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Abstract. We propose a new hybrid symbolic-numerical approach to the center-focus

problem. The method allowed us to obtain center conditions for a three-dimensional

system of differential equations, which was previously not possible using traditional, purely

symbolic computational techniques.

1. Introduction

1.1. Background. Determination of the local stability of an isolated singular point for

a system of ordinary differential equations (ODEs) is one of the fundamental problems

encountered across various branches of applied sciences and engineering. For a system

(1) ẋ = f(x), x ∈ Rn,

where f : Rn ⊃ ∆ → Rn is smooth, and x0 is a singularity, i.e. f(x0) = 0, the celebrated

Hartman-Grobman theorem [12] states that the linearization of (1) or equivalently the

set of the eigenvalues λ1, . . . , λn of the Jacobian matrix Df(x0) characterizes the local

qualitative behavior of the trajectories provided that the eigenvalues have non-zero real

part, i.e. Re(λj) 6= 0. In this case, we say that x0 is hyperbolic, otherwise we say that it is

nonhyperbolic otherwise. To establish the local stability of nonhyperbolic singular points,

higher order terms have to be taken into account.

One of the simplest and well-known stability questions is the center-focus (or center)

problem, originally defined for planar polynomial differential systems, i.e., system (1) when

n = 2 and f is a system of 2 polynomials in R[x] of some degree m. It consists of obtaining

conditions on the coefficients of f(x) to distinguish between a local focus (see Fig. 1(a)) or a

center (see Fig. 1(b)), which has been the subject of intensive research (e.g., [59, 68, 72, 73,

15, 66, 10, 9, 56, 14, 23]). Although the problem is open in its full generality, it has been

solved for some important subclasses of planar polynomial vector fields. As an example,

consider the quadratic system defined by

(2)
u̇ = v + a1u

2 + a2uv + a3v
2

v̇ = −u+ a4u
2 + a5uv + a6v

2,
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(a) Focus (b) Center

Figure 1. An example of a stable focus (a) and a center (b).

where a1, . . . , a6 ∈ R. The center conditions were established by Dulac [19] and Kapteyn [42].

It is well-known (see e.g. [73, 56]) that, for system (2), the Bautin ideal B is generated by

the first three focus quantities of this system [7]. Moreover, the center variety V(B) ⊂ R6

of the ideal B has four irreducible components, namely

V(B) = V(IHam) ∪V(Isym) ∪V(I4) ∪V(Icon),

corresponding to Hamiltonian systems, reversible systems, the Zariski closure of those sys-

tems having three invariant lines, and the Zariski closure of systems having an invariant

conic and an invariant cubic, respectively.

The center-focus problem can also be defined for higher dimensional systems [8] and have

recently been studied for a number of three-dimensional families [21, 11, 27, 49, 50, 51]. We

continue this study here by applying our new symbolic-numerical approach to a three-

dimensional system presented in Sec. 1.3 with results presented in Theorems 1 and 3.

1.2. Computational challenges and the new approach. The process of solving the

center-focus problem for a specific system of differential equations can be divided into

three steps [13]. First, the computation of certain number, say p ∈ N, of focus quantities

(also called Lyapunov quantities), which are polynomials in the parameters of the system.

Second, finding the common zeros of the polynomial system formed by the focus quantities,

or more precisely the determination of the irreducible component of the variety of the

ideal generated by the first p focus quantities. Third, for the system restricted to each

component, one checks if the necessary conditions for the existence of a center can be

applied. This typically involves the application of the Darboux theory of integrability or

reduction to the center manifold.

Techniques for efficient computation of Lyapunov quantities has been motivated both

by mathematical and engineering problems. Over the years, a number of algorithms have

been developed [57, 53, 29, 30, 48, 43, 71]. In this work, we used a method (described

in [21]) for computing the focus quantities for a system in dimension three, which is based

on the equivalence of the existence of a center and a local analytic first integral in the

neighborhood of a singular point (more details are provided in Sec. 2). The advantage of
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this approach is that it allows to avoid center manifold approximation, which is especially

important since its power series approximation of analytic or even polynomial systems need

not converge (e.g., see [1, 60, 51]).

From the computational point of view, the biggest obstacle in solving the center-focus

problem for a specific system is the determination of the irreducible components of the

variety (i.e., solution set) defined by a certain number of focus quantities. The most common

approach [2, 32, 24] is the application of computer algebra algorithms for computing the

primary decomposition of the ideal generated by the focus quantities such as Gianni-Trager-

Zacharias (GTZ) [31] or Shimoyama-Yokoyama (SY) [58], which have been implemented in

various symbolic packages (e.g. Singular [35], or Macaulay [34]). The computational

difficulty related with Gröbner basis calculation over the field of characteristic zero was eased

by implementation of modular arithmetics [70, 20, 55], and successfully used in numerous

problems [22, 36, 24, 67]. Unfortunately, in practice, the application of algorithms that use

Gröbner bases (also with modular arithmetics) is computationally very heavy and the center

conditions can only be obtained for specific systems with few parameters. In this paper, we

replace this particular step and find the common zeros of the polynomial systems formed

by focus quantities using numerical algebraic geometry techniques (for more details, see

Sec. 3 and the books [6, 65]). The parallelizablity of numerical algebraic geometry together

with a regeneration based approach [38, 41] and exactness recovery [4] provides a natural

alternative to Gröbner basis methods. In particular, for the first time, we are able to solve

the center-focus problem for a quadratic, three-dimensional system described next.

1.3. An application. Consider a third-order differential equation of the form

(3)
...
u = ü+ u̇+ u+ f(u, u̇, ü),

where f = f(u, u̇, ü) ∈ R[u, u̇, ü] is a polynomial of degree m. Following [49], we can

equivalently write

(4) u̇ = −v + h(u, v, w), v̇ = u+ h(u, v, w), ẇ = −w + h(u, v, w),

where h(u, v, w) = f(−u+w, v−w, u+w)/2, which we call the standard form of system (3).

Note that the origin of (4) is a nonhyperbolic singularity at which the associated Jacobian

has two purely imaginary eigenvalues λ1,2 = ±i and λ3 = −1. Various dynamic aspects of

systems of the form (4) have recently been considered, including the center conditions [11,

18, 21, 50], limit cycle bifurcations [69, 51], Lie symmetries [27], and isochronicity [54]. In

particular, the center conditions on the local center manifold for system (4), where

(5) h(u, v, w) = a1u
2 + a2v

2 + a3w
2 + a4uv + a5uw + a6vw,

were studied in [49]. Although it was possible to compute the first eight focus quantities,

standard symbolic algorithms (e.g. GTZ and SY) were not able to provide the decomposi-

tion of the Bautin ideal into primes for a general six-parameter system, even over the field of
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non-zero characteristics. On the other hand, the application of our hybrid approach using

numerical algebraic geometry to decompose described in this paper, allowed us to obtain

the center conditions for a general six-parameter system (4).

Theorem 1. The system (4) with h(u, v, w) as in (5) admits a center on the local center

manifold if and only if one of the following holds:

(1) a1 = a2 = a4 = 0

(2) a1 − a2 = a3 = a5 = a6 = 0

(3) a1 + a2 = a3 = a5 = a6 = 0

(4) a1 + a2 = 2a2 − a3 + a6 = a3 − a4 − 2a5 = 2a4 + 3a5 + a6 = 0

(5) 2a1 − a6 = 2a2 + a5 = 2a3 − a5 + a6 = a4 + a5 + a6 = 0

(6) a1 − a2 = 2a2 + a6 = a4 = a5 + a6 = 0

(7) 2a1 + a2 = 2a2 + a6 = 4a3 + 5a6 = a4 = 2a5 − a6 = 0.

As an easy conclusion, note that the irreducible components of the center variety (i.e. the

variety of the Bautin ideal generated by the focus quantities) of system (4) for quadratic h (5)

are vector subspaces of its six-dimensional parameter space, which was conjectured in [49].

1.4. Outline. The rest of the paper is organized as follows. Section 2 summarizes focus

quantities and their computation. Section 3 summarizes the numerical algebraic geometric

solving approach along with exactness recovery method used to prove Theorem 3 in Sec-

tion 4. Appendix A presents the Dulac-Kapteyn criterion of quadratic planar systems with

Appendix B summarizing Darboux theory of integrability.

2. Focus quantities computation in R3

This section is a review of the method described in [21] (see also [49, 51]) for studying the

center problem on a center manifold for vector fields in dimension three. Let X : U → R3

be a real analytic vector field, such that DX(0) has one non-zero and two purely imaginary

eigenvalues. By an invertible linear change of coordinates and a possible rescaling of time,

the system of differential equations u̇ = X(u) can be written in the form

(6)

u̇ = −v + P (u, v, w)

v̇ = u+Q(u, v, w)

ẇ = βw +R(u, v, w),

where β is a non-zero real number. Let X = (−v+P )∂/∂u+ (u+Q)∂/∂v+ (βw+R)∂/∂w

denote the corresponding vector field. A local first integral of system (6) is a nonconstant

differentiable function H defined in a neighborhood of the origin in R3 mapping into R that

is constant on trajectories of (6), equivalently, H satisfies

(7) XH := (−v + P )
∂H

∂u
+ (u+Q)

∂H

∂v
+ (βw +R)

∂H

∂w
≡ 0
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sufficiently close to the origin. A formal first integral for system (6) is a non-constant formal

power series H in u, v and w such that when P , Q, and R are expanded in power series at

the origin, every coefficient in the formal power series in (7) is zero.

It is well-known that system (6) admits a local center manifold W c
loc at the origin,

e.g., see [44, Thm. 5.1]. One of the main tools for detecting a center on a center mani-

fold is the following theorem (see, e.g., [8, 21]).

Theorem 2. The following statements are equivalent.

(a) The origin is a center for X |W c
loc

.

(b) System (6) admits a local analytic first integral at the origin.

(c) System (6) admits a formal first integral at the origin.

In fact, a real analytic local first integral from statement (b) (as well as a formal first

integral from statement (c)) can always be chosen to be of the form H(u, v, w) = u2+v2+· · ·
where the dots mean higher order terms in a neighborhood of the origin in R3.

The equivalence of statements (a) and (b) is called the Lyapunov Center Theorem with

a proof presented in, e.g., [8]. By this theorem, we can restrict our efforts to investigate the

conditions for the existence of a first integral H which is equivalent to determine necessary

and sufficient conditions for the existence of a center or a focus on the local center manifold.

From now on, we assume that P , Q andR in (6) are polynomials. We begin by introducing

the complex variable x = u + iv. The first two equations in (6) are equivalent to a single

equation ẋ = ix + · · · , where the dots represent a sum of homogeneous polynomials of

degrees between 2 and n. Let x̄ denote the complex conjugate of x. We add to this equation

its complex conjugate, replacing x̄ everywhere by y which is regarded as an independent

complex variable and replacing w by z simply as a notational convenience. This yields the

following complexification of (6):

(8)

ẋ = ix+
n∑

p+q+r=2

apqrx
pyqzr,

ẏ = −iy +

n∑
p+q+r=2

bpqrx
pyqzr,

ż = βz +
n∑

p+q+r=2

cpqrx
pyqzr,

where bqpr = āpqr and cpqr are such that
∑n

p+q+r=2 cpqrx
px̄qwr is real for all x ∈ C and

w ∈ R. Let X be the corresponding vector field of system (8) on C3. Existence of a first

integral H(u, v, w) = u2 + v2 + · · · for system (6) is equivalent to the existence of a first

integral for system (8), denoted again by H, of the form

(9) H(x, y, z) = xy +
∑

j+k+`=3

vjklx
jykz`.
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We now investigate the existence of a first integral H for system (8) by computing the

coefficients of XH and equating them to zero. When H has the form (9), the coefficient

gjk` of xjykz` in XH can be calculated explicitly (see [21]). Except when j = k and ` = 0,

the equation gjk` = 0 can be solved uniquely for νjk` in terms of the known quantities ναβγ

with α+ β + γ < j + k+ `. A formal first integral H thus exists if gKK0 = 0 for all K ∈ N.

An obstruction to the existence of the formal series H occurs when the coefficient gKK0 is

non-zero. This coefficient is the Kth focus quantity and it can be expressed as

(10) gKK0 =

2K−1∑
j+k=2
j≥0,k≥0

(j aK−j+1,K−k,0 + k bK−j,K−k+1,0) vj,k,0 +

2K−2∑
j+k=2
j≥0,k≥0

cK−j,K−k,0 vj,k,1,

where we have made the natural assignments v110 = 1 and vαβγ = 0 for α+ β + γ = 2 but

(α, β, γ) 6= (1, 1, 0). We know g110 = 0 and g220 is uniquely determined, but the remaining

ones depend on the choices made for vKK0, K ∈ N, K ≥ 2. Once such an assignment is

made, H is determined and satisfies

XH(x, y, z) = g220(xy)2 + g330(xy)3 + · · · .

It is known that if at least one focus quantity is non-zero for a choice of vKK0, then the

same is true for every other choice of the vKK0. The vanishing of all focus quantities, i.e.,

(11) gKK0 = 0 for K ≥ 2

is both a necessary and sufficient condition for the existence of a center on the center

manifold, otherwise there is a focus (see [21]).

By Hilbert’s basis theorem, there exists K0 ≥ 2 such that the set of solutions of gKK0 = 0

for all 2 ≤ K ≤ K0 is equivalent set defined by an infinite system (11). Since such a K0 is not

known a priori, we will apply an iterative approach that solves gKK0 = 0 for 2 ≤ K ≤M+1

given the solution set of gKK0 = 0 for 2 ≤ K ≤ M . Without knowing K0, solving using

any M ≥ 2 does always yield necessary conditions.

3. Numerical algebraic geometry

Symbolic methods, such as Gröbner basis techniques, take an algebraic viewpoint for

solving systems of polynomial equations. In broad terms, they manipulate equations to ob-

tain new relations describing the solution set. An alternative approach is to use a geometric

viewpoint which manipulates solution sets. Following a numerical algebraic geometry ap-

proach, solution sets are represented by witness sets that we discuss below. A more detailed

comparison of symbolic and numerical approaches is provided in [3].

The field of numerical algebraic geometry grew out of the use of homotopy continuation

for computing isolated solutions to a system of polynomial equations. We will first briefly

explain using basic homotopy continuation on a polynomial system F : CN → CN , that is,

F (x) = 0 defines a system of N polynomial equations in N variables. The idea is to select
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another polynomial system G : CN → CN related to F such that G(x) = 0 is “easy” is to

solve. The simplest example is Gi(x) = xdii − 1 where di = degFi, but there is a wide range

of constructing the so-called start systems which exploit structure in F (see [6, 65] for a

broad overview). Let S ⊂ CN denote the set of isolated nonsingular solutions of G = 0.

The next step is to construct a homotopy H : CN × C→ CN connecting G and F , say

H(x, t) = F (x) · (1− t) + γ · t ·G(x)

for a randomly selected γ ∈ C. For each s ∈ S, the homotopy H defines a solution

path xs(t) such that xs(1) = s and H(xs(t), t) ≡ 0 with the goal of computing the endpoint

xs(0) = limt→0+ xs(t). In fact, this limit is either a point in CN which must be a solution

of F = 0 or the path is said to be diverging to infinity. By differentiating H(xs(t), t) with

respect to t, one obtains the Davidenko differential equation

JxH(xs(t), t) · ẋs(t) = −JtH(xs(t), t).

By including the randomly selected γ, called the “gamma trick,” the Jacobian matrix JxH

is invertible along the path for t ∈ (0, 1] with probability one and thus one can use predictor-

correct techniques to track the solution path xs(t) starting at xs(1) = s in order to approx-

imate xs(0). We refer the interested reader to [6, 65] for more details about path tracking

and using endgames to estimate xs(0). In the end, the set E ⊂ CN of convergent endpoints

of all the paths xs(t) for s ∈ S is a superset of the isolated nonsingular solutions of F = 0.

We now turn our attention to computing the solution set of F = 0, denoted V(F ) ⊂ CN ,

for a polynomial system F : CN → Cn. Geometrically, V(F ) can be decomposed into a

union of irreducible components V(F ) = ∪ri=1Vi. This corresponds algebraically to a prime

decomposition of the radical ideal generated by F , namely
√
I(F ) = ∩ri=1I(Vi). Numerical

algebraic geometry describes an irreducible decomposition of V(F ) by computing a witness

set for each Vi, called a numerical irreducible decomposition.

Suppose that V is an irreducible component of V(F ) for some polynomial system F .

A witness set for V is the triple {F,L,W} where L ⊂ CN is general linear subspace of

codimension d = dimV and W = V ∩ V(L) so that |W | = deg V . Here, the definition

of general means that L intersects V transversely, which is a Zariski open condition on

the Grassmannian of codimension d linear subspaces in CN . The books [6, 65] provide

for more information about witness sets including performing computations on irreducible

components which have multiplicity > 1 with respect to F .

A witness set for an irreducible component V ⊂ CN facilitates additional computations

that can be performed on V . Of particular interest to the problems discussed in this article

include the recovery of exact polynomials that vanish on V , determining the existence of

real points in V , and intersecting V with another solution set.

With an input polynomial system with exact coefficients, e.g., in Q, one often would like

exact output. Although the internal computations and witness sets rely upon numerical
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approximations, there exist techniques for recovering exact answers which can then be

verified using exact symbolic methods, which is typically computationally inexpensive. For

the problems at hand here, we use the exactness recovery technique described in [4] which

uses a sufficiently accurate numerical approximation of a sufficiently general point on V to

compute polynomials with integer coefficients that vanish on V . This method is based on

using a lattice-base reduction technique such as LLL [45] or PSLQ [25].

In many applications, only real solutions or components which contain real points are

of interest, which is the case here. The approach of [37] uses critical points conditions of

the distance function to determine if V , represented by a witness set, contains real points.

If V ∩ RN = ∅, then we can disregard this component from further computations.

We conclude this section by describing the intersection approach built from witness sets

which is used in the subsequent section. For this situation, we consider a sequence of

polynomial systems of interest, namely Fk = {f1, . . . , fk} for k ≥ 1. Given witness sets for

the irreducible components of V(Fk), our goal is to compute witness sets for the irreducible

components of V(Fk+1) = V(Fk) ∩ V(fk+1). For consistency, we assume V(Fk) ⊂ CN since

one can easily adjust the methods to work on projective space which will arise below since

each gKK0 is homogeneous in a1, . . . , a6, i.e., V(gKK0) is naturally a hypersurface in P5.

For the base case, we need to decompose the hypersurface V(F1) = V(f1), which can be

readily performed, e.g., via [64].

Now, suppose that we are given witness sets for the irreducible components Vk,1, . . . , Vk,nk

of V(Fk). For each j ∈ {1, . . . , nk}, we need to compute Vk,j ∩ V(fk+1) using the provided

witness set for Vk,j , say {Fk,Lk,j ,Wk,j}. Clearly, if fk+1 vanishes identically on Vk,j , we

know that Vk,j is an irreducible component of V(Fk+1). Thus, we shall assume that Vk,j

is not contained in the hypersurface V(fk+1) so that Vk,j ∩ V(fk+1) is either empty or

consists of irreducible components of dimension one less than Vk,j . With this assumption,

if d := dimVk,j is zero, we know Vk,j ∩ V(fk+1) = ∅. Thus, we also assume that d > 0.

We compute Vk,j∩V(fk+1) using a regenerative intersection approach developed in [40, 41]

which builds on the diagonal intersection [63] and the regenerative cascade [39, 38]. It

can be performed using Bertini [5]. To perform this computation, we select a general

hyperplane H and codimension d − 1 linear space K so that Lk,j = H ∩ K. Our first

goal is to compute the finite set of points Vk,j ∩ K ∩ V(fk+1) given Wk,j = Vk,j ∩ K ∩ H.

If g = deg fk+1, we select general hyperplanes H1, . . . ,Hg and compute Vk,j ∩ K ∩ H` for

` = 1, . . . , g by standard homotopy continuation from Vk,j∩K∩H. Thus, we have computed

Vk,j ∩ K ∩ (∪g`=1H`)

which, again by standard homotopy continuation, can be used to compute Vk,j∩K∩V(fk+1).

Now, to compute witness sets for the irreducible components of Vk,j ∩V(fk+1), which will

have the form {Fk+1,K, •}, we simply need to partition the set of points Vk,j ∩K∩V(fk+1)
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into subsets corresponding to distinct irreducible components. This is accomplished by

using random monodromy loops [61] with the decomposition certified by the trace test [62].

In short, the idea is to move the linear space K in a random loop in the Grassmannian and

observe which points are connected by such paths: the points in Vk,j∩K∩V(fk+1) which are

path connected by such random loops must lie on the same irreducible component. Thus,

monodromy loops yield necessary conditions. The (linear) trace test yields a sufficient

condition which follows from the fact that, as the linear space K is moved in parallel, the

centroid of points arising from a union of irreducible components must move linearly. One

can read about further details of computing such decompositions in [6, 65].

4. Center conditions for a three dimensional quadratic system

The following provides a proof of Theorem 1. We note that, without loss of generality,

we can always assume that either a6 = 0 or a6 = 1. The latter follows immediately by the

change of variables (u, v, w) 7→ (x/a6, y/a6, z/a6) and rescalling of time dt = a6dτ . Thus,

the seven cases in Theorem 1 can be split into ten cases, five each for a6 = 0 and a6 = 1.

After showing these ten cases, we then describe how the seven cases of Theorem 1 follow.

Theorem 3. Consider system (4) with h(u, v, w) as in (5).

The system (4) with a6 = 0 admits a center on the local center manifold if and only if

one of the following holds:

(a) a1 − a2 = a3 = a5 = 0

(b) a1 + a2 = a3 = a5 = 0

(c) a1 = a2 = a4 = 0;

(d) a1 + a2 = 2a1 + a3 = 6a1 − a4 = 4a1 + a5 = 0

(e) a1 = a2 + a3 = 2a2 − a4 = 2a2 + a5 = 0.

The system (4) with a6 = 1 admits a center on the local center manifold if and only if

one of the following holds:

(f) a1 = a2 = a4 = 0

(g) 2a1 − 1 = a4 + a5 + 1 = 2a2 + a5 = 2a3 − a5 + 1 = 0

(h) 2a1 + 1 = 2a2 + 1 = a4 = a5 + 1 = 0

(i) a1 + a2 = 4a2 − a5 + 3 = 6a2 + a4 + 5 = 2a2 − a3 + 1 = 0

(j) 4a1 − 1 = 2a2 + 1 = 4a3 + 5 = a4 = 2a5 − 1 = 0.

Necessary conditions.

We first consider a6 = 0 and take (a1, . . . , a5) ∈ P4. Using the notation from Section 3,

V(F2) and V(F3) are irreducible of codimension 1 and 2 of degree 2 and 8, respectively. Now,

V(F4) has codimension 3 and decomposes into the following components: 5 linear spaces, 3

of multiplicity 1 and 2 of multiplicity 3, and an irreducible algebraic set of degree 39. The

three linear spaces of multiplicity 1 are (a), (b), and (c). The other two linear spaces are
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complex conjugates of each other with their union is defined in P4 by

a1 + a2 = 4a22 + a24 = a5 = 0.

Since the real points on this union are contained in (c), we only need to further investigate

the degree 39 component, denoted X4,6, which is not contained in V(g550). Regenerating

from X4,6 to compute X4,6∩V(g550) yields 189 distinct points in P4, of which 19 correspond

to real points. There are 14 real points that do not lie on (a), (b), or (c) of which only 2

satisfy g660 = 0, namely (d) and (e). We note that (e) has multiplicity 2 with respect to F5.

We next consider a6 = 1 and take (a1, . . . , a5) ∈ C5. Similar to the case above, V(F2) and

V(F3) are irreducible of codimension 1 and 2 of degree 2 and 8, respectively. Also, V(F4)

has codimension 3 and decomposes into the following components: 3 linear spaces, one

having multiplicity 1, namely (f), with the other 2 having multiplicity 3, and an irreducible

algebraic set of degree 41. As above, the two linear spaces of multiplicity 3 are complex

conjugates of each other with their union defined in C5 by

a1 + a2 = 4a22 + a24 = 2a2 + a4a5 = 2a2a5 − a4 = a25 + 1 = 0.

Since there are no real points on this union, we only need to further investigate the degree 41

components, denoted X4,4, which is not contained in V(g550). Regenerating X4,4 yields 4

irreducible components of X4,4 ∩V(g550) not contained in (f) or the hyperplane a25 + 1 = 0.

Three of these are the lines (g), (h), and (i) with the fourth being an irreducible curve of

degree 244, denoted X5,4, not contained in V(g660). Regenerating X5,4 yields 71 distinct

real points not contained in the hyperplane a25 + 1 = 0 nor satisfying (f), (g), (h), or (i). Of

these, only one satisfies g770 = 0, namely (j).

Sufficient conditions.

Cases (a) and (b). If the condition (a) (resp. (b)) holds, system (4) reduces to

u̇ = −v + a1u
2 + a2v

2 + a4uv,

v̇ = u+ a1u
2 + a2v

2 + a4uv,

ẇ = −w + a1u
2 + a2v

2 + a4uv,

with a2 = a1 (resp. a2 = −a1). Note that by Theorem 2, it is enough to show that this

system admits a local analytic first integral at the origin. Since the first two equations are

decoupled from the third we only need to show that

(12) u̇ = −v + a1u
2 + a2v

2 + a4uv, v̇ = u+ a1u
2 + a2v

2 + a4uv,

admits a local analytic first integral. In fact, if a4 6= 0 and a2 = a1, system (12) has the

inverse integrating factor

V (u, v) = −a4 + a4 (a4 + 2a1) (x− y) + a1 (a4 + 2a1)
2 (x2 + yx+ y2

)
.

As V (0, 0) = −a4, it follows that system (12) has a first integral defined at the origin. If

a4 = 0 and a2 = a1, applying Theorem 4(ii) with a = c = a1, b = d = −a1, A = 2a1 and
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B = −2a1, we have that (12) has a center at the origin and so it is integrable. The case

a2 = −a1 (i.e. case (b)) is analogous, since

V (u, v) = 1 + (2a1 − a4)x+ (2a1 + a4) y − a1a4x2 − a42xy + a1a4y
2,

is an inverse integrating factor for system (12), which is also nonzero at the origin.

Case (c). In this case system (4) becomes

u̇ = −v + a3w
2 + a5uw,

v̇ = u+ a3w
2 + a5uw,

ẇ = −w + a3w
2 + a5uw.

Note that w = 0 is invariant and is a center manifold for this system. Moreover, the

restriction of the associated vector field to w = 0 gives rise to a linear center.

Case (d). For a2 = −a1, a3 = −2a1, a4 = 6a1 and a5 = −4a1 the vector field associate to

system (4) has the invariant algebraic surface F (u, v, w) = w+a1(u−v)2−2a1(v−w)2 = 0

with cofactor K(u, v, w) = −1. Since F = 0 is tangent to w = 0 at the origin, it is a

center manifold for this system. To determine the dynamics on it first we use the change

of coordinates (u, v, w) 7→ (x+ z, y + z, z) that transforms the system into

(13)

ẋ = −y,
ẏ = x+ 2z,

ż = −z + a1x
2 + 6a1xy + 4a1xz − a1y2 + 4a1yz.

The center manifold F = 0 in the new variables is given by F (x, y, z) = z + a1(x − y)2 −
2a1y

2 = 0. The restriction of system (13) to F = 0 is given by

ẋ = −y, v̇ = x− 2a1x
2 + 4a1xy + 2a1y

2.

Since this system has the following inverse integrating factor (nonzero at the origin)

V (u, v) = 1− 4a1 (x− y) + 4a21
(
x2 − 2xy − y2

)
thus in this case system (4) has a center on the center manifold.

Case (e). For a1 = 0, a3 = −a2, a4 = 2a2 and a5 = −2a2 system (4) has the invariant

algebraic surface F (u, v, w) = w−a2(y−z)2 = 0 with cofactor K(u, v, w) = −1. Since F = 0

is tangent to w = 0 at the origin, it is a center manifold for this system. To determine the

dynamics on it first we use the change of coordinates (u, v, w) 7→ (x, y+z, z) that transforms

the system into

(14)

ẋ = −y − z + a2y
2 + 2a2xy + 2a2yz,

ẏ = x+ z,

ż = −z + a2y
2 + 2a2yz + 2a2xy.



12 A. MAHDI, C. PESSOA, AND J.D. HAUENSTEIN

The center manifold F = 0 in the new variables writes as F (x, y, z) = z − a2y2 = 0. The

restriction of system (14) to F = 0 is

ẋ = −y + 2a2xy + 2a22y
3, ẏ = x+ a2y

2.

This system is invariant by the change of variables (x, y, t) 7→ (x,−y,−t) so that it has a

center at the origin. Hence, system (4) restricted to (e) has a center on the center manifold.

Case (f). In this case system (4) becomes

u̇ = −v + a3w
2 + a5uw + vw,

v̇ = u+ a3w
2 + a5uw + vw,

ẇ = −w + a3w
2 + a5uw + vw.

It is clear that the plane w = 0 is invariant and is a center manifold for this system.

Moreover, the restriction of the associated vector field to w = 0 gives rise to a linear center.

Case (g). If a1 = 1/2, a3 = −a2− 1/2, a4 = 2a2− 1 and a5 = −2a2, then system (4) has

the invariant algebraic surface F (u, v, w) = −2w+ (u−w)2 + 2a2(v−w)2 = 0 with cofactor

K(u, v, w) = −1. Since F = 0 is tangent to w = 0 at the origin, it is a center manifold

for this system. To determine the dynamics on it first we use the change of coordinates

(u, v, w) 7→ (x+ z, y + z, z) that transforms system (4) with conditions (l1) into

(15)

ẋ = −y,
ẏ = x+ 2z,

ż = −z + x2/2 + (2a2 − 1)xy + a2y
2 + 4a2yz.

The center manifold F = 0 in the new variables writes as F (x, y, z) = −2z+x2 +2a2y
2 = 0.

The restriction of system (15) to F = 0 is

ẋ = −y, v̇ = x+ x2 + 2a2y
2.

As this system is invariant under (x, y, t) 7→ (x,−y,−t), it follows that it has a center at

the origin, i.e. system (4) under the conditions (g) has a center on the center manifold.

Case (h). If a1 = −1/2, a2 = −1/2, a4 = 0 and a5 = −1. Then the vector field associate

to system (4) has the invariant algebraic surface F (u, v, w) = w+
[
(u+w)2 +(v − w)2

]
/2−

w2 (1 + a3) = 0 with the cofactor K(u, v, w) = −1− 2u+ 2a3w. Since F = 0 is tangent to

w = 0 at the origin, it is a center manifold for this system. To determine the dynamics on

it first we use the change of coordinates (u, v, w) 7→ (x− z, y+ z, z), that transforms system

(4) with condition (l2) into

(16)

ẋ = −y − 2z + 2(1 + a3)z
2 − x2 − y2,

ẏ = x,

ż = −z + (1 + a3)z
2 − x2/2− y2/2.
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The center manifold F = 0 in the new variables is given by

F (x, y, z) = z − (1 + a3)z
2 +

1

2
x2 +

1

2
y2 = 0.

The restriction of system (16) to F = 0 gives rise to a linear center.

Case (i). For a2 = −a1, a3 = −2a1 + 1, a4 = 6a1 − 5 and a5 = −4a1 + 3 system (4)

admits an invariant algebraic surface F (u, v, w) = w + (a1 − 1)(u − w)2 + (1 − 2a1)(u −
w)(v − w) + (1 − a1)(v − w)2 = 0 with cofactor K(u, v, w) = −1. Since F = 0 is tangent

to w = 0 at the origin, it is a center manifold for this system. The change of coordinates

(u, v, w) 7→ (x+ z, y + z, z) transforms system (4) under the conditions (i) into

(17)

ẋ = −y,
ẏ = x+ 2z,

ż = −z + a1x
2 + (6a1 − 5)xy + 2(2a1 − 1)xz − a1y2 + 4(a1 − 1)yz.

Again, in the new variables the center manifold is given by F (x, y, z) = z + (a1 − 1)x2 +

(1− 2a1)xy + (1− a1)y2 = 0 and the restriction of (17) to F = 0 reduces to

ẋ = −y, v̇ = x+ 2(1− a1)x2 + 2(2a1 − 1)xy + 2(a1 − 1)y2.

This system has the following inverse integrating factor (nonzero at the origin)

V (u, v) = 1 + 4(1− a1)x+ 2 (2a1 − 1) y + 4(a1 − 1)2x2

−4(a1 − 1)(2a1 − 1)xy − 4(a1 − 1)2y2.

Hence system (4) has a center on the center manifold.

Case (j). For a1 = 1/4, a2 = −1/2, a3 = −5/4, a4 = 0 and a5 = 1/2 the vector field

associated to system (4) admits a polynomial first integral

H(x, y, z) = x2 + y2 − 1

2
x3 − 1

2
x2y + 2x2z − 3

2
xz2 − y2x

+y2z − 1

2
yz2 − 1

2
x3z +

5

4
x2z2 +

1

2
y2x2

−3

2
xz3 +

1

2
y2z2 − yz3 + xyz +

1

8
x4

−x2yz − y2xz + 2yxz2 +
5

8
z4,

and so it has a center on the center manifold.

�

Proof of Theorem 1.

Case (1). Follows from Cases (c) and (f) of Theorem 3.

Case (2). Follows from Case (a) of Theorem 3.

Case (3). Follows from Case (b) of Theorem 3.

Case (4). Follows from Cases (d) and (i) of Theorem 3.
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Case (5). Follows from Cases (e) and (g) of Theorem 3.

Case (6). Follows from Cases (c) and (h) of Theorem 3.

Case (7). Follows from Cases (c) and (j) of Theorem 3.

�

Appendix A. Dulac-Kapteyn criterion

The following theorem provides a criterion in order to determine when a quadratic pla-

nar polynomial system has a center at the origin. It was first proven by Dulac [19] and

Kapteyn [42], but we present the version given in [16].

Theorem 4 (Quadratic Center). The system

u̇ = −v − bu2 − (B + 2c)uv − dv2,
v̇ = u+ au2 + (A+ 2b)uv + cv2,

has a center at the origin if and only if at least one of the following three hold:

(i) a+ c = b+ d;

(ii) A(a+ c) = B(b+ d) and aA3 − (3b+A)A2B + (3c+B)AB2 − dB3 = 0;

(iii) A+ 5b+ 5d = B + 5a+ 5c = ac+ bd+ 2a2 + 2d2 = 0.

Appendix B. Basic Darboux theory of integrability

Since, by Poincaré theorem, the integrability is closely related to the existence of a center

on a center manifold (also on the plane), we provide a short overview of the basic notions

of the Darboux the ory of integrability used in Section 4; for more information see [46, 33]

and some applications see [28, 47, 52].

We say that F = F (x, y, z) ∈ C[x, y, z] is a Darboux polynomial and F = 0 is an invariant

algebraic surface of the vector field X if and only if there exists a polynomial K(x, y, z) ∈
C[x, y, z], the cofactor of F , such that XF = KF . A the heart of the Darboux theory of

integrability is the following result [17]: if there exists some number n of pairs (Fj ,Kj) for

which there exists a nontrivial dependency relation
∑
αjKj = 0 then Fα1

1 · · ·Fαn
n is a first

integral of X.

Consider now the planar system

(18) ẋ = P (x, y), ẏ = Q(x, y),

where P,Q ∈ R[x, y], and the associate vector field X = P∂/∂x+Q∂/∂y. Let U be an open

subset of R2, and let R, V : U → R be two analytic functions which are not identically zero

on U . We say that R is an integrating factor of this polynomial system on U if one of the

following three equivalent conditions holds

∂RP

∂x
= −∂RQ

∂x
, div(RP,RQ) = 0, XR = −R div(P,Q),
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where div denotes the divergence. The first integral H associated to the integrating factor

R can be easily obtained by

H(x, y) =

∫
R(x, y)P (x, y)dy + h(x),

where h(x) is chosen such that it satisfies ∂H/∂x = −RQ. Note that ∂H/∂y = RP , so that

XH ≡ 0. The function V is an inverse integrating factor of the polynomial system (18) on

U if

(19) P
∂V

∂x
+Q

∂V

∂y
=

(
∂P

∂x
+
∂Q

∂y

)
V.

We note that {V = 0} is formed by orbits of system (18) and R = 1/V defines on U\{V = 0}
an integrating factor of (18). We note that if P and Q are quadratic polynomials and the

origin of system (18) is a center, then there always exits a polynomial function V : R2 → R
of degree 3 or 5 satisfying equation (19), see [26].
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[72] H. Żo ladek, The classification of reversible cubic systems with center, Topol. Methods Nonlinear Anal.

4 (1994), 79–136.

[73] , Quadratic systems with center and their perturbations, J. Differential Equations 109 (1994),

223–273.

1 Institute of Biomedical Engineering, University of Oxford, UK; and Faculty of Applied

Mathematics, AGH University of Science of Technology, Poland

E-mail address: adam.mahdi@eng.ox.ac.uk

2 Universidade Estadual Paulista, Departamento de Matemática, IBILCE/UNESP, Rua Cristovão
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