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It is highly desirable for numerical approximations to stationary points for a potential energy land-
scape to lie in the corresponding quadratic convergence basin. However, it is possible that an
approximation may lie only in the linear convergence basin, or even in a chaotic region, and hence
not converge to the actual stationary point when further optimization is attempted. Proving that
a numerical approximation will quadratically converge to the associated stationary point is termed
certification. Here we employ Smale’s α-theory to stationary points, providing a certification that
serves as a mathematical proof that the numerical approximation does indeed correspond to an
actual stationary point, independent of the precision employed. As a practical example, employing
recently developed certification algorithms, we show how the α-theory can be used to certify all the
known minima and transition states of Lennard-Jones LJN atomic clusters for N = 7, . . . , 14.

Introduction: The surface defined by a potential, V (x),
with x = (x1, . . . , xn), is the potential energy landscape
(PEL) of the corresponding physical or chemical system
[1, 2]. The critical points of a PEL, defined by the so-
lutions of the equations ∂V (x)/∂xi = 0 for i = 1, . . . , n,
provide important information about the landscape. These
critical points, the stationary points (SPs) of the PEL, can
be classified according to the number of negative eigenval-
ues of the Hessian matrix, Hi,j = ∂2V (x)/∂xi∂xj : the SPs
with no negative eigenvalues are minima, and the SPs with
exactly I negative eigenvalue are saddles of index I. SPs
at which H has one or more additional zero eigenvalues to
those determined by translational and rotational symmetry
are called singular SPs, or non-Morse points.

Except for rare examples like the one-dimensional XY
model [3] it is not usually possible to obtain the SPs an-
alytically, and one has to rely upon computing numerical
approximations. For a numerical approach, “solve” means
“to compute a numerical approximation of the associated
solutions.” Once a numerical approximation is obtained,
it is heuristically validated. Two standard approaches are
to monitor iterations of Newton’s method and to substitute
the approximations into the equations to see if they are sat-
isfied up to a chosen tolerance. Although such a validation
usually works well in practice, it does not guarantee that
the numerical approximation will indeed converge quadrat-
ically to the associated solutions using arbitrary precision.
In other words, even if a numerical approximation is heuris-
tically validated, it could correspond to a nonsolution at
higher precision. Additionally, Newton iterations may have
unpredictable behavior, such as attracting cycles and chaos,
when applied to points that are not in a basin of attraction
[4–7] of some solution.

If the given system is a set of polynomial equations, then
one can use numerical polynomial homotopy continuation
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[8–18] to compute all the isolated solutions (see e.g. [19–21]
for some related approaches). Numerical approximations
of the isolated solutions are obtained and hence the afore-
mentioned difficulties also arise.

A proper validation of a numerical approximation is termed
certification, i.e., a verification that the given numerical ap-
proximation will converge quadratically to the nearby as-
sociated solution using arbitrary precision. Roughly speak-
ing, quadratic convergence doubles the number of correct
digits after each iteration, so that the associated solution
can be approximated to a given accuracy efficiently. Start-
ing in the 1980’s, Smale and others developed a method
that certifies a numerical approximation as an actual so-
lution of the system [22]. For a given system of equations
f = 0 and a given point x∗, one computes a number α(f, x∗)

which, if it less than
(
13− 3

√
17
)
/4 ≈ 0.157671, guaran-

tees that Newton’s method starting from x∗ will quadrat-
ically converge to a solution of f = 0. Applying this cer-
tification scheme, ensures that our numerical solutions are
good enough so that more accurate approximations can be
obtained easily and efficiently.

Smale’s α-Theory: We summarize Smale’s α-theory fol-
lowing Ref. [23], where we restrict ourselves to systems of
equations that have the same number of equations as vari-
ables, termed square systems. We should also emphasize
that Smale’s α-theory is usually used to certify complex
solutions for systems of polynomial equations, so we start
with the key points of the theory for this case [22]. Since
more can be said about real solutions, we will discuss them
separately below, as well as generalizations to other types
of nonlinear equations, such as the those involving expo-
nentials and trigonometric functions.

For a system f of n multivariate polynomial equations in
n variables, we denote the set of solutions of f = 0 as
V(f) := {z ∈ C

n|f(z) = 0} and the Jacobian of f at x as
Jf (x). Consider the Newton iteration of f starting at x
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defined by

Nf (x) :=

{

x− Jf (x)
−1f(x), if Jf (x) is invertible,

x otherwise.
(1)

For k ≥ 1, the k-th Newton iteration is simply

Nk
f (x) := Nf ◦ · · · ◦Nf

︸ ︷︷ ︸

k times

(x). (2)

A point x ∈ C
n is called an approximate solution of f with

associated solution z ∈ V(f) if, for each k ≥ 1,

∥
∥Nk

f (x)− z
∥
∥ ≤

(
1

2

)2k−1

‖x− z‖ , (3)

where ‖ · ‖ is the standard Euclidean norm on C
n. In other

words, x is an approximate solution to f if it is in the
quadratic convergence basin defined by Newton’s method
of some solution z. The key to Smale’s α-theory, as shown
in the following theorem, is a sufficient condition for prov-
ing that a given point is an approximate solution without
knowledge about z.

Theorem: If α(f,x) <
(
13− 3

√
17
)
/4 for a square poly-

nomial system f and point x, then x is an approximate
solution to f , where

α(f,x) := β(f,x)γ(f,x),

β(f,x) := ‖Jf (x)−1f(x)‖, and

γ(f,x) := sup
k≥2

∥
∥
∥
∥

Jf (x)
−1Dkf(x)
k!

∥
∥
∥
∥

1

k−1

.

(4)

In γ(f,x), the term Dkf(x) is the symmetric tensor whose
components are the partial derivatives of f of order k.
Additionally, for convenience, if at some x ∈ V(f) where
Jf (x) is not invertible, then α(f,x) := 0, β(f,x) := 0 and
γ(f,x) := ∞. If x /∈ V(f) such that Jf (x) is not invertible,
then α(f,x), β(f,x) and γ(f,x) are taken as ∞. Finally, if
x is an approximate solution of f , then ‖x− z‖ ≤ 2β(f,x)
where z ∈ V(f) is the associated solution to x.

We remark that since this theorem provides a sufficient
condition for a point to be an approximate solution, the
set of certifiable approximate solutions is generally much
smaller than the set of approximate solutions. However,
for a true approximate solution, a few Newton iterations
usually generate a point that can be certified.

Given two approximate solutions x1 and x2, one often needs
to verify that the corresponding associated solutions z1 and
z2 are distinct. One way to show this uses the triangle
inequality together with ‖xi − zi‖ ≤ 2β(f,xi).

Other Nonlinear Systems: The above theorem was
actually proved with “polynomial” replaced by “analytic.”
However, we present it in this fashion since, in the poly-
nomial case, γ(f,x) is actually defined as a maximum over
finitely many terms, since only finitely many partial deriva-
tives can be nonzero. In fact, it can be bounded above
based on the coefficients of f , the degree of the polyno-
mials in f , and Jf (x). Nonetheless, γ(f,x) can also be
bounded above for other nonlinear systems, in particular,

Table I. Convergence to z = 1 for f(x) = x4 − 1 starting at x = 1.1.

k 1 2 3 4 5

− log10

(

‖Nk
f
(x)− z‖

)

1.89 3.62 7.06 13.94 27.70

− log10

(

‖x− z‖/22
k−1

)

1.30 1.90 3.11 5.52 10.33

Table II. Convergence to various roots for the 50-th Chebyshev poly-

nomial of the first kind.

x∗ lim
k→∞

Nk
f (x

∗)

0.997 x2 = cos(3π/100)

0.9979 x3 = cos(5π/100)

0.99799 x5 = cos(9π/100)

0.997999 x6 = cos(11π/100)

0.998001 x6 = cos(11π/100)

0.99801 x9 = cos(17π/100)

0.9981 x1 = cos(π/100)

0.998 x6 = cos(11π/100)

systems of polynomial-exponential equations [24]. A sys-
tem is polynomial-exponential if it is polynomial in both
the variables x1, . . . , xn and finitely many exponentials of
the form eaxi where a ∈ C. Many standard functions such
as sin(x), cos(x), sinh(x), and cosh(x) can be formulated
as systems of polynomial-exponential functions since they
are indeed polynomial functions of eax for suitable a ∈ C.

Real Solutions: For a square system f such that Nf de-
fines a real map, i.e. Nf (x) is real whenever x is real, then
Smale’s α-theory can be extended to provide more informa-
tion about real solutions [23]. For potential energy land-
scapes, when the potential energy function V (x) is real for
real x, the corresponding Newton iteration is always a real
map. In this case, one can determine the reality of the as-
sociated solution y from any approximate solution x. If x
is real, then y must also be real. However, if x is not real,
one can show that y is real by showing that x and its real
part, namely (x+x)/2 where x is the conjugate of x, have
the same associated solution, namely y. To show that y is
not real, one simply has to verify that x and its conjugate
x have distinct associated solutions, namely y and y, since
‖x− y‖ ≤ 2β(f,x) via the triangle inequality.

We use a recently developed practical implementation of
the α-theory, called alphaCertified, for certifying solu-
tions to systems of equations [23, 24]. When using exact
rational arithmetic, the implementation of α-theory in al-

phaCertified is rigorous and can be taken as a mathemat-

ical proof of the computed results. Hence, this approach
provides an alternative to other analytic or symbolic com-
putations. The algorithms are also implemented in arbi-
trary precision floating point arithmetic in alphaCerti-

fied, which provides certified results up to round-off er-
rors. We also emphasise that the procedure of certifying
the solutions is completely parallelizable.

An Illustrative Example: As a demonstration of com-
puting α(f, x), β(f, x), and γ(f, x) for a single coordinate,
consider the univariate polynomial f(x) = x4 − 1. In this
simple case, we can actually compute these quantities as
a function of a variable x rather than at a specific value.
We will assume x 6= 0 since f ′(x) = 4x3 is zero if and only
if x = 0 and f(0) 6= 0. Clearly, β(f, x) = |x − x−3|/4.
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Now, in the univariate case, the term Dkf(x) in γ(f, x) is
simply the k-th derivative of f at x, i.e., f (k)(x). Since
f has degree 4, we only need to take the maximum over
k = 2, 3, 4 to compute γ(f, x). One can easily verify that
the maximum is attained at k = 2 with γ(f, x) = 3|x−1|/2.
Thus, α(f, x) = 3|1 − x−4|/8 for any x 6= 0. For exam-
ple, α(f, 2.5) = 0.3654 so that x = 2.5 cannot be certified
as an approximate solution, and x = 2.5 is indeed out-
side all the quadratic convergence basins. However, since
α(f, 1.1) = 0.11887, x = 1.1 is certifiably an approximate
solution of f = 0. In this case, we know that the associ-
ated solution is z = 1, and Table I confirms the quadratic
convergence for a few iterations.

Example With Close Roots: The n-th Chebyshev
polynomial of the first kind has n roots between −1 and
1. These roots, called Chebyshev nodes, are located at
xi = cos [(2i− 1)π/2n] for i = 1, . . . , n. We can use this
example to demonstrate how small perturbations in a nu-
merical approximation can change the root that Newton’s
method converges to. This chaotic behavior can be avoided
using certification. In particular, Table II considers selected
values where f(x) = cos(50 cos−1 x) is the 50-th Chebyshev
polynomial of the first kind.

Müller-Brown Surface: The Müller-Brown surface [25]
is a well-known model landscape [26–29]. It is defined as

V (x, y) =
4∑

i=1

Ai exp(ai(x− x0
i )

2

+bi(x− x0
i )(y − y0i ) + ci(y − y0i )

2), (5)

where

A = (−200,−100,−170, 15), a = (−1,−1,−6.5, 0.7),

b = (0, 0, 11, 0.6), c = (−10,−10,−6.5, 0.7),

x0 = (1, 0,−0.5,−1), y0 = (0, 0.5, 1.5, 1).
(6)

Since ∇V = [∂V/∂x, ∂V/∂y] involves polynomials as ex-
ponents, we simply add new variables to produce an equiv-
alent polynomial-exponential form as

f(x, y, z1, . . . , z4, w1, . . . , w4) =






∑4
i=1 Aiwi(2ai(x− x0

i ) + bi(y − y0i ))
∑4

i=1 Aiwi(bi(x− x0
i ) + 2ci(y − y0i ))

ai(x− x0
i )

2 + bi(x− x0
i )(y − y0i ) + ci(y − y0i )

2 − zi
exp(zi)− wi, i = 1, . . . , 4







.

(7)

Given (x, y), we obtain values of zi and wi based on the last
eight functions in f and then try to certify the result. In
particular, Table III presents five numerical approximations
of SPs along with an upper bound on the value of α(f, ·)
and an approximation of β(f, ·).
Based on the upper bounds on α(f, ·) computed by al-

phaCertified, each point is indeed an approximate so-
lution. The bounds on the distance from each numerical
approximation to the corresponding approximate solution
based on β(f, ·) show that they correspond to distinct SPs.
Thus, we have proved that the five numerical approxima-
tions are indeed in the quadratic convergence basin of dis-
tinct SPs.

Table III. Five stationary points of the Müller-Brown potential and

the corresponding α and β.

upper bound approximation

x y of α(f, ·) of β(f, ·)

-0.5582236346 1.441725842 0.0140 4.84 · 10−9

0.6234994049 0.02803775853 0.0460 1.94 · 10−9

0.212486582 0.2929883251 0.0437 3.05 · 10−9

-0.8220015587 0.6243128028 0.0006 6.94 · 10−10

-0.050010823 0.4666941049 0.0068 2.89 · 10−9

Table IV. Summary of α, β, and γ for the known LJN clusters.

maximum maximum minimum

number upper bound maximum upper bound pairwise

N of points of α(fN , ·) β(fN , ·) of γ(fN , ·) distance

7 16 6.82 · 10−19 1.03 · 10−28 1.01 · 1010 0.4354

8 50 2.03 · 10−19 1.28 · 10−28 1.60 · 109 0.4268

9 186 3.55 · 10−17 1.77 · 10−27 5.46 · 1010 0.0559

10 699 2.86 · 10−14 3.94 · 10−24 9.87 · 1010 0.0600

11 2594 6.40 · 10−15 2.80 · 10−26 6.04 · 1011 0.0556

12 9122 1.05 · 10−9 1.63 · 10−21 4.28 · 1012 0.0093

13 30265 2.48 · 10−12 2.84 · 10−23 2.16 · 1013 0.0081

14 91415 4.54 · 10−8 1.50 · 10−19 3.58 · 1014 0.0087

Lennard-Jones Clusters: We now consider atomic clus-
ters of N atoms bound by the Lennard-Jones potential [30],
denoted LJN . The pairwise potential between interacting
particles is defined as

VN = 4ǫ

N∑

i=1

N∑

j=i+1

[(
σ

ri,j

)12

−
(

σ

ri,j

)6
]

, (8)

where ǫ is the pair well depth, 21/6σ is the equilibrium pair
separation, and

ri,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2. (9)

For convenience, we take ǫ = 1/4 and σ = 1. Since VN only
depends upon the pairwise distances, the set of SPs is in-
variant under overall translation and rotation. Thus, we fix

x1 = y1 = z1 = y2 = z2 = z3 = 0. (10)

Now, to construct a polynomial system equivalent to
∇VN = 0, we add variables Ri,j with polynomial equations

Ri,j

(
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2
)
= 1. (11)

That is, Ri,j = 1/r2i,j so that VN =
∑

i<j

(
R6

i,j −R3
i,j

)
. For

simplicity, we define Ri,j = Rj,i for i 6= j. Hence, for the
SPs, we consider the polynomial system

fN (x,y, z, Ri,j) =







∑

j 6=i 6R
4
i,j

(
2R3

i,j − 1
)
(xj − xi), i = 2, . . . , N

∑

j 6=i 6R
4
i,j

(
2R3

i,j − 1
)
(yj − yi), i = 3, . . . , N

∑

j 6=i 6R
4
i,j

(
2R3

i,j − 1
)
(zj − zi), i = 4, . . . , N

Ri,j

(
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2
)
− 1, i < j







.

(12)
An extensive search for minima and saddle points was car-
ried out in [29] for this model up to N = 13, along with
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a corresponding search for minima and saddles of index
one (transition states) for N = 14 in [31]. All of the
minima and transition states, available for download at
http://doye.chem.ox.ac.uk/networks/LJn.html, were
obtained using numerical methods.

To certify these solutions, we first translated and rotated
each one so that condition (10) holds, and then computed
Ri,j based on (11). The downloaded points are provided
to 10 decimal places, and many of them were not certi-
fiable. We performed two Newton iterations using 96-bit
precision to improve both the precision and accuracy so
that (10) and (11) hold. Finally, using the resulting points,
we employed alphaCertified to compute upper bounds on
α(fN , ·), which we summarize in Table IV. In particular,
this table shows that, for N = 7, . . . , 14, each numerical
approximation of the minima and transition states does in-
deed correspond to a certified approximate solution. For
N = 14, the values of ⌈log10 γ(f14, ·)⌉ for the minima and
transition states suggest that we should use numerical ap-
proaches that approximate the coordinates of each station-
ary point to at least 15 decimal places. Hence, certification
can also provide insight into convergence conditions, which
hitherto have been chosen based on physical intuition.

Since we performed two Newton iterations prior to certifica-
tion, we need to perform an a posteriori verification that we
still have distinct solutions. This was accomplished using
the triangle inequality, as discussed above, with the maxi-
mum value of β(fN , ·) and the minimum pairwise distance
between the x, y, z coordinates of the approximations. To
summarize, Table IV proves that the numerically approx-
imated SPs are indeed in the quadratic convergence basin
of distinct SPs.

Conclusions: Approximate numerical solutions obtained
from standard non-linear optimization methods may lie in
the linear convergence basin, or even in a chaotic region, in-
stead of the desired quadratic region of convergence. Hence,
the numerical approximation may turn out to be a non-
solution of the system when more Newton iterations are
performed, which could fundamentally change the scien-
tific conclusions. We have demonstrated several examples
of such behaviour. To mitigate such problems, we show
how Smale’s α-theory can be used to certify that a numeri-
cal approximation is in the quadratic convergence region of
a solution, to determine if two points correspond to distinct
solutions, and to determine if the corresponding solution is
real. Moreover, the procedure for certifying the solutions
is completely parallelizeable. As a practical demonstration
of the approach, we have refined and then certified all the
known minima and transition states for the Lennard-Jones
potential for up to 14 atoms. This is the first certification
conducted for a set of physically relevant atomic structures
that we are aware of, and it provides quantitative conver-
gence criteria for geometry optimization. We also observe
that for the stationary points of the Lennard-Jones poten-
tial, the size of the quadratic convergence basin decreases
as N increases. These new insights should be applicable
throughout molecular science and studies of soft and con-
densed matter, wherever stationary points are considered
to analyze structure, dynamics and thermodynamic prop-
erties.
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