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The stationary points of the potential energy function of the φ4 model on a two-dimensional
square lattice with nearest-neighbor interactions are studied by means of two numerical methods: a
numerical homotopy continuation method and a globally-convergent Newton-Raphson method. We
analyze the properties of the stationary points, in particular with respect to a number of quantities
that have been conjectured to display signatures of the thermodynamic phase transition of the model.
Although no such signatures are found for the nearest-neighbor φ4 model, our study illustrates the
strengths and weaknesses of the numerical methods employed.
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I. INTRODUCTION

The stationary points of the potential energy function
or other classical energy functions can be employed to
calculate or estimate certain physical quantities of inter-
est. Well-known examples include transition state theory
or Kramers’s reaction rate theory for the thermally ac-
tivated escape from metastable states, where the barrier
height (corresponding to the difference between poten-
tial energies at certain stationary points of the potential
energy function) plays an essential role. More recently,
a large variety of related techniques has become popular
under the name of energy landscape methods [1], allow-
ing for applications to many-body systems as diverse as
metallic clusters, biomolecules and their folding transi-
tions, or glass formers undergoing a glass transition.

In the late 1990s it was observed that properties of
stationary points of the potential energy function V , i. e.
configuration space points qs satisfying dV (qs) = 0, re-
flect in dynamical and statistical physical quantities si-
multaneously and show pronounced signatures near a
phase transition [2]. This observation sparked quite some
research activity, reviewed in [3], including a theorem by
Franzosi and Pettini asserting that, at least for a certain
class of models, stationary points with V (qs)/N = vc

are indispensable for the occurrence of an equilibrium
phase transition at potential energy vc [4]. This theorem
requires a number of conditions to be satisfied: The po-
tential energy function V has to be smooth, confining,
and of short-range (see [4] for a complete list of con-
ditions and their definitions). At the time when these
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papers were published, one might have still hoped that
some of the conditions on V were merely technical, but
not essential for the result. However, it became clear
soon that the result can not be extended to long-range
interacting models [5], nor to non-confining potentials [6]:
These classes of potentials comprise cases which are par-
ticularly amenable to analytic calculations, and a direct
relation between phase transitions and stationary points
of V could be ruled out through exactly solvable coun-
terexamples.

Originally, the incentive for the study reported in the
present article was to investigate the stationary points
of a model that satisfies all the conditions required by
Franzosi and Pettini [4]. This is not an easy task, as in
this class there are no exactly solvable models which have
a phase transition [7]. As a model to study, we then opted
for the nearest-neighbor φ4 model on a two-dimensional
square lattice. This model, though not exactly solvable,
appears to be relatively simple. Moreover, results on the
stationary points of its long-range version were known
and readily available for comparison [5].

Much to our surprise, we found that all stationary
points qs of the potential energy function V have non-
positive potential energies, i. e., V (qs) ≤ 0. From this
observation, one can conclude that the result of Franzosi
and Pettini, allegedly proven in [4], is false. Further-
more, a numerical method put forward in [8] and applied
to the very same two-dimensional φ4 model yields incor-
rect results. These findings, and a discussion of their im-
plications, have been published in a Letter [9]. The non-
positivity of the stationary energies V (qs) was established
in that Letter analytically, supported by results obtained
with two different numerical methods. The main pur-
pose of the present article is to give a detailed account of
these numerical methods and to present a more detailed
analysis of the properties of the stationary points of the
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two-dimensional nearest-neighbor φ4 model.
In Sec. II, this model is introduced and some of its

thermodynamic properties are reviewed. In Sec. III, the
first of the numerical methods, namely homotopy contin-
uation, is discussed. It is an algebraic-geometrical tech-
nique devised to obtain all isolated stationary points of
a given system of multivariate polynomial equations, but
is restricted to fairly small lattice sizes. We have applied
this method to square lattices of sizes 3 × 3 and 4 × 4.
The stationary points obtained are analyzed with respect
to their number, potential energies, indices, and Hessian
determinants in Sec. IV. The second numerical method,
discussed in Sec. V, makes use of a globally convergent
version of the Newton-Raphson algorithm for searching
the zeros of a real-valued function. It can be applied to
larger lattice sizes, but provides in general only a subset
of the stationary points. We summarize and discuss our
findings in the concluding Sec. VI.

II. TWO-DIMENSIONAL

NEAREST-NEIGHBOR φ4 MODEL

On a finite square lattice Λ ⊂ Z2 consisting of N = L2

sites, a real degree of freedom φi is assigned to each lattice
site i ∈ Λ. By N (i) we denote the subset of Λ consisting
of the four nearest-neighboring sites of i on the lattice
under the assumption of periodic boundary conditions.
The potential energy function of this model is given by

V (q) =
∑

i∈Λ

[

λ

4!
q4
i −

µ2

2
q2
i +

J

4

∑

j∈N (i)

(qi − qj)
2

]

, (1)

where q = (q1, . . . , qN ) denotes a point in configuration
space Γ = RN [10]. The parameter J > 0 determines the
coupling strength between nearest-neighboring sites and
the parameters λ, µ > 0 characterize a local double-well
potential each degree of freedom is experiencing.

In the thermodynamic limit N → ∞ this model is
known to undergo, at some critical temperature Tc, a
continuous phase transition, in the sense that the config-
urational canonical free energy

f(T ) = − lim
N→∞

1

Nβ
ln

∫

Γ

dNq e−V (q)/T (2)

is nonanalytic at T = Tc. The transition is from a “ferro-
magnetic” phase with nonzero average particle displace-
ment to a “paramagnetic” phase with vanishing aver-
age displacement (see [11] for more details as well as for
Monte Carlo results).

Since we are interested in whether, and how, the phase
transition reflects in the properties of the potential en-
ergy landscape, it is more adequate for our purposes to
compare not to Tc, but to the critical potential energy
per lattice site, vc, of the transition [12]. Both quantities
are unambiguously related to each other in the thermo-
dynamic limit via the caloric curve v(T ). This is true

independently of the statistical ensemble used, as these
ensembles are known to be equivalent for short-range
models like the one we are studying [13].

The critical potential energy vc is less frequently stud-
ied, in fact the only data we could find in the literature
are from Monte Carlo simulations of fairly small system
sizes N = 20×20 in [14], with parameter values λ = 3/5,
µ2 = 2, and J = 1. We use the same values of λ and
µ2 in the following, but will show results for a range of
couplings J . Since the value of vc is a crucial benchmark
when relating our stationary point analysis to the phase
transition of the φ4 model, we have performed standard
Metropolis Monte Carlo simulations for somewhat larger
system sizes up to 128 × 128 and 107 lattice sweeps.

Some of the Monte Carlo results have already been
reported in [9]. From these plots one can read off a crit-
ical potential energy per lattice site of roughly vc ≈ 2.2
for coupling J = 1. An improved estimate could be ob-
tained by more extensive Monte Carlo simulations and/or
a finite-size scaling analysis of the data, but the results
as they are will be sufficient for our purposes. We have
determined vc also for a few other couplings, obtaining
the rough estimates vc ≈ −5.0 for J = 0.2 and vc ≈ −3.0
for J = 0.35.

III. NUMERICAL POLYNOMIAL HOMOTOPY

CONTINUATION METHOD

The idea behind numerical continuation methods is to
first find the solutions of a simple system of equations
which shares several important features with the given
system. Then, in a second step, starting from these so-
lutions one continues them towards the given system in
a systematic way. Homotopy continuation methods have
been around already for several decades [15, 16]. With
more recent machinery like the numerical polynomial ho-
motopy continuation (NPHC) method used in the present
article, the method is guaranteed to find all isolated so-
lutions of systems of polynomial equations [17, 18].

We consider a system of m polynomial equations

P (q) =







p1(q)
...

pm(q)






= 0 (3)

in the variables q = (q1, . . . , qm)T , and we assume that all
solutions of (3) are isolated. Then Bézout’s Theorem (see
Chapter 8 of [17]) asserts that a system of m polynomial
equations in m variables has at most

∏m
i=1 di isolated

solutions where di is the degree of the ith polynomial.
This bound is called the classical Bézout bound, and it is
known to be sharp for generic systems [i.e., for generic
values of the coefficients of the polynomials pi(q)].

The continuation of solutions is formally described by
the homotopy

H(q, t) = P (q)(1 − t) + γtS(q), (4)
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where γ is a complex number and

S(q) =







s1(q)
...

sm(q)






= 0 (5)

is again a system of m polynomial equations. Varying
the parameter t ∈ [0, 1], H can be deformed from the
start system H(q, 1) = γS(q) at t = 1 into the polynomial
system of interest, H(q, 0) = P (q) at t = 0. The following
conditions have to be satisfied in order to guarantee that
all solutions of P can be computed from this homotopy:

1. The solutions of S(q) = 0 can be computed.

2. The number of solutions of S(q) = 0 satisfies the
classical Bézout bound for P (q) = 0 as an equality.

3. The solution set of H(q, t) = 0 for t ∈ (0, 1] consists
of a finite number of smooth paths, called homotopy

paths, which are parameterized by t.

4. Every isolated solution of H(q, 0) = P (q) = 0 can
be reached by some path originating at a solution
of H(q, 1) = γS(q) = 0.

Satisfying the first two criteria hinges on a suitable choice
of the start system S. Criteria 3 and 4 are guaranteed to
be satisfied based on the genericity of the constant γ in
(4). Theorem 8.4.1 of [17] states that these criteria hold
for all but finitely many γ on the unit circle.

The start system S(q) = 0 can, for example, be taken
to be

S(q) =







qd1

1 − 1
...

qdm

m − 1






= 0, (6)

where di is the degree of the ith polynomial of P (q) = 0.
The system (6) is easy to solve and guarantees that the
total number of start solutions is

∏m
i=1 di and all solutions

are nonsingular.
Each homotopy path, starting at a solution of S(q) = 0

at t = 1, is tracked to t = 0 using a path track-
ing algorithm, e. g., Euler predictor and Newton correc-
tor methods. There are a number of freeware packages
well-equipped with path trackers such as PHCpack [19],
HOM4PS2 [20], and Bertini [21]. We used the latter one
to get the results in this paper. Tracking the solutions
to t = 0, the set of endpoints of these homotopy paths is
the set of all solutions to P (q) = 0. Since each homotopy
path can be tracked independently, NPHC is inherently
parallelizable.

The set of real solutions can be obtained from the set
of complex solutions by considering the imaginary part
of the solutions (typically, up to a numerical tolerance).
We remark that the approach of [22] implemented in al-
phaCertified [23] can be used to certify the reality or
non-reality of a nonsingular solution given a numerical

approximation of the solution. The ability to compute
all complex solutions, and thus all real solutions, dis-
tinguishes the NPHC method from most other methods.
Due to the power of the NPHC method, it has recently
found several applications in theoretical physics [24].

To find the stationary points of the nearest neighbor
φ4 model, we need to solve its stationary equations, i. e.,







∂V
∂q1

(qs)
...

∂V
∂qN

(qs)






= 0 (7)

with qs ≡ (qs
1, . . . , q

s
N ) ∈ CN . Since (7) is a system of

N coupled third-order polynomial equations, the clas-
sical Bézout bound is 3N . For this particular system,
we know that the number of solutions is exactly 3N

(counting multiplicity) for any parameters J and µ2 with
λ 6= 0. This follows since the system consisting of all the
terms of degree three is a decoupled system of monomi-
als. That is, there is only one term of degree three for
the ith polynomial in (7) which depends only upon qs

i ,
namely the monomial λ

6 (qs
i )

3. This implies (7) has no
solutions “at infinity” so that the classical Bézout bound
must be sharp (counting multiplicity). Thus, we have a
solid check on our claim to find all solutions using ho-
motopy continuation. However, the problem is that 3N

grows rapidly as N increases and, due to current compu-
tational limitations, we are restricted to only small size
lattices such as 3 × 3 and 4 × 4.

For the 3 × 3 lattice, it took an average of roughly a
minute to compute the 39 solutions (counting multiplic-
ity) for a given value of J using Bertini running on a 2.4
GHz Opteron 250 processor with 64-bit Linux. For the
4 × 4 lattice, it took an average of roughly 8.5 hours to
compute the 316 solutions (counting multiplicity) for a
given value of J using Bertini running on a cluster con-
sisting of 12 nodes, each containing two 2.33 GHz quad-
core Xeon 5410 processors running 64-bit Linux.

IV. PROPERTIES OF STATIONARY POINTS

Using the NPHC method as explained in the previous
section, we can obtain all complex stationary points of V .
In the context of energy landscape methods, one is usu-
ally interested in the real solutions only, i. e., solutions
of (7) with qs ∈ RN . In the next few subsections, we
report on the properties of these real stationary points:
In Sec. IV A the number of real stationary points is ana-
lyzed and the existence of singular solutions is discussed.
In Sec. IVB we study the potential energies V (qs) of the
real qs, and in Sec. IVC their Hessian determinants. In
Sec. IVD the Euler characteristic of certain submanifolds
in configuration space, computed from the indices of the
real stationary points, is investigated. Since, as men-
tioned in the Introduction and discussed in a Letter [9],
we found that the real stationary points are not related
to the phase transition of the model (at least not in the
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FIG. 1. (Color online) The number of real stationary points
of V for 3 × 3 (left) and 4 × 4 (right) lattices, plotted loga-
rithmically as a function of the coupling J .

direct way predicted by the theorem in [4]), we extended
our analysis to include complex stationary points. The
results of this analysis are reported in Sec. IV E.

A. Real stationary points

For J = 0, i. e., in the absence of coupling, the sta-
tionary points qs of the potential V in (1) can be calcu-
lated analytically, obtaining 3N distinct solutions qs =
(qs

1, . . . , q
s
N ) with qs

j ∈ {0,±
√

6µ2/λ}. Since λ, µ > 0,
these stationary points are all real. Upon increasing the
coupling constant J , real stationary points start to bifur-
cate into complex ones, and the number of real stationary
points decreases gradually from 3N for J = 0 to only 3
stationary points for some sufficiently large J . This be-
havior is illustrated for 3 × 3 and 4 × 4 lattices in Fig.
1. The three stationary points that persist at large J
are the two global minima qs = (qs

1, . . . , q
s
N ) where all

qs
j =

√

6µ2/λ, respectively −
√

6µ2/λ, and a stationary
point of index 1 where all qs

j = 0.
The value of J at which the number of real solutions

drops to 3 can be computed semi-analytically by com-
puting with Mathematica the index of the stationary
point qs = (0, . . . , 0) as a function of J and then search
for the value of J at which the index drops to 1. As re-
ported in Fig. 2, this value is found to be N -dependent
and a parabola provides an excellent fit to the numerical
data of J(N).

We have also investigated the values of J for which the
system has at least one real singular solution, i.e., bifur-
cation points of the parametric systems, using NPHC.
At these solutions the potential has degenerate critical
points, a feature that does not make V qualified to di-
rectly apply Morse theory as described in Section IVD.
There are two approaches that we used to compute where
the bifurcations in a one-parameter system occur, which
we describe in the context of computing where the first
bifurcation occurs. In the first approach, we use the ba-
sic philosophy of the NPHC method with a slight change
that we treat J itself as a continuation parameter, i.e.,
we start with the known solutions at J = 0 and simply
track the solutions as J increases to determine the small-
est value of J > 0 where solutions coalesce. This yielded
the values of J ≈ 0.12907 and J ≈ 0.12894 for the 3 × 3

and 4 × 4 lattice, respectively.
In the second approach, we use the fact that the Hes-

sian determinant, detHV (q, J), where,

HV (q) =

(

∂2V (q)

∂qi∂qj

)

i,j

, (8)

is zero at the singular solutions. We add this equation,
detHV (q, J) = 0, as an additional equation in the system
of stationary equations leaving J unfixed so that it can
be treated as a variable. We then use Bertini to compute
the set S of values of J where this combined system has
a solution. Since all of the solutions at J = 0 are non-
singular, this must hold in a neighborhood containing 0.
Based on the construction of S [25], we know there must
be a nonzero univariate polynomial s(x) such that S is
exactly the set of roots of s.

The coefficients of the polynomial s depend upon λ
and µ2. If λ and µ2 are rational numbers, then s has
rational coefficients meaning that S is a finite subset of
the set of algebraic numbers, a countable subset of C.
For example, with λ = 3/5 and µ2 = 2, we know that
the set V of complex stationary points must contain 3N

distinct points when J is a transcendental number, e. g.,
J = π.

For the 3 × 3 lattice, Bertini found that S consists of
1357 complex numbers, of which 297 are real and 178 are
positive. The smallest positive value using this approach
is also J ≈ 0.12907. This computation also yields that,
for J > 11.00169, all stationary points must be nonsin-
gular. Performing this same computation using the 4×4
lattice is currently beyond the available computational
resources.

B. Stationary values

In the Introduction, we briefly reviewed the research
efforts aiming at establishing a relation between phase
transitions and stationary points of the potential energy
function V . These efforts all have in common that they

10 20 30 40 50 60
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50
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J

FIG. 2. (Color online) The value of J at which, for a given
linear system size L, the number of real stationary points
of V drops to 3. The dots are data points computed with
Mathematica, the line is the parabola 0.0507366L2 fitted to
the data.
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FIG. 3. (Color online) The scaled Hessian determinant D plotted vs. the stationary values vs for all real stationary points qs of
a 4×4 lattice with couplings J = 0.1, 0.2, 0.3, and 0.5 (from left to right). The distribution of potential energies also illustrates
that vs ≤ 0 for all qs, as discussed in Sec. IVB.

focus on a conjectured relation between the occurrence
of a phase transition at some critical potential energy vc

and the properties of stationary points qs with station-
ary values vs = V (qs)/N coinciding with vc [26]. From
the stationary points obtained by means of the numerical
homotopy continuation method for lattice sizes 3×3 and
4 × 4, it is straightforward to compute, via (1), the sta-
tionary values vs. For arbitrary couplings J , we found
that vs ≤ 0 for all stationary points qs. An analytical
calculation, reported in [9], has confirmed this observa-
tion and extended it to lattices of arbitrary sizes. As
explained in this same reference, it is this upper bound
on vs which disproves the theorem by Franzosi and Pet-
tini [4], as it cannot be reconciled with the fact that the
critical energy vc of the phase transition becomes positive
for couplings J & 0.8.

C. Hessian determinant

Once a relation between stationary points of the poten-
tial energy landscape and the occurrence of phase transi-
tions had been conjectured in the 1990s, it immediately
became clear that not all stationary points induce phase
transitions. Therefore an obvious question to ask was: Is
there a certain property of a stationary point that ren-
ders it capable of inducing a phase transition? Some
years later it was noticed that the Hessian determinant
HV of the potential energy function V , evaluated at the
stationary points, is crucial for discriminating whether or
not a stationary point can induce a phase transition in
the thermodynamic limit [27]. For some models, even in
the absence of an exact solution, this insight facilitated
the exact analytic computation of transition energies [28].
We refrain here from stating the precise criterion, noting
only that stationary points with a Hessian determinant
approaching zero in the thermodynamic limit play an im-
portant role.

We evaluated the determinant of the Hesse matrix (8)
at all of the real stationary points qs of V obtained by
the homotopy continuation method. In Fig. 3, we show
the rescaled Hessian determinant

D = |detHV (qs)|1/N , (9)

plotted versus the stationary values vs = V (qs)/N for

all real stationary points of 4 × 4 lattices and various
couplings J . From these plots one can immediately verify
that vs ≤ 0 for all real stationary points and arbitrary
coupling J , as discussed in Sec. IVB. We will come back
to these plots in Sec. V when we will use them to compare
the homotopy continuation data to those obtained by
means of the Newton-Raphson method.

D. Euler characteristic

In the Introduction, and also at the beginning of Sec.
IV, we referred to the work of Franzosi and Pettini [4]
or to related publications as dealing with the relation of
stationary points of the potential energy function V to
thermodynamic phase transitions. Although this is cor-
rect as regards content, it is not obvious at first glance,
as these results were originally phrased in terms of topol-
ogy changes of certain submanifolds Mv in configuration
space Γ,

Mv =
{

q ∈ Γ
∣

∣ V (q) ≤ Nv
}

. (10)

Upon variation of the parameter v, the topology of the
submanifolds Mv may change at some value vt, in the
sense that Mv is not homeomorphic to Mw for v < vt

and w > vt. The occurrence of phase transitions at some
critical potential energy vc was then conjectured to be
related to the presence of topology changes with energies
vt in an open neighborhood of vc. Via Morse theory,
such topology changes can be related to the presence of
stationary points of V with stationary values vs = vt (see
[3] for an elementary introduction).

In the context of configuration space topology, the Eu-
ler characteristic χ(Mv) of the manifolds Mv has been
used in several publications as a way of characterizing
the changes of topology [8, 29]. The Euler characteris-
tic χ is a topological invariant, i. e., different values of χ
for manifolds Mv and Mw imply that Mv and Mw are
not homeomorphic. Hence monitoring the Euler char-
acteristic of the family {Mv}v∈R

of configuration space
subsets under variation of the parameter v, we may get
an impression of the way the topology of the Mv changes.
Plotting the related quantity

σ(v) = lim
N→∞

1

N
ln |χ(Mv)| (11)
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FIG. 4. (Color online) Graphs of the logarithm of the Euler characteristic, ln |χ(Mv)|/N , for a 4 × 4 lattice and coupling
strengths J = 0.1, 0.15, 0.3, and 0.45 (from left to right).

as a function of the potential energy v, a kink in σ was
observed precisely at the critical energy vc of the phase
transition for several models studied [8, 28, 29].

Knowing all stationary points of V with stationary val-
ues vs up to a given value v, the Euler characteristic of
Mv can be calculated by means of the formula

χ(Mv) =
N

∑

i=0

(−1)iµi(v), (12)

where the Morse numbers µi(v) are defined in this con-
text as the number of stationary points qs of V with index
i and stationary value vs ≤ v. The index i is defined as
the number of negative eigenvalues of the Hessian matrix
HV (qs), which is assumed to have only nonzero eigenval-
ues. As we noted earlier, for finitely many values of J the
corresponding systems of equations indeed possess singu-
lar solutions. Using the NPHC method, we know which
of the values of J possess at least one singular solution
and in this section, we avoid such values of J .

We have computed the Euler characteristic χ(Mv)
from the real stationary points qs of V as obtained by
the homotopy continuation method, and the results are
plotted as a function of v and for various values of J in
Fig. 4. Since the energy levels are very closely spaced, it
is difficult to distinguish one from another. Here, we use
the tolerance 10−8, i.e., if |v2 − v2| ≥ 10−8, then v1 and
v2 are distinct energy levels. It is anything but a sur-
prise that no kink or other signature is visible in χ(Mv)
at v = vc: As was discussed in Sec. IVB, the stationary
values vs are nonpositive, and the Euler characteristic
χ(Mv) is therefore constant for v > 0. In fact, the v vs
1
N ln |χ(Mv)| plots do not even exhibit smooth curve like
behavior as claimed in [8]. Since the critical potential en-
ergy vc can be positive for sufficiently large J , it is clear
that in general it cannot be accompanied by a signature
in χ(Mv).

We can, however, use the computation of the Euler
characteristic as a consistency check: For potential en-
ergies v > 0, the manifold Mv is homeomorphic to an
N -dimensional ball, and the Euler characteristic is there-
fore known to be χ(Mv) = 1 for all v > 0. Computing
the alternating sum (12) with all the stationary points
and their indices as an input, we find that at v = 0,
χ(Mv) = 1. Since there is no stationary point for v > 0,
χ(Mv) = 1 for all v > 0. We have confirmed this result

for all the values of J without singular solutions used in
this paper.

E. Complex stationary points

In Sec. IV B, we discussed the fact that, for arbitrary
coupling J , the stationary values vs are never positive,
while the critical energy vc of the phase transition of
the nearest-neighbor φ4 model becomes positive for suf-
ficiently large J . A direct relation between phase tran-
sitions and stationary points of V (in the spirit of the
one in [4]) is hence ruled out, but one might wonder if
a modification of the conjectured relation might be more
successful.

One possible and rather straightforward generalization
of this conjecture is obtained by considering not only real
stationary points, but also complex ones. The reasoning
behind this generalization is that the presence of com-
plex stationary points whose imaginary parts go to zero
with increasing system size N should have the same (or
at least a similar) effect on the thermodynamic proper-
ties of the system as their real counterparts. To test this
idea, we have used the (in general complex) stationary
points qs obtained by means of the homotopy continu-
ation method and plotted in Fig. 5 real and imaginary
parts of the (complex) potential V (qs) for various values
of the coupling J .

At first sight the results are encouraging, as they show
that, for sufficiently large J , there exist complex qs with
positive real stationary values V (qs). Moreover, for the
couplings J we studied, the maximal real stationary value
is larger than the critical potential energy of the phase
transition. Unfortunately, from the data we have there is
not much more we can say, and it would be unreasonable
to conjecture a relation of the above mentioned kind on
the basis of our results.

V. NEWTON-RAPHSON METHOD

The Newton-Raphson method is a powerful and fre-
quently used iterative algorithm for approximating the
roots of a function (see Sec. 9.7 of [30]). In the context
of energy landscapes, the stationary points of V are de-
termined by the system of N equations (7), so the prob-
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FIG. 5. (Color online) Imaginary vs. real parts of the complex potential energies V (qs)/N for all complex solutions qs of a 4×4
lattice with coupling J = 0.1, 0.2, 0.3, and 0.5 (from left to right). For small couplings J . 0.2 the real part is nonpositive for
all qs, whereas for larger couplings some of the stationary values move into the right halfplane.

lem is equivalent to finding the roots of the vector-valued
function on the left-hand side of (7).

From a given initial point in phase space, the Newton-
Raphson method iteratively finds approximations to a
stationary point. If the function has more than one sta-
tionary point, it will depend on the initial value of the
iteration which of the stationary points is found. For
the potential energy function (1) of the two-dimensional
nearest-neighbor φ4 model, we have seen in Sec. III that,
at least for small coupling J , the number of stationary
points is exponentially large in the number N of lattice
sites. The result of the Newton-Raphson computation
will therefore crucially depend on the set of initial points
chosen for the iterations. First, the initial points have to
differ sufficiently from each other, in order to make sure
that different stationary points are found in the various
iteration runs. Second, properties of the initial points
will have an influence on the properties of the stationary
points found, as the outcome of a Newton-Raphson run
typically yields a stationary point that is in some sense
close to the initial point.

For a given coupling J and lattice sizes up to N =
32× 32, we generated sets of 106 initial points by means
of a standard Metropolis Monte Carlo dynamics in con-
figuration space [31]. The temperature T in the canon-
ical acceptance rate of the Monte Carlo algorithm was
set to T = 100, and we will comment on this choice of
T towards the end of this section. Starting from each
of the thus generated initial points, the routine newt

from [30], a globally convergent version of the Newton-
Raphson method, was used to compute stationary points
of V . Like in the homotopy continuation computations,
all stationary points qs were found to have nonpositive
potential energies vs ≤ 0, and the number of stationary
points was found to decrease dramatically with increas-
ing coupling J .

For smaller couplings (J = 0.1 and J = 0.2) where
the number of stationary points is large, we have plotted
the results of the Newton-Raphson calculations in Fig.
6. Like for the results from numerical continuation in
Sec. III, we have plotted the scaled Hessian determinant
D at a stationary point versus its stationary value vs.
For the smaller system sizes N = L × L with L = 3
and L = 4, the shapes of the clouds of points shown in
Fig. 6 resemble the ones produced from the complete set

of stationary points in Fig. 3. For larger system sizes
L = 6, 8, 16, the cloud of points becomes more and more
focused, being localized in that region of the (v,D) plane
where the concentration of stationary points is largest.

We have seen that, in contrast to the homotopy contin-
uation method where only small system sizes L = 3 and
L = 4 were accessible, the Newton-Raphson method can
be applied to much larger sizes up to L = 32 (and even
larger with more numerical effort). However, for small
couplings J and the larger L considered, the number of
real stationary points of V is expected to be of the order
of 3N , and it is evident that we can not compute more
than a small fraction of them.

This is reminiscent of the situation one encounters in
Monte Carlo simulations where only a tiny subset of a
tremendously large configuration space can be sampled.
In the Monte Carlo context, the problem can be over-
come (or at least significantly abated) by the technique of
importance sampling [31]. We have tried a very straight-
forward (and possibly naive) adaptation of this idea to
the Newton-Raphson computation of stationary points,
simply by adjusting the parameter T of the Metropolis
importance sampling algorithm which was used for gen-
erating the initial points of the Newton-Raphson search.
Somewhat disappointingly, the shape of the cloud of
points in Fig. 6 turned out to be entirely insensitive to
changes in T . Using for example a small value of T , we
would have expected to end up with stationary points of
lower potential energy on average, but surprisingly this

FIG. 6. (Color online) Numerical results from the Newton-
Raphson method. For system sizes N = L × L with L = 3,
4, 6, 8, and 16, the scaled Hessian determinant D is shown
versus the stationary value vs. Up to 106 different stationary
points qs per system size have been computed for J = 0.1
(left) and J = 0.2 (right).
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was not the case.
There are other, more involved ways of how one could

shift the search of stationary points to higher or lower po-
tential energies, but we have not yet implemented such
refinements. One could, for example, use a more ad-
vanced search routine (like the OPTIM program package
[32]) which allows one to search for stationary points of
a given index, i. e., of a given number of negative eigen-
values of the Hessian at the stationary point. Since the
index of a stationary point and its potential energy are
expected to be correlated, such a routine should find sta-
tionary points of low energy when searching for small
indices, and vice versa.

VI. CONCLUSIONS

Two numerical methods for the computation of sta-
tionary points of multivariate functions were discussed in
this article: the numerical polynomial homotopy contin-
uation method (NPHC) and a globally-convergent vari-
ant of the Newton-Raphson method. We applied both
methods to the potential energy function V of the two-
dimensional nearest-neighbor φ4 model on L × L square
lattices. The NPHC method allows one to obtain all sta-
tionary points of V , but is limited to system sizes up to
4 × 4 with the computational resources we had at our
disposal. With the Newton-Raphson method we have
computed stationary points for larger lattices of up to
32×32 sites, but only a small subset of all the stationary
points of such a large system could be obtained.

The motivation for this type of study originates from a
number of conjectures relating the stationary points of V
to the occurrence of phase transitions in the thermody-
namic limit. These conjectures refer to certain quantities
which can be computed from the stationary points of V ,
like their potential energies, their Hessian determinants,
and the Euler characteristic of the underlying potential
energy manifolds in configuration space. We have cal-
culated these and a few other quantities from the sta-
tionary points of the φ4 model obtained with NPHC and
Newton-Raphson, but—contrary to what the conjectures
suggest—no sign of the phase transition of the model was
found. This failure and its consequences, including the
falsification of a theorem allegedly proven in [4], was dis-
cussed in a Letter [9].

The NPHC results for the nearest-neighbor φ4 model

on a 4 × 4 lattice can be overviewed as follows:

1. The number of real stationary points decreases
from 3N for J = 0 to only 3 with increasing J

2. Singular solutions occur only for finitely many val-
ues of J .

3. The stationary values vs are all nonpositive for ar-
bitrary couplings J .

4. The Euler characteristic, computed as the alternat-
ing sum of the Morse numbers, confirms the cor-
rect and complete computation of all the stationary
points.

5. Unlike real stationary points, complex stationary
points of V can have positive stationary values, but
we were unable to identify a relation between these
positive values and the positive phase transition en-
ergy of the φ4 model for larger J .

Since the Newton-Raphson method yields only a sub-
set of all the stationary points, we compared these results
for system sizes up to 16 × 16 to those obtained by the
NPHC method for 4 × 4 lattices. For this comparison
we chose plots of the rescaled Hessian determinant D as
defined in (9) vs. the potential energy v. A comparison
of different lattice sizes is of course problematic, but a
general trend can be deduced: For system sizes 8 × 8
and larger, the number of stationary points becomes in
general so large that only that region in the (D, v)-plane
is explored where the (strongly peaked) density of sta-
tionary points is the highest. Importance sampling may
provide a way out of these difficulties, but we have not
yet implemented such a scheme.
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