 = Vi +
h

2
Φ(si, Vi, h). (21)

By definition of d(s,v(s), h), we obtain

V (si+1) = V (si) +
h

2
Φ(si, V (si), h) + d(si, V (si), j). (22)

Subtracting (21) from (22) and applying the triangle inequality yields

Ei+1 ≤ Ei +
h

2
‖Φ(si, Vi, h)− Φ(si, V (si), h)‖+ ‖d(si, V (si), h)‖.

Replacing the last two terms using (15) and (20), we have

Ei+1 ≤ Ei

(
1 +

h

2
M

)
+Dh3. (23)

which implies that

Ei ≤
D

M
(eMsi − 1)h2

yielding the global error bound. The local error bound is immediately obtained by as-
suming there is no error in previous step, i.e., if Ei = 0, then Ei+1 ≤ Dh3.

The upshot of Theorem 5 is that our numerical scheme is convergent and consistent,
e.g., see Causon and Mingham (2010). One can improve the accuracy and convergence
of the local solver by adding an extra correction solving step according to (4) or re-
place Heun’s method with a higher-order Runge–Kutta method. By discretizing over
the angles, one can then assemble the solution inside of Wε obtained from the mesh
points together using bicubic interpolation method (for two-dimensional perturbations)
or nearest-neighbor interpolation (for perturbations in any dimension) to produce numer-
ical solutions to (1) and (2).

5.3. Boundary threshold condition

The third component of the sweeping Euler scheme is to approximate the boundary of
MAPS U by checking whether ∂U lies between the current mesh point and the next mesh
point for each direction. In addition to checking whether the current mesh point is still
within the bounded set B which corresponds to the first criteria in Proposition 1, we
need numerical threshold to check for the other two criteria in Proposition 1. Various
sweeping approaches have been proposed for algebraic curves to determine if one is near
a singular point, e.g., see Hao et al. (2011); Harrington et al. (2020); Piret and Verschelde
(2010). The following presents two options resulting from Proposition 2.

Eigenvalue threshold. Inside of U , the minimum eigenvalue of both X(δ(s)) and S(δ(s))
is zero. One option after crossing the boundary is for one of these minimum eigenvalues
to become negative. We can use a small negative constant C1 to decide that a minimum
eigenvalue has become negative.
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Derivative threshold. From Proposition 2, the derivatives of the minimum eigenvalues,
namely dλms

ds
and dλmx

ds
, are zero inside of U . Hence, we can threshold, say with a positive

constant C2, based on the absolute value of an approximation of these derivatives.

Thresholding on the minimum eigenvalue may be more intuitive since this is the
condition to ensure that the matrices remain positive semidefinite. A small negative
constant C1 is chosen instead of 0 due to numerical error. One major disadvantage is
the potential difficulty in selecting this constant C1 since it is challenging to predict the
magnitude of deviation of the minimum eigenvalue. This makes the performance of the
eigenvalue threshold approach unstable as demonstrated on an example in Table 6.5.

Inside of U , the derivatives of the minimum eigenvalues dλms
ds

and dλmx
ds

are both iden-
tically zero. At the boundary ∂U , at least one of them becomes undefined due to either
divergence to infinity as one approaches the boundary or one of the matrices becomes
more rank deficient. This leads us to determine ∂U via one of these derivatives having a
sufficiently large magnitude, which can be better detected numerically. Thus, a thresh-
old C2 is used to check for the derivatives of the eigenvalues which jumps away from zero
as they are becoming undefined crossing the boundary. The SES with the eigenvalue as
threshold is outlined with the algorithm below.

Algorithm 1 The SES algorithm with eigenvalue threshold

for i← 1 : `− 2 do . Discretization
θi ← [0 : ∆θi : π]

end for
θ`−1 ← [0 : ∆θ : 2π]
s← [0 : ∆s : R]
Define α(θ) = [cos(θ1), sin(θ1) cos(θ1), . . . , sin(θ1) · · · cos(θ`−1), sin(θ1) · · · sin(θ`−1)]
V (0) = v0

for k1 ← 1 : length(θ1) do
...
for k`−1 ← 1 : length(θ`−1) do

for r ← 1 : length(s) do . The local solver

V (r + 1)← V (r) + ∆sH
k1,...,k`−1
r (V (r))α(θ1(k1), · · · , θ`−1(k`−1))

H̄ ← H
k1,...,k`−1
r (V (r)) +H

k1,...,k`−1

r+1 (V (r + 1))
V (r + 1)← V (r) + ∆s

2
H̄α(θ1(k1), · · · , θ`−1(k`−1))

Ex,Es← min eig(X(V (r + 1))),min eig(S(V (r + 1))) . The eigenvalue
threshold

if Ex or Es < C1 then
b(k1, · · · , k`−1) = rα(θ1(k1), · · · , θ`−1(k`−1)) . Record boundary
Break

end if
end for

end for
...

end for
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Example 5.1. In Example 3.1, the solution as a function of δ on (−1,∞) is

y =
1

1 + δ
, X = y

(
1 1
1 1

)
, S =

(
1 −(1 + δ)y

−(1 + δ)y 1

)
=

(
1 −1
−1 1

)
.

(24)
One clearly sees that X � 0 for δ > −1, X diverges to infinity as δ → −1+, and X
has a negative eigenvalue when δ < −1. This shows a potential difficulty of observing a
negative eigenvalue by having to pass over a divergent point occurring at δ = −1.

On the other hand,

lim
δ→−1+

−(JvF )−1∂F

∂δ
= (−∞,−∞,−∞,−∞, 0, 0, 0)T

which can be used to identify the ill-conditioning of computing the undefined derivative of
the minimum eigenvalue of X at the boundary point δ = −1. We return to this example
in Section 6.1.

6. Numerical examples

The following applies the sweeping Euler scheme (SES) developed in Section 5 to find
the MAPS U for several examples. In particular, Section 6.1 numerically demonstrates
second-order convergence and compares the global error bound from Theorem 5 with
actual error. Section 6.2 and 6.3 explores two-parameter SDP and three-parameter SDP
with known algebraic solutions. Section 6.4 provides a comparison with SDP solvers.
Section 6.5 compares two methods of threshold for the SES algorithm and presents an
approach to improve the boundary accuracy quickly. All computations were executed
using Matlab running on a 2.5 GHz Intel Core i5-6500 processor.

6.1. Covergence rate and numerical error

For an illustrative demonstration of the convergence rate and numerical error associated
with SES, we return to the setup from Exs. 3.1 and 5.1. To numerically demonstrate the
second order convergence of SES, we compare the exact optimal value, denoted by m(δ),
at δ = 0.05, namely

m(0.05) =
2

1 + 0.05
=

40

21

with numerical approximations using various step sizes. The results are summarized
in Table 1 which clearly shows second order convergence for this problem.

Table 1: Numerically testing order of convergence.

Step size Error Order
1/20 4.3735 · 10−4

1/40 1.1260 · 10−4 1.9576
1/80 2.8546 · 10−5 1.9798
1/160 7.1853 · 10−6 1.9901
1/320 1.8024 · 10−6 1.9951
1/640 4.5136 · 10−7 1.9976
1/1280 1.1293 · 10−7 1.9988
1/2560 2.8245 · 10−8 1.9994
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Next, using a step size of 3/1000, we compare the global error bound from Theorem 5
applied to m = 2

1+δ
for δ > −1 with the actual numerical error. Figure 3 shows that the

global error bound from Theorem 5 does indeed provide an upper bound on the actual
numerical error. As is typical, this error bound can be quite pessimistic, even for this
illustrative example, as δ moves towards the boundary of U . Figure 3 provides a clearer
picture as to the behavior of the actual numerical error for δ < 0 on the left and δ > 0 on
the right with the same step size of 3/1000. As δ becomes more negative, both the upper
bound and the actual error increases as shown on the left. As δ becomes more positive,
the error is bounded by 2 · 10−7 as shown on the right. Note that these approximations
arise from only knowing the solution at δ = 0. To reduce numerical error, especially
as one more towards a point on the boundary of U , one can always use the numerical
approximation to solve the SDP, e.g., via Newton iterations applied to the KKT system,
and “recenter” the computations at this new value.

Figure 3: Plot of actual numerical error (solid) and upper bound of global error (dashed).

6.2. A two-parameter SDP with known non-convex MAPS

The previous example had a single perturbation parameter in which case the sweeping
Euler scheme (SES) only “sweeps” in the positive and negative directions. In this section,
we demonstrate the scheme on an example with two perturbation parameters. This
parametric SDP is derived from a quadratic constrained linear program with a linear
equality constraint and a quadratic inequality (the interior of circle), namely

min x2

s.t. x1 − δ1x2 = δ2

x2
1 + x2

2 ≤ 1.

Here δ1 controls the slope of the linear constraint and δ2 controls the y intercept. With no
perturbation, i.e., δ = 0, the feasible set is the segment between −1 and 1 on y-axis within
the unit circle. Let S3

ij denote a symmetric matrix of size 3 with the (i, j)th and (j, i)th

entry equal to one and zero elsewhere. The problem can be rewritten in standard format
with the matrices in (1) and (2) defined as follows:

A1 = S3
11, A2 = S3

22, A3 = S3
23, A4 = S3

33, A5 = S3
12, C = S3

13, D1 = D2 = 0, G = 0,

b = (1, 1, 0, 1, 0, 0)T , E15 = S3
13, E25 = 2S3

11, Eij = 0 for i = 1, 2, j = 1, . . . , 4.
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It follows that the dual problem can be written as

min y1 + y2 + y4

s.t. S =

−2δ2y5 − y1 −y5 1− δ1y5

−y5 −y2 −y3

1− δ1y5 −y3 −y4


S � 0

(25)

As δ1 increases or decreases, the line governed by the linear constraint tilts right or left,
respectively. Correspondingly, the range of δ2 is determined by how far the line can be
shifted while still intercepting with the unit circle, namely

δ1 ∈ R, δ2 ∈
(
−
√

1 + δ2
1,
√

1 + δ2
1

)
. (26)

Given the bounded set δ1 × δ2 ∈ [−5, 5] × [−5, 5], the comparison of numerical approx-
imation of the maximum analytical perturbation set and the theoretical boundary is
demonstrated in Figure 4. Notice that the SES recovers the MAPS with high accuracy
even though the MAPS for this problem is non-convex. In general, this may not be true
for the SES as the initial parameter point may not be connected via a straight line from
the origin to every point to the true MAPS as explored in the examples below.

Figure 4: Comparison of the exact boundary and the approximation of the boundary using SES. The
exact MAPS is described by the region enclosed by the solid green curves (described by Eq (6.2)) and
two vertical blue lines (part of the bounded set). The numerical approximation is represented by the
area enclosed by the red dash curves.

6.3. A three parameter SDP with known MAPS

Consider applying SES to the following three parameter SDP to show its performance on
a problem with 3-D parameter space and a priori known non-convex MAPS:

min δ1x+ (1− δ1)y

s.t.


1 + δ2 x y 0 0
x 1 0 0 0
y 0 1 0 0
0 0 0 1

2
+ δ3 x

0 0 0 x 1
2

+ δ3

 � 0.
(27)

The corresponding problem statement in the format of (1) includes 12 linear constraints
with 12 A matrices of 5× 5 among others, so we omit the expression of this problem in

17



the format of (1) or (2) for succinctness. The bounded set B is the unit sphere. This
problem has regions of the MAPS which are not straight-line connected to the origin.

The parameter δ1 determines the slope of the objective function, δ2 + 1 is the size of
the circle which is part of the feasible set, and δ3 determines the range of x, y value of the
optimal solution which corresponding to the area between [−δ3 − 1/2, δ3 + 1/2] within
the circle controlled by δ2. The analytic maximum perturbation boundary is described
below using the following three cases.

Case 1: for δ2 ∈ (−1,∞), δ3 ∈

(
−1

2
,

√
1 + δ2

2
− 1

2

)
,

δ1 ∈

 δ3 + 1
2

δ3 + 1
2
−
√

1 + δ2 − (δ3 + 1
2
)2
,

δ3 + 1
2

δ3 + 1
2

+
√

1 + δ2 − (δ3 + 1
2
)2

 ;

Case 2: for δ2 ∈ (−1,∞), δ3 ∈

(√
1 + δ2

2
− 1

2
,
√

1 + δ2 −
1

2

)
,

δ1 ∈

−∞, δ3 + 1
2

δ3 + 1
2

+
√

1 + δ2 − (δ3 + 1
2
)2

 ;

Case 3: for δ2 ∈ (−1,∞), δ3 ∈
(√

1 + δ2 −
1

2
,∞
)
, δ1 ∈ (−∞, 1).

For Case 1, the problem is feasible but the solution loses analyticity when passing through
the boundary. In particular, the solution sheet of x, y become constant as shown in the
bottom right corner figure of Figure 5. For Case 2, the optimal function value jumps along
the upper bound as the slope of the objective function turns from negative to positive.
For Case 3, solution is analytic within the unit sphere B.

Figure 5 shows the theoretical boundary and the numerical results for this example.
The figure on the left shows the exact boundary surfaces which is described by the
lower bound of Case 1 and upper bound of Cases 1 and 2. The blue surface is the
numerical approximation using SES with the minimum eigenvalue threshold. As visible
in the figure, the circular lines from the numerical approximation matches closely with
the yellow surface from the exact boundary.

The right panel in Figure 5 shows the MAPS intersected with δ2 = 0. The exact
MAPS is described by the upper boundary of in Case 1 and 2 and the unit circle which
corresponds to the region enclosed by the black and blue solid line in the right figure.
The numerical approximation is shown in red dash-dot line. The bottom right corner
shows how the solution path of (x, y) change as δ1 varies while δ3 = 0. It is clear that
the solution path losses analyticity at critical point δ1 = 1

1+
√

3
.

A closer look at the top right corner of the left panel shows that there is some gap
between the exact MAPS and the numerical approximation. The points within the gap
are not straight-line connected to the origin. This observation implies that this gap will
not be reduced even with high precision solutions of the PDE system. This issue can only
be resolved by changing the initial solving point of the PDE system. We like to emphasize
that the method presented here is the first step towards finding the true MAPS and the
non-convex nature will be further investigated in future works.
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Figure 5: Left: Comparison of exact boundary and numerical approximation. Right: The comparison of
exact boundary and numerical approximation at δ2 = 0. The green and blue dashed line represent the
optimal solution path.

6.4. Comparison with SDP solvers: A two-parameter SDP with unknown MAPS

The previous examples all had analytical solutions and easily analyzed MAPS. To bench-
mark the performance of the SES for a generic problem with no a prior closed-form
expression for the MAPS, we apply the scheme to an example S and X are 3 × 3 sym-
metric matrices with two perturbation parameters. For simplicity, we will only write the
dual SDP (2), namely:

maximize y1 − 4y2

s.t. S·1 =

 δ1 (−8y1 − 4y2 + 4) + δ2 (10y1 − 10y2 + 6)− 2y1 − 4y2 − 8
δ1 (−6y1 + 2y2 + 5) + δ2 (2y1 + 9y2 − 5)− 4y1 + 6y2 + 2
δ1 (−4y1 + 5y2 + 2) + δ2 (−y1 − 2y2 + 6) + 9y1 − 4y2 + 8



S·2 =

 δ1 (−6y1 + 2y2 + 5) + δ2 (2y1 + 9y2 − 5)− 4y1 + 6y2 + 2
δ1 (4y1 + 6y2 − 8) + δ2 (10y1 − 10y2 − 6)− 10y1 + 2
δ1 (−2y1 − 9y2) + δ2 (4y1 + 2y2 − 3) + 6y1 + 7y2 + 6



S·3 =

 δ1 (−4y1 + 5y2 + 2) + δ2 (−y1 − 2y2 + 6)− 9y1 − 4y2 + 8
δ1 (−2y1 − 9y2) + δ2 (4y1 + 2y2 − 3) + 6y1 + 7y2 + 6
δ1 (−2y1 − 6) + δ2 (10y1 − 8y2 − 4)− 8y1 − 4y2


S � 0.

(28)
We first use SES to approximate the solution to problem (28) inside of the a priori
unknown MAPS U within a ball of radius 3. Following Section 5, we first sweep using
direction vectors

α(θ) =

(
cos(θ)
sin(θ)

)
for θ ∈ [0, 2π).

Using an angular mesh step size of π/180, for each direction vector α(θ) selected, we
start at the origin and solve the corresponding ODEs (12) along α(θ) with step size
1/1000 until the derivative threshold criterion provides an approximation of the first
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boundary of U in the direction of α(θ). In Figure 6, the left-hand side picture shows the
approximation of the optimal value of the dual problem m = y1 − 4y2 in all directions,
while the right-hand side picture is restricted to δ1, δ2 ∈ [0, 0.05].

Figure 6: Plot of solution computing using SES in all directions (left) and on [0, 0.05]2 (right).

There are several possibilities that create the boundary of U . First, the optimum of the
SDP could become unbounded. This is observed in Figure 6 by the rays becoming nearly
vertical at the boundary. Second, the optimum could become singular with respect to
the KKT conditions. This could happen at the boundary between feasible and infeasible
SDPs as well as having multiple solution sheets of the KKT system intersecting. A
detailed classification of five different possible ways of losing analyticity along any given
direction can be found in Bellon et al. (2021). The complete boundary of U is shown in
the left panel of Figure 7.

Even though there are no other designated numerical methods that compute ∂U
for parameteric SDPs, numerous generic SDP solvers such as CSDP, MOSEK, SeDuMi,
SDPT3, DSDP, SDPA, and ADMM have been developed, e.g., see Mittelmann (2012);
Wen et al. (2010), and these method can be used to find U by solving on the same
meshgrid as the SES. One key difference is the SES utilize data from adjacent meshgrid
points to update on the current point while the SDP solvers solve at each meshgrid point
independently. This difference yields two advantages for SES: 1) it greatly speeds up the
computational time and 2) it can capture all type of disruptions occurring in the optimal
solution path as parameters change. In particular, the SDP solvers can only differentiate
whether the parameteric SDP is solved or not, but cannot determine if the solution path
is smooth which will cause failure in capturing ∂U . We compare the performance of SES
with the SDP solver SDPT3 from Tütüncü et al. (2003). We chose SDPT3 due to its
popularity in optimization modeling language, its advantages in solving small to medium
scale SDP problems, e.g., see Mittelmann (2012); Tütüncü et al. (2003), and an easy-to-
use interface via the Matlab package CVX. In this comparison case, a boundary point
is recorded whenever SDPT3 reports that the status is “not solved.” Hence, equating
“not solved” with infeasibility yields an outer approximation of ∂U . It is worth noting
that one may have jumped over ∂U where the SDP is feasible an the solution lies on a
different solution sheet while our SES approach identifies where such a switch occurs. In
other words, the optimal solution path exists but not analytic anymore.

Our comparison utilized an angular mesh size of π/180 and step size of 1/1000. The
computational time and L1 error of the approaches for (δ1, δ2) ∈ [0, 0.05]2 are listed in
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Table 2. It shows that our SES method is more than 100 times faster than using SDPT3
via CVX with comparable accuaracy in finding the optimal solutions.

Table 2: Comparison of CPU time (in seconds) and L1 error.

Method CPU time L1 error

SES 144.3 1.07 · 10−9

CVX-SDPT3 14,599.5 2.00 · 10−9

Figure 7(a) compares the boundaries computed using SES with SDPT3 via CVX. We
observe that both provide an almost identical approximation of ∂U which reaffirms of the
ability of SES in approximating ∂U . A discrepancy occurs for the angle θ = 249π/180
(illustrated by the arrow in Figure 7(a)) where SES indicates a boundary near 0.169
units along this direction while the SDPT3 approach yields 0.204. The reason for this
is illustrated in Figure 7(b) which shows a jump in the x11 coordinate between solution
sheets for along the given direction at radius between 0.1690038 and 0.1690039. Thus,
the optimum is not differentiable which is identified by our SES approach. By simply
solving at mesh points, SDPT3 identified that the SDP had solutions on both sides of
this so it continued to look for infeasibility which occurred much later. Therefore, the
sensitivity of our SES approach combined with being two orders of magnitude faster with
similar error show its dominance for computing ∂U over simply solving the SDP at mesh
points looking for infeasibility.

(a) (b)

Figure 7: (a): Comparion of ∂U for (28) using SES and a mesh solving approach using SDPT3 via CVX.
The dashed line represents using SES while the solid line are the results from CVX-SDPT3 combination.
(b): Demonstrating a jump in the value of x11-coordinate of the optimum along the direction with angle
249π/180 with four refined discretizations over radius.

6.5. Numerical approach for achieving high precision when approximating ∂U

Finally, we consider an approach to improve the approximation accuracy of the MAPS.
For illustration, we consider an example with one parameter, namely:

minimize (1 + 2δ)x11 − 2(1 + δ)x12 + (2 + 3δ)x22

s.t. (2 + δ)x11 + 2(3 + 2δ)x12 + (1 + 3δ)x22 = −1

X =

[
x11 x12

x12 x22

]
� 0,

maximize y

s.t. S =

[
1 + 2y + δ(2 + y) −1 + 3y + δ(2y − 1)
−1 + 3y + δ(2y − 1) 2 + y + δ(3 + 3y)

]
� 0.

(29)
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The analytic expression of the optimal dual solution for y is

y =
13δ2 + 19δ + 9 +

√
189δ4 + 654δ3 + 959δ2 + 590δ + 125

2(δ2 + 7δ + 11)
. (30)

The lower bound of the MAPS occurs at the largest negative root of quartic polynomial
under square root in (30), namely

δc =
a3 − 109

126
+

1

2

√
239104

3969a3

− 1030

1323
− a1 + a2

567
≈ −0.49347124103

where

a1 =
3
√

11113649 + 34560
√

24019, a2 =
3
√

11113649− 34560
√

24019, and a3 =
√

7(a1 + a2)− 1545.

We first compare approximating the corresponding boundary point using the eigenvalue
and derivative threshold criteria described in Section 5 starting from δ = 0. To this
end, Table 6.5 compares using different step sizes with different threshold values C1

and C2, respectively. In both cases, the best one can hope for is to compute δc with an
error bounded by the step size. This table shows that this is precisely the case for the
derivative threshold criterion. In particular, the derivative threshold criterion is more
stable than the eigenvalue threshold criterion for approximating the boundary starting
at δ = 0.

Table 3: Comparison of eigenvalue and derivative threshold for approximating the boundary.

Eigenvalue threshold C1 Derivative threshold C2

Step size −10−5 −10−4 −10−3 0.1 1 10
1/10 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5
1/100 −0.33 −0.44 −0.49 −0.49 −0.50 −0.50
1/1000 −0.475 −0.490 −0.494 −0.493 −0.493 −0.494

Since these criterion can only approximate the boundary up to the step size, it could be
computationally expensive to produce highly accurate approximations by simply reducing
the step size. One may also appeal to Proposition 1 and Corollary 1 to construct algebraic
conditions that vanish on the boundary. The approach considered here is based on a
modification of the endgame described in Morgan et al. (1992). In particular, we aim
to to compute the unknown boundary point δc by constructing a Puiseux series centered
at δc. For singularities of multiplicity 2, which is the generic case described in Dedieu
and Shub (2001), we can build a Puiseux series with half powers of the form

m(δ) =
∞∑
j=0

cj(δ − δc)
j
2

which, for some constants cj ∈ R, holds for δ near δc. Using n data points, say (δj,m(δj))
for j = 0, . . . , n − 1, one can simultaneously approximate the boundary point δc and
the first n− 1 coefficients c0 = m(δc), c1, . . . , cn−2 using interpolation. Table 4 compares
using two different step sizes ∆δ, namely 1/100 and 1/1000, with three choices of n,
namely 3, 5, 7, with the actual values. In this table, we list δ0 with δj = δ0 − j∆δ

22



for j = 1, . . . , n − 1. The values are presented up to the first incorrect digit with the
correct digits highlighted in red. In particular, we see that just with the knowledge of the
boundary to 3 digits of accuracy, the Puiseux series interpolation can quickly be used to
approximate the boundary value with 7 digits of accuracy. One could continue to play
this modification of the endgame of Morgan et al. (1992) to compute the boundary point
as accurately as required.

Table 4: Comparison of using Puisuex series to approximate boundary point.

Step size δ0 n Approximation of δc Approximation of c0 = m(δc)

1/100 −0.49
3 −0.498 0.14
5 −0.4933 0.18
7 −0.49349 0.178

1/1000 −0.493
3 −0.4935 0.177
5 −0.49347121 0.1790763
7 −0.49347125 0.179075

Actual values −0.493471241 0.17907623

7. Conclusion and remarks

In this paper, we developed an algorithm to compute the maximal analytical perturbation
set (MAPS) for a parametric SDP. The problem of solving semidefinite programs (SDPs)
under affine perturbations in both primal and dual feasible sets is reformulated as solving
a system of quasilinear partial differential equations (PDEs). A second-order sweeping
Euler scheme (SES) is developed to solve the system of quasilinear PDEs which is well-
posed on the interior of the MAPS.

There are three main computational challenges for computing the MAPS U : non-
convexity of U , exponential computation time with respect to the dimension of perturba-
tions, and the uniform precision for approximating U . We demonstrate the performance
the SES method on several examples with non-convex MAPS. There are cases when the
parameter corresponding to the initial SDP with no perturbations is straight-line con-
nected to all points in the MAPS as in Example 6.2. However, in general, straight-line
connections from the origin will not yield the entire MAPS. One possible solution is using
a random spiral search algorithm or random restarts from other points in the MAPS. As
for the computational time cost, we like to point out that, given the PDE system in
Theorem 4, the SES algorithm can be vectorized to compute all direction at the same
time. In addition, the SES algorithm can be modified to utilize state-of-art GPUs as
the core computation involving large matrix operations. Finally, we presented different
approaches of addressing the need of high accuracy in approximating the boundary of U .

We also compared our SES method with existing SDP solvers using SDPT3 by Tütüncü
et al. (2003) via CVX in Matlab and a finite difference scheme (FDS) on a family of
SDPs parameterized by two affine perturbations. The data shows that the SES is clearly
advantageous over the other two methods. In addition, SES only requires one point while
the FDS requires additional boundary conditions.

Finally, we note that this method is not limited to just affine perturbations. In fact,
both the theory and numerical computations needs for the SES method naturally extend
to SDPs with sufficiently smooth nonlinear perturbations.
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