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Abstract

Ramification points arise from singularities along solution paths of a homotopy. This paper
considers ramification points of homotopies, elucidating the total number of ramification points
and providing general theory regarding the properties of the set of ramification points over the
same branch point. The general approach utilized in this paper is to view homotopies as lines in
the parameter spaces of families of polynomial systems on a projective manifold. With this ap-
proach, the number of singularities of systems parameterized by pencils is computed under broad
conditions. General conditions are given for when the singularities of the systems parametrized
by a line in a space of polynomial systems have multiplicity two. General conditions are also
given for there to be at most one singularity in the solution set of any system parameterized by
such a line. Several examples are included to demonstrate the theoretical results.
Keywords: ramification points, branch points, polynomial systems, Lefschetz pencils, homo-
topy continuation, numerical algebraic geometry

1 Introduction

The basic approach of homotopy continuation is to deform from the known solutions of a system
of equations g = 0, called the start system, to compute the solutions to a related system of
equations f = 0, called the target system. To make this more concrete, consider the affine setting
where g = {g1, . . . , gN} and f = {f1, . . . , fN} with gj and fj general polynomials on CN of degree
dj ∈ Z>0. Thus, both g = 0 and f = 0 have d1 · · · dN nonsingular isolated solutions, i.e., the Bézout
count is sharp. A linear homotopy H : CN × C → CN between g and f is

H(z, t) = tg(z) + (1− t)f(z). (1)

By genericity, there are no t∗ ∈ [0, 1] such that H(z, t∗) = 0 has a singular solution and thus
the homotopy H is said to be trackable. That is, H = 0 defines d1 · · · dN smooth solution paths
z(t) : [0, 1] → CN so that H(z(t), t) ≡ 0 which smoothly connect the solutions of g = 0 at t = 1
to the solutions of f = 0 at t = 0. However, if one instead considers t ∈ C rather than t ∈ [0, 1],
then there is always at least one t∗ ∈ C such that H(z, t∗) = 0 has a singular solution whenever
d1 · · · dN > 1. With this formulation, it is natural to ask the following questions:
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1. For how many t∗ ∈ C does H(z, t∗) = 0 have a singular solution?

2. What kinds of singularities actually occur as singular solutions to H(z, t∗) = 0?

3. For such t∗ ∈ C, what is the set of singular solutions for H(z, t∗) = 0?

In [12], a numerical study was made of the distribution of the branch points of a general pencil of
solutions of a system of quadrics in a few different projective spaces and systems of biquadrics in
a few different products of projective spaces. In these special cases, the explicit systems for the
singularities may be used to compute an upper bound for the number of singular solutions of a
general pencil. The numerical results of that article made us realize the importance of the above
questions, whose answers we did not know except for the particular systems we solved in that
article. The main results of this article show that these three questions can be answered in great
generality. For example, for H in (1), the answers to the above questions are:

1. The number of t∗ for which H(z, t∗) = 0 has at least one singular solution is (see (15))

d1 · · · dN
(
(d1 + · · ·+ dN −N − 1)

(
1

d1
+ · · ·+ 1

dN

)
+N

)
.

2. For such t∗ ∈ C, each singular solution of H(z, t∗) has multiplicity two (see Remark 24).

3. For such t∗ ∈ C, there is exactly one singular solution of H(z, t∗) = 0 (see Corollary 27).

The last two are reminiscent of the classical situation for Lefschetz pencils, e.g., [20, Chap 2.1.1],
and indeed the answer to these two questions follow from the existence of Lefschetz pencils and
some standard vanishing theorems [17].

Figure 1: A visualization of the solution set of H(z, t) = tg(z)+ (1− t)f(z) = 0 for cubics f(z) and
g(z) as t varies. This solution set is a three-sheeted cover of C with 4 ramification points.
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Example 1 (Cubic pencil on C). Let f(z) and g(z) be generic cubics in one variable. The results
above imply that for H(z, t) = tg(z) + (1− t)f(z), there are 4 values of t∗ where H(z, t∗) = 0 has
a singular solution, and each singularity is a double root. Figure 1 plots (ℜ(t),ℑ(t),ℜ(z)), the real
and imaginary parts of t and the real part of z, respectively, for the three sheets of H−1(0). The
color is based on the distance to the next nearest sheet and there is a contour plot of the minimum
distance between sheets. (Distance is computed in C, so zero distance implies equality of the real
parts but the converse is not necessarily true.) One sees that the sheets meet in pairs at four points.
The double roots are ramification points and the values of t∗ where they occur are branch points.

The curve C ⊂ CN+1 consisting of all solutions to H = 0 in (1) is smooth and connected.
Smoothness is an easy consequence of Bertini’s Theorem, but connectedness requires vanishing
theorems. The genus g of the smooth projective curve C that C is Zariski open in satisfies

2g − 2 = d1 · · · dN
(
(d1 + · · ·+ dN −N − 1)

(
1

d1
+ · · ·+ 1

dN

)
+N − 2

)
.

Consider the projection map π : CN+1 → C with π(z, t) = t. The restriction of π to C is a branched
covering with d1 · · · dN sheets. The branch points are those t∗ ∈ C such that H(z, t∗) = 0 has a
singular solution, say (z∗, t∗), and (z∗, t∗) is a ramification point of order two.

In fact, all of the aforementioned results are all true even if f is not necessarily general but still
has exactly d1 · · · dN nonsingular solutions. That is, the genericity of the start system g and sharp
Bézout count for f is enough. Moreover, for an arbitrary system f with the same degrees as g,
many of the qualitative results still hold true. For example, if Z0 = {(z, 0) | f(z) = 0}, then C \Z0

is still smooth with a unique ramification point, which has order two, over each branch point t∗ ̸= 0.
Although H in (1) was formulated in affine space, the generality assumption ensures that the

same statements hold over projective space, i.e., there is no additional structure at infinity. This
paper shows that all of the above results hold in much greater generality, namely for fairly general
systems on slightly singular algebraic subsets of products of projective spaces. This extra generality,
which takes only slightly more care, provides the following:

1. there is a reduction of the generality of the linear homotopy needed for the main results to
hold; and

2. the main results also hold for the class of normal toric varieties [10] and, in particular, for
weighted projective spaces [5].

The rest of the paper is organized as follows. Section 2 considers general theory using the
natural representation of a polynomial system in algebraic geometry as an algebraic section of
an algebraic vector bundle. Section 3 addresses the three questions above in greater generality.
Some examples are provided in Section 4. Finally, Section 5 concludes with a question for further
study. Specific examples used in this article utilized Bertini v1.6 [2, 3] running on Intel Xeon
CPU E5-2680 v3 (2.50 GHz) with 260 GB of memory. The files used for these runs plus two Maple
worksheets (created using Maple 2020) are available at https://doi.org/10.7274/c.7376080.

2 Some background in algebraic geometry

The following collects some general theory for families of polynomial systems and their solutions.
A variety is defined as an irreducible and reduced algebraic set and a projective variety is an

irreducible and reduced projective algebraic set. Of the several different definitions of variety,
we are following the usage in [11] and [9, Chap. 1.1]. An algebraic set M is said to be smooth
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if it is smooth in the scheme-theoretic sense, i.e., M is a manifold (and in particular, reduced).
Given an algebraic set X, we denote its singular set by Sing (X) and its set of smooth points by
Xreg = X \ Sing (X). Over the complex numbers, the condition that a reduced algebraic set X is
irreducible is equivalent to Xreg being connected and the closure of Xreg in the usual topology (or
in the Zariski topology) being equal to X. Hence, an algebraic manifold is irreducible if and only
if it is connected.

For convenience, we follow the usual convention that dim ∅ = −1 and an empty subset of a
variety X has codimension in X of dimX + 1.

An algebraic vector bundle on a variety is a family of complex vector spaces whose rank equals
the dimension of the vector spaces in the family. To be precise, a rank r algebraic vector bundle E
is defined on a variety X by using a cocycle ραβ. Let GL(r,C) denote the complex general linear
group. Assume there is a cover {Uα | α ∈ A} of X by Zariski open sets and algebraic maps (called
a cocycle)

{ραβ : Uα ∩ Uβ → GL(r, C) | (α, β) ∈ A×A}

such that

1. ραα = 1;

2. if Uα ∩ Uβ is nonempty, then ραβ = ρ−1
βα; and

3. for (α, β, γ) ∈ A×A×A with Uα ∩ Uβ ∩ Uγ nonempty, ραβ · ρβγ = ραγ .

For each Uα, let ξα be linear coordinates on Cr (0 at the origin), which we write as a vertical vector.
If Uα ∩Uβ ̸= ∅, we can patch Uα ×Cr and Uβ ×Cr by the equation ξβ = ραβξα on Uα ∩Uβ. In the
end, this yields a vector bundle E of rank r. When r = 1, E is traditionally called a line bundle.
We generally use the script letters E ,F ,G to denote vector bundles. An exception, discussed in
Section 2.1, is made for the line bundles on projective space PN , where we use the notation [k]PN

for integers k. An excellent place for all the details on complex vector bundles from the point of
view of general mathematics, but for use in algebraic geometry is [14].

Given an algebraic vector bundle E on a variety X, the dual bundle E∗ is the vector bundle
with fibers equal to the dual vector space of the vector bundle fibers of E → X. To define the dual
bundle E∗, we need to give its cocycle. Again, we consider sets Uα × Cr. We denote the linear
coordinates on Cr (0 at the origin) by ξ̂α. As before, we regard ξ̂α as a vertical vector and use ξ̂′α
to denote its horizontal transpose. We use the maps{

ρ̂αβ =
(
ρ−1
αβ

)′}
,

where T ′ denotes the transpose of a matrix T ∈ GL(r,C). Note that all the cocycle conditions
hold. Moreover, we have a pairing between the fibers of E∗ and E . Indeed we can send (ξ̂α, ξα)
to ξ̂′α · ξα. Note that this is well defined, i.e., if Uα ∩ Uβ ̸= ∅, then on Uαβ, we have

ξ̂′β · ξβ = (ρ̂αβ · ξ̂α)′ · (ραβ · ξα) = ξ̂′α · (ρ−1
αβ · ραβ) · ξα = ξ̂′α · ξα.

Just as with finite dimensional vector spaces, the dual of the dual vector bundle is the original
vector bundle, i.e., (E∗)∗ = E .

A particular dual bundle of interest is the cotangent bundle T ∗
X of an algebraic manifold X

which is the dual vector bundle of the tangent bundle TX .
Note that if ραβ is a cocycle as above that gives rise to the vector bundle E , then det(ραβ) is

also a cocycle which gives rise to a line bundle det(E) called the determinant bundle of E . This

4



bundle may also be viewed as the rank one vector bundle whose fibers are the rth exterior products
of the fibers of E . For an algebraic manifold X, the bundle KX = det(T ∗

X) is called the canonical
bundle of X.

Finally, note that if ϕ : X → Y is an algebraic map from one variety X to another variety Y
and E is an algebraic vector bundle on Y , then E may be pulled back to an algebraic vector
bundle, ϕ∗E , on X. In particular, if ραβ is the cocycle (with associated open cover {Uα | α ∈ A})
giving rise to E , then ραβ ◦ϕ (with associated open cover {ϕ−1(Uα) | α ∈ A}) is the cocycle of ϕ∗E .

2.1 Sections and bundles

In this article, a polynomial system is viewed an algebraic section of an algebraic vector bundle
over a projective variety X. This approach to polynomial systems matches up well with the
usual notion of a polynomial system and is the approach used in [16]. For example, suppose that
f = {f1, . . . , fk} is a system of k homogeneous polynomials in N + 1 variables, i.e., defined on PN ,
of degrees d1, . . . , dk, respectively. On PN , fj is not a function but is an algebraic section of the
algebraic line bundle [dj ]PN . Note that [0]PN is the trivial bundle, and that for all integers a, b,

[a]PN ⊗C [b]PN = [a+ b]PN .

When the context is clear, the subscript C in ⊗ is usually left off. Also, note that for any integer m,

[−m]PN = [m]∗PN

where [m]∗PN is the dual of [m]PN . The system f is an algebraic section of

E := [d1]PN ⊕ · · · ⊕ [dk]PN ,

which is a rank k vector bundle. Systems of multihomogeneous polynomials are handled similarly.
On projective space, the algebraic line bundles [d]PN that are ample are those associated to

homogeneous polynomials of positive degrees d.
Since all the bundles, manifolds, and sections we consider in this article are algebraic, outside

of theorems, corollaries, and lemmas, we will usually drop the word algebraic in referring to them.
Moreover, all algebraic functions on an algebraic set are functions in the usual sense of mathematics,
i.e., they do not have poles and they are single valued.

Remark 2. It should be noted that any algebraic vector bundle on CN is algebraically equivalent
to the trivial bundle on CN and that algebraic functions globally defined on CN are polynomials.
Therefore, an algebraic section of an algebraic vector bundle over PN reduces to a polynomial system
when restricted to CN . Though most systems that arise as start systems in homotopy continuation
(including those arising from polyhedral methods) come from direct sums of line bundles, there are
many systems that do not correspond to such direct sums yet nevertheless fit into our approach.
We work out the details of one significant example in Section 4.1.

2.2 Projectivization of a vector bundle

Let E denote a rank k vector bundle on a projective variety X, i.e., an irreducible and reduced
projective algebraic set. Let P (E) denote the space of lines in each fiber of E∗ through the origin
of the fiber. This is a Pk−1-bundle over X with natural bundle projection πP(E) : P (E) → X. This
projective bundle over X may also be regarded as the quotient (E∗ \X) /Cx where the nonzero
complex numbers Cx act by the natural multiplication on each fiber of E∗.
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There is a natural line bundle ξ∗E on P (E) which, at each point w ∈ P (E), is the line in π∗
P(E)E

∗

that w corresponds to in E∗. The dual of ξ∗E , i.e., ξE , is called the tautological line bundle on P (E).
An algebraic line bundle L on a projective variety is called ample if there is an embedding of

X in some projective space ϕ : X → P with L = ϕ∗([k]P) for some positive integer k. An algebraic
vector bundle E is said to be ample if ξE on P (E) is ample.

Given a vector bundle E , let OX(E) denote the sheaf of germs of algebraic sections of E .

Remark 3. Denoting this space of lines on E∗ by P (E) and not by (the at first sight more nat-
ural) P (E∗) is the standard convention in algebraic geometry, e.g., [11, pg. 162]. The original
convention was to use P (E∗), but this fell out of favor as it often led to notational inconveniences.
Nonetheless, one must remain aware of this since the older convention exists in the literature,
e.g., [9], which is cited several times herein.

Let E be a vector bundle on X and let V ⊂ H0(X, E) denote a vector subspace of the vector
space H0(X, E) consisting of all sections of E on X. We say V spans E if, for each x ∈ X, the
evaluation of the sections of V at x gives all points in the fiber, Ex, of E over x. When V spans E ,
the evaluation map gives a surjective bundle map of X × V → E . To make this explicit, let
(x, s) ∈ X×V , then the evaluation map sends (x, s) → s(x) ∈ Ex where Ex is the vector space fiber
over x ∈ X. The vector bundle E being spanned by the space of sections V precisely means that
this map is onto for each x. If F∗ is the vector subbundle of X × V whose fiber over x is

{(x, s) ∈ X × V | s(x) = 0},

we have the exact sequence
0 → F∗ → X × V → E → 0. (2)

Taking the duals of each vector bundle, we have the exact sequence

0 → E∗ → X × V ∗ → F → 0. (3)

To understand this dual sequence, consider (x, e′) ∈ E∗
x . Here e′ is a linear map Ex → C taking 0

to 0. Composing with the evaluation map {x} × V → Ex gives a linear map {x} × V → C. This
map is the element of {x} × V ∗ that (x, e′) goes to in (3). Similarly, given (x, s′) ∈ {x} × V ∗, we
have s′ : V → C a linear map. Restricting to F∗

x in (2) gives a linear map from F∗
x → C. Since the

dual of the dual vector space F∗
x is the vector space Fx, we have produced the image of s′ in Fx.

If we have a line bundle L on a projective variety X spanned by a vector space of sections V ,
then dualizing the evaluation map gives the embedding

0 → L∗ → X × V ∗.

This yields a map ϕV : X → P (V ) by sending x ∈ X to the line in V ∗ obtained from L∗
x ⊂ {x}×V ∗

by using the projection X × V ∗ → V ∗. Note that, by construction, L = ϕ∗
V

(
[1]P(V )

)
.

The Chern classes of E are cohomology classes cj(E) ∈ H2j(X,Z) for j = 1, . . . ,dimX. Some
references for Chern classes are [9, § 3.1-3.2], [14, Chap. 1 §IV], and [19, § 11.2]. The Chern classes
in [9] are more refined and defined to act on algebraic sets. Given a rank k vector bundle E , the
total Chern class is

ct(E) = 1 + c1(E)t+ c2(E)t2 + · · ·

where cℓ(E) = 0 for ℓ > dimX.
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Lemma 4. Let E be a rank k algebraic vector bundle on a projective variety X spanned by a vector
space V of sections. Let F be as in (3) with rank e+1 = dimV −k. Then, given an h-dimensional
projective variety Y ⊂ X, we have

c1 (ξF )
e+h ∩ π−1

P(F)(Y ) = ch(E) ∩ Y,

where ∩ denotes the cap-product pairing of cohomology and homology.

Proof. Let sh(E) be the hth Segre class of F∗, e.g., see [9, Chap. 3.1]. By definition,

c1 (ξF )
e+h ∩ π−1

P(F)(Y ) = sh(F∗) ∩ Y. (4)

Denoting the total Segre class [9, Chap. 3.2] by

st(F∗) = 1 + s1(F∗) + s2(F∗)t2 + · · · ,

we have
ct(F∗) = st(F∗)−1.

It follows from (2) that

st(F∗)−1 = ct(F∗) = ct(E)−1 yielding st(F∗) = ct(E).

The result now follows from (4).

Remark 5. Let s denote a generic section of a spanned rank N vector bundle on a projective
variety X. The number of smooth isolated zeroes of s is cN (E) evaluated on X. This number is
familiar to people computing (multihomogeneous) Bézout numbers of start systems made up of
(multihomogeneous) polynomials. We will for this reason often use the term Bézout number to
refer to the number of smooth isolated zeroes of a general section of a rank N spanned vector
bundle on an N -dimensional projective variety.

The other Chern classes also give useful structural information about start systems of homo-
topies. We will see both c1(E) and cN−1(E) used in (12) as part of Theorem 18. The number
computed by this equation gives a useful measure of the quality of a homotopy.

Recall that T ∗
X denotes the cotangent bundle and KX = det (T ∗

X) is the canonical bundle of X.
Although the following is standard, we do not know a reference where the proof is provided so we
include one here for completeness.

Lemma 6. Given a rank k algebraic vector bundle E on a connected algebraic manifold X, we have

KP(E) = π∗
P(E) (KX ⊗ det (E))⊗ ξ−k

E .

Proof. Since the Jacobian of the map πP(E) : P (E) → X is surjective, we have a short exact sequence

0 → TP(E)/X → TP(E) → π∗
P(E)TX → 0,

where TP(E)/X is the bundle of tangents to the fibers of πP(E). Taking determinants, we have

K∗
P(E) = π∗

P(E)K
∗
X ⊗ det

(
TP(E)/X

)
. (5)

The relative version of the Euler sequence [9, App. B5.8] (which we have adjusted for the different
convention for P (E) in [9]) is

0 → C× P (E) → π∗
P(E)E

∗ ⊗ ξE → TP(E)/X → 0 (6)
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which yields

det
(
TP(E)/X

)
= det

(
π∗
P(E)E

∗ ⊗ ξE

)
= det

(
π∗
P(E)E

∗
)
⊗ ξkE = π∗

P(E)det (E)
∗ ⊗ ξkE .

The result now follows from (5).

Remark 7. If X is a point and V = E = CN+1, then P (E) = PN , ξE = [1]PN , and (6) becomes

0 → [0]PN →
N+1⊕
j=1

[1]PN → TPN → 0. (7)

From this sequence, we conclude that KPN = [−(N +1)]PN and that the total Chern class of TPN is

(1 + tH1)
N+1

where H1 is the first Chern class of [1]PN . In particular, cj(TPN ) =
(
N+1
j

)
Hj

1 .

2.3 Theorem of Bertini

There are many results in algebraic geometry loosely connected under the name Bertini’s Theorem.
Some references for the results used here are [11, § III.10], [6, § 1.7], and [18, § A.9]. Among the
simplest versions of Bertini’s Theorem is the algebraic version of Sard’s Theorem.

Theorem 8 (Algebraic Sard’s Theorem). Let f : X → Y be an algebraic map from a connected
algebraic manifold to an algebraic variety Y . Assume that there is at least one point y ∈ Y such
that the irreducible component Z of the fiber f−1(y) satisfies dimZ = dimX − dimY . Then, there
is a nonempty Zariski open set U ⊂ Y such that f : f−1(U) → U is onto and of maximal rank.
In particular, all the fibers of f over points of U are smooth with all connected components of each
fiber having dimension dimZ = dimX − dimY .

Proof. This is just [11, Cor. III.10.7] combined with the upper semi-continuity of dimension.

Corollary 9. Given an algebraic vector bundle E on an algebraic manifold X with E spanned by a
finite dimensional space of algebraic sections V , there is a nonempty Zariski open set U ⊂ V such
that, for s ∈ U , Z = s−1(0) is smooth and either Z is empty or codimX Z = rank (E).

There are many generalizations dealing with the situations when there are singularities. Re-
calling that Sing (X) denotes the singular set of a algebraic set X, we will use the following result.

Theorem 10. Let X denote a reduced algebraic set with all components of X of the same dimen-
sion, say N , and let ξ denote an algebraic line bundle on X spanned by a finite dimensional vector
space of algebraic sections V . Then, there exists a nonempty Zariski open set U ⊂ V such that, for
s ∈ U , D = s−1(0) is either empty or

1. D is reduced and with all components of D having dimension N − 1;

2. Sing (D) ⊂ Sing (X) and D ∩Xreg is smooth; and

3. each irreducible component Z of Sing (D) is a proper algebraic subset of any irreducible com-
ponent of Sing (X) that Z belongs to. Hence, dimSing (D) < dimSing (X) if Sing (D) ̸= ∅.

Proof. This follows from the stronger result stated in [6, Thm. 1.7.1].
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In Theorem 10, since the restriction of V to D spans the restriction ξD of ξ to D, we can repeat
the above result to obtain a sequence of algebraic sets

D1 ⊂ D2 ⊂ · · · ⊂ DN−1 ⊂ DN = X (8)

such that, if Dj ̸= ∅, then the following hold:

1. all components of Dj have dimension j;

2. Sing (Dj) ⊂ Sing (Dj+1); and

3. dimSing (Dj) < dimSing (Dj+1) if Sing (Dj) ̸= ∅.

Thus, if Sing (Dj) ̸= ∅, then

dimSing (Dj) ≤ dimSing (X)− (N − j).

This gives an important fact that we state explicitly.

Corollary 11. If dimSing (X) ≤ k, then Dj is smooth for j < N − k. In particular, if Sing (X)
has codimension at least two, then D1 is smooth.

Homotopies are typically constructed with enough conditions for vanishing theorems to guaran-
tee that the Dj are irreducible. The following provides sufficient conditions to ensure irreducibility.

Theorem 12. Let X be an N -dimensional projective variety and let ξ be an algebraic line bundle
on X spanned by a vector space V of algebraic sections. If c1(ξ)

N ̸= 0, then, for a general s ∈ V ,
each Dj is irreducible for j ≥ 1.

Proof. First, assume that X is smooth and let D = s−1(0) be a smooth zero set for a general s ∈ V .
If D = ∅, then ξ would be the trivial bundle and c1(ξ) = 0. Hence, D ̸= ∅ with exact sequence

0 → OX(−D) → OX → OD → 0. (9)

By the Kawamata-Viehweg vanishing theorem [17, Cor 7.50], we know H0(X,OX(−D)) = 0 and
H1(X,OX(−D)) = 0. Therefore, using the long exact cohomology sequence associated to (9),
dimH0(D,OD) = 1. Since D is smooth, this implies it is connected. For manifolds, irreducibility
is equivalent to being connected.

If X is not smooth, then let π : X̂ → X be a desingularization. Here, X̂ is a connected
projective manifold and π gives a one-to-one and onto map from X̂ \ π−1(Sing (X)) → Xreg. Since
c1(π

∗ξ)N ̸= 0 and π∗V spans π∗ξ, a general choice of s ∈ V gives rise to the set

D = {x ∈ X | s(x) = 0} ⊂ X

which π maps to D such that

1. D is connected and smooth; and

2. π maps D̂ \ π−1
D (Sing (D)) one-to-one and onto Dreg.

Since the image of an irreducible set is irreducible, this shows that D is irreducible.
Noting that c1(ξD)

N−1 = c1(ξ)
N ̸= 0, the argument may be repeated until we reach D1.

When studying the number of ramification points in a fiber in Section 3.3, we will need the
following when k = N − 1.
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Lemma 13. Let X be an N -dimensional projective variety with dimSing (X) ≤ k−1. Let G denote
an algebraic vector bundle on X of rank k < N . Assume that G is a direct sum of algebraic line
bundles Lj with each Lj spanned by a vector space Vj of algebraic sections. Let HX be an ample
line bundle on X. Assume that, for each j ≤ k,(

j−1∏
i=1

c1(Li)

)
c1(Lj)

2c1(HX)N−j−1 ̸= 0. (10)

Then, a general section of G from V1 ⊕ · · · ⊕ Vk has a smooth, nonempty, connected solution set of
dimension N − k.

Proof. Following the methods used earlier, we may reduce to the situation where X is smooth.
Note that if X was not smooth and π : X̂ → X was desingularization as in Theorem 12, π∗HX

won’t be ample on X̂, but taking any ample line bundle A on X̂, H
X̂

= A⊗ π∗HX will be ample

on X̂ and the condition (10) will immediately yield the needed condition for j ≤ k,(
j−1∏
i=1

c1(π
∗Li)

)
c1(π

∗Lj)
2c1(HX̂

)N−j−1 ̸= 0.

Let DN = X. For each j = N − k, . . . , N − 1, let Dj denote the solution set of a general element
of VN−j restricted to Dj+1. We have

X = DN ⊇ DN−1 ⊇ · · · ⊇ DN−k.

The condition c1(L1)
2 ·HN−2

X ̸= 0 implies the solution set DN−1 is nonempty and thus is smooth
of dimension N − 1 by Bertini’s Theorem.

By [17, Cor 7.50], Hr(L∗
1) = 0 for r ≤ 1. Thus, from the exact sequence

0 → O(L∗
1) → ODN

→ ODN−1
→ 0,

the long cohomology sequence yields H0(ODN
) = H0(ODN−1

). Hence, DN−1 is connected.
Denote the restriction of HX and Lr to Dj by HDj and Lj,Dr , respectively. Noting that

c1(Lj,DN−j+1
)2 ·HdimDN−j+1−2

DN−j+1
=

(
j−1∏
i=1

c1(Li)

)
c1(Lj)

2c1(HX)N−j−1 ̸= 0,

we may continually repeat the above argument to prove the result by downward induction.

Since the key to Lemma 13 is (10), consider what it means for (10) to fail. To that end, assume
for simplicity that X in Lemma 13 has no singularities and (10) fails for j = 1, i.e.,

c1(L1)
2 · c1(HX)N−2 = 0.

Failing at other values of j is similar but the mass of indices obscures a conceptual understanding.
Using Bertini’s Theorem, this implies that the solution sets of two general elements a1, a2 ∈ V1

have empty intersection. Let A denote the span of a1 and a2. Thus, the two dimensional vector
subspace A of V1 spans L1 under the evaluation map giving

X ×A → L1 → 0.

10



The map ϕ associated to this surjection maps X to P1 with L1 = ϕ∗[1]P1 . The solution sets of
elements of A are fibers of the map. Depending on the situation, the fibers may be connected
or disconnected. For example, if X = P1 × P1 and L1 was the line bundle corresponding to a
bihomogeneous polynomial of bidegree (1, 0), the condition would fail and the map ϕ would be a
product projection. Here the fibers and hence the solution sets of elements of V1 are connected.
However, if L1 was the line bundle associated to bihomogeneous polynomials of bidegree (2, 0),
then ϕ would be a product projection composed with a degree two map of P1 to P1. In this case,
the solution sets of general elements of V1 would be disconnected (with two components). The
condition given by (10) does not see which powers of the Lj are used and the condition is nonzero
if the connectedness is true for all the powers of the Lj .

2.4 Spaces of systems and spaces of solutions

Fix a projective variety X and an algebraic vector bundle E on X spanned by a vector space of
algebraic sections V . Let P (V ) be the projective space of lines through the origin in V ∗. From (2),
we have an embedding

P (F) → X × P (V ∗).

Let p and q denote the projections from X × P (V ∗) to X and P (V ∗) respectively. Let pP(F)

and qP(F) denote their restrictions to P (F). Note that pP(F) is simply πP(F). Each v ∈ V is a
section of E which, for us, is a polynomial system. Thus, P (V ∗) is the space of sections associated
to V . For v ∈ V , let Z(v) ⊂ X denote the solution set of v. This yields the following.

Theorem 14. Given v ∈ P (V ∗),

πP(F)

(
q−1
P(F)(v)

)
= Z(v).

In particular, this identifies the projective variety P (F) with the total space of all solutions corre-
sponding to the nonzero elements of the vector space of sections V .

Proof. Fix a point v ∈ P (V ∗). Choose a v̂ in V over v ∈ P (V ∗). Note that the evaluation map
takes {x} × v̂ to v̂(x), which is 0 if and only if x ∈ Z(v). Thus, over each of the points x ∈ X,
{x} × v̂ comes from a point wx in the fiber F∗

x of F∗ over x if and only if v̂(x) = 0.

Note that V ∗ spanning F implies that V ∗ yields a space of sections, namely π∗
P(F)V

∗, which span
π∗
P(F)F . By the surjection π∗

P(F)F → ξF , π
∗
P(F)V

∗ spans ξF . This is summarized in the following.

Lemma 15. The map qP(F) : P (F) → P (V ∗) is the map associated to π∗
P(F)V

∗ spanning ξF and

therefore ξF = q∗P(F)[1]P(V ∗).

For a map that is generically finite to one, the Galois/monodromy group encodes subtle structure
regarding the fibers, e.g., see [13]. A transitive group means that there is a smooth path between
any two points in a general fiber which can be tracked using continuation, a so-called monodromy
loop. With the identifications above, we have the strong conclusion involving the transitivity of the
Galois/monodromy group.

Theorem 16. Let X be a N -dimensional projective variety with dimSing (X) ≤ N − 2. Let E be
a rank N algebraic vector bundle spanned by a vector space V of algebraic sections. Assume that
at least one section s ∈ V has at least one isolated solution on X. Then, the map

qP(F) : P (F) → P (V ∗)

11



is generically finite to one and the corresponding Galois/monodromy group is transitive. In par-
ticular, given a general line ℓ ⊂ P (V ∗), C = q−1

P(F)(ℓ) is a smooth, connected algebraic curve. In

fact, there is a dense Zariski open set U ⊂ P (V ∗) with q−1
P(F)(u) being finite and smooth for u ∈ U .

Moreover, given a solution û over any u ∈ U ∩ ℓ having smooth isolated zeroes, continuation using
loops in U ∩ ℓ starting and ending at u will give all solutions over u.

Proof. By Theorem 8, there is a nonempty Zariski open set U ⊂ P (V ∗) such that dim q−1
P(F)(u) = 0

for u ∈ U . Hence,

c1(ξF )
dimP(F) = c1

(
q∗P(F)[1]P(V ∗)

)dimP(V ∗)
= q∗P(F)c1

(
[1]P(V ∗)

)dimP(V ∗) ̸= 0.

Corollary 11 yields smoothness of C and Theorem 12 yields connectedness of C. Transitivitiy is an
immediate consequence of connectedness.

3 Singular points of the systems parameterized by a general pencil

In this section, X is an N -dimensional projective variety with a singular set of dimension at most
N − 2, and E is a rank N vector bundle on a projective variety X spanned by a vector space
of sections, such that at least one of the sections from V has isolated solutions. Keep in mind
that statements about sections and families of sections give rise to statements about systems of
polynomials and families of system of polynomials.

We shall refer to the set of sections parameterized by a line in P (V ∗) as a pencil of sections.
Moreover, those sections parameterized by a general line will be called a general pencil of sections.

There are three questions to ask about the singular points of the sets that the sections param-
eterized by a general pencil of sections vanish on.

1. How many singular points are there for the sections parameterized by a general pencil
ℓ ⊂ P (V ∗) of sections?

2. What are their multiplicities?

3. How many can there be in a fiber?

The answers to these questions constitute the main results of this paper. The first is primarily
topological and answered in Section 3.1 counting with respect to ramification index. The second
question is answered in Section 3.2 under very general hypotheses covering practically all cases of
interest for systems of polynomials arising by restriction from products of projective spaces. The
last question is considered in Section 3.3.

3.1 How many singular points are there?

Let X, E , and V be as in Theorem 16. Let q : P (F) → P (V ∗) be the generically finite-to-one map
in Theorem 16. Let A ⊂ P (V ∗) denote the union of q (Sing (P (F))) and the algebraic set D of
points y ∈ P (V ∗) with dim q−1(y) > 0. Let B denote q−1(A), V = P (V ∗) \ A, and U = P (F) \ B.
This gives rise to the following.

Lemma 17. With this setup, U is smooth and the map qU : U → V is finite-to-one. Then,
dimA ≤ dimP (V ∗)− 2 and thus, a general line ℓ ⊂ P (V ∗) lies in V. Moreover, given an arbitrary
point y ∈ P (V ∗) and general point x ∈ P (V ∗), the line containing x and y meets A in at most y.
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Proof. The statements about smoothness and qU being finite-to-one are true by the construction
of V and U .

To see that dimA ≤ dimP (V ∗)−2, it suffices to show that dim q (Sing (P (F))) ≤ dimP (V ∗)−2
and dimD ≤ dimP (V ∗)− 2.

Since dimSing (X) ≤ dimX − 2, we know dimSing (P (F)) ≤ dimP (F) − 2. Additionally,
dimP (F) = dimP (V ∗) yields

dim q (Sing (P (F))) ≤ dimSing (P (F)) ≤ dimP (F)− 2 = dimP (V ∗)− 2.

It follows from dimD < dim q−1(D) < dimP (F) = dimP (V ∗) that dimD ≤ dimP (V ∗)− 2.
The fact that a general line containing y meets A in at most y follows by dimension counting.

Consider the closure Q of the union of all lines on P (V ∗) containing y meeting A in at least one
point distinct from y. We have dimQ ≤ dimA+ 1 ≤ dimX − 1.

Let ℓ be a general line in P (V ∗) which lies in V. By Bertini’s Theorem, C = q−1(ℓ) is smooth
and, by Theorem 16, C is connected. The line bundle associated to the ramification locus R of qU
is identified [9, Ex. 3.2.20] with KU ⊗ q∗K∗

V . Note that R ∩C are the ramification points of qC . A
straightforward check shows that, for x ∈ C ∩R, the multiplicity of the component of R at x is the
ramification index of qC at x. In particular, over U , R is the zero set of a section of the line bundle

R := KP(F) ⊗ q∗P(F)

(
K∗

P(V ∗)

)
.

It immediately follows that deg c1(R)C = C ∩ R. Note that the singular points of a system y ∈ ℓ
are the points in q−1

C (y) ∩ R. Additionally, since KP(V ∗) = [−dimV ]P(V ∗) and ξF = q∗P(F)[1]P(V )∗ ,
we conclude from Lemma 6 that

R = π∗
P(F) (KX ⊗ det (F))⊗ ξNF . (11)

The following counts singular points with respect to the ramification index. Thus, for example, a
multiplicity two singular point of a system contributes one to the count.

Theorem 18. Let X be an N -dimensional projective variety with singular set of codimension at
least two. Let E be a rank N vector bundle spanned by a vector space V of sections. Assume that
at least one section s ∈ V has at least one isolated solution on X. Then, the number of singular
points of solutions of the sections parameterized by a general line ℓ ⊂ P (V ∗) is

(c1(KX) + c1(E)) cN−1(E) +NcN (E). (12)

In particular, when E is a direct sum of line bundles L1 ⊕ · · · ⊕ LN , this number equalsc1(KX) +

N∑
j=1

c1(Lj)

 N∑
i=1

∏
j ̸=i

c1(Lj)

+N

N∏
j=1

c1(Lj). (13)

Proof. Letting C = q−1(ℓ), the number of singular points is

R∩ C =
(
π∗
P(F) (c1(KX) + c1(det(F))) +Nc1(ξF )

)
· c1(ξF )dimP(F)−1.

Using Lemma 4, we have

R∩ C =
(
π∗
P(F) (c1(KX) + c1(det(F)))

)
· cN−1(E) +NcN (E).

This immediately implies (12) with (13) trivially following from (12).
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The following specializes Theorem 18 to a product of projective spaces.

Corollary 19. Let X = Pa1 × · · · × Pak be a product of projective spaces and N = a1 + · · · + ak.
For j = 1, . . . , N , let Lj be a line bundle of multidegrees dj,1, . . . , dj,k and E = L1⊕· · ·⊕LN . Let V
be a vector space of sections of E that spans E and assume that at least one section s ∈ V has at
least one isolated solution on X. For j = 1, . . . , N , let δj be the linear function

∑k
i=1 dj,iHi in the

variables Hi. Then, the number of singular points of solutions of the systems parameterized by a
general line ℓ ⊂ P (V ∗) is the coefficient of Ha1

1 · · ·Hak
k in the polynomial N∑

j=1

δj −
k∑

i=1

(ai + 1)Hi

 δ1 · · · δN
(

1

δ1
+ · · ·+ 1

δN

)
+Nδ1 · · · δN . (14)

In particular, when X = PN and E = [d1]PN ⊕ · · · ⊕ [dN ]PN , then this number equals

(d1 + · · ·+ dN −N − 1) d1 · · · dN
(

1

d1
+ · · ·+ 1

dN

)
+Nd1 · · · dN (15)

Proof. Let πj : X → Paj be the projection of X onto its jth factor and let Hj = c1(π
∗([1]Paj )).

Note that for a vector of nonnegative integers (b1, . . . , bk) such that b1 + · · ·+ bk = N , Hb1
1 · · ·Hbk

k

evaluated on X equals 1 if bj = aj for all j = 1, . . . , k and equals zero otherwise. With this, the
result immediately follows from Theorem 18.

Remark 20. One can easily use (14) to count the number of singular points for product of pro-
jective spaces using a computer algebra system. As mentioned at the end of the Introduction, we
have developed a Maple worksheet for this. The following summarizes the steps used to perform
this calculation following the notation in Corollary 19 and its proof. First, the total Chern class is
computed via

ct(E) =
N∏
j=1

(1 + tc1(Lj)) .

The Bézout number is the coefficient of tN in ct(E), which is a polynomial in the Hj ’s. In fact,
since cN (E) is simply a coefficient multiplied by Ha1

1 · · ·Hak
k , the Bézout number is precisely the

coefficient of Ha1
1 · · ·Hak

N . In the Maple worksheet, this is computed in stages by first computing
the coefficient, say A1 of Ha1

1 , and then taking the coefficient, say A2, of H
a2
2 in A1, and so on.

Next, cN−1(E) is equal to the coefficient of tN−1 in the polynomial ct(E). Moreover, from (14),

c1(KX) = −
N∑
j=1

(aj + 1)Hj .

Thus, the Maple worksheet computes the product

(c1(KX) + c1(E))cN−1(E)

and extracts the coefficient of Ha1
1 · · ·HaN

N in this expression.
Finally, the two coefficients are combined via (12) to yield the number of singular points.

The following defines the ratio of the number of singularities in a general pencil with the Bézout
number, which is one measure of the quality of a homotopy.
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Definition 21. Let B be the Bézout number and σ be the number of singularities in a general
pencil. Then, the ratio r = σ/B is called the singularity ratio.

Hence, for a homotopy, the singularity ratio is equal to the number of singular points per solution
path that needs to be tracked. A high singularity ratio means that there are many ramification
points in relation to the number of solution paths to track. Similarly, a low singularity ratio means
that there are few ramification points in relation to the number of solution paths to track.

We close this subsection with two examples.

3.1.1 Cyclic example

Let X =
(
P1
)N

be a product of N copies of P1’s with N ≥ 2. Fix multidegrees d1, . . . , dN with
dj = (dj,1, . . . , dj,N ) such that

dj,k =

{
1 if k = j or k = j + 1 mod N
0 otherwise

Consider the general pencil λf + µg where f = (f1, . . . , fN ) and g = (g1, . . . , gN ) are general
systems of multihomogeneous polynomials on X such that both fj and gj have multidegree dj . The
corresponding line bundles Lj and the vector bundle E are clear. Moreover, it is straightforward
to check that the coefficient of H1 · · ·HN in

(H1 +H2) · · · (HN +H1)

is 2. So the Bézout number of systems in this pencil is B = 2.
Since det E is the line bundle of multidegrees (2, . . . , 2) and KX is a line bundle of multidegrees

(−2, . . . ,−2), KX⊗det E has multidegrees all 0. Hence, c1 (KX)+c1 (det E) = 0 and so the number
of singular points of solutions of the systems parameterized by the general pencil is σ = 2N . Thus,
the singularity ratio is r = σ/B = N and, by Hurwitz’s formula, the genus g of the smooth curve
of all the singularities of the pencil satisfies 2g − 2 = −4 + 2N , i.e., g = N − 1.

3.1.2 Polynomials with the same multidegrees

Consider a further simplification of Corollary 19 when every polynomial is assumed to have the
same multidegree on X = Pa1 × · · ·×Pak . The cases of k = 1 and k = 2 with the same multidegree
were considered in [12, Thms. 2 & 4], respectively, using multihomogeneous counts. The following
considers the case when k is arbitrary and recovers the k = 1 and k = 2 counts as special cases. To
that end, let N = a1+ · · ·+ak and E be a direct sum L1⊕· · ·⊕LN where all of the line bundles Lj

have the same multidegree (d1, . . . , dk). Then, the number of singularities in a general pencil is

(
N

a1, . . . , ak

)
da11 · · · dakk

N(N + 1)−
k∑

j=1

aj(aj + 1)

dj

 (16)

where

(
N

a1, . . . , ak

)
is the usual multinomial coefficient, namely

(
N

a1, . . . , ak

)
=

N !

a1! · · · ak!
.
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To see this, letHj be as in Corollary 19, i.e., the first Chern class of the line bundle of multidegrees 0
in all places but the jth where it is degree 1. Then, we have

c1(KX⊗det(E)) =
k∑

j=1

(Ndj−aj−1)Hj , cN−1(E) = N

 k∑
j=1

djHj

N−1

, cN (E) =

 j∑
j=1

djHj

N

.

As in the proof of Corollary 19, if (b1, . . . , bk) are nonnegative integers summing to N , then

Hb1
1 · · ·Hbk

k =

{
1 (a1, . . . , ak) = (b1, . . . , bk),
0 otherwise.

As always, we identify the generator of H2N (X,Z) = Z corresponding to X with 1. Then, we have

c1(KX ⊗ det(E))cN−1(E) = N

k∑
j=1

(Ndj − aj − 1)
(N − 1)!

(aj − 1)!
∏

i ̸=j ai!
d
aj−1
j

∏
i ̸=j

daii


and

cN (E) =
(

N

a1, . . . , ak

)
da11 · · · dakk .

Thus, (12) becomes

N
k∑

j=1

(Ndj − aj − 1)
(N − 1)!

(aj − 1)!
∏

i ̸=j ai!
d
aj−1
j

∏
i ̸=j

daii

+N

(
N

a1, . . . , ak

)
da11 · · · dakk

= N

(
N

a1, . . . , ak

)
da11 · · · dakk

 k∑
j=1

(
(Ndj − aj − 1)

aj
Ndj

)
+ 1

 , (17)

which is equivalent to (16) since N = a1 + · · ·+ ak.
When k = 2, (16) reduces to the formula provided as an upper bound in [12, Thm. 4]. In

particular, with N = a1 + a2, the multinomial coefficient becomes the binomial coefficient yielding(
a1 + a2

a1

)
da11 da22

(
(a1 + a2)(a1 + a2 + 1)− a1(a1 + 1)

d1
− a2(a2 + 1)

d2

)
(18)

which is equal to the formula reported in [12, Thm. 4], namely

2

(
a1 + a2

a1

)
da1−1
1 da2−1

2

((
a1 + a2 + 1

2

)
d1d2 −

(
a1 + 1

2

)
d2 −

(
a2 + 1

2

)
d1

)
. (19)

Finally, consider the case when a1 = · · · = ak = a and d1 = · · · = dk = d, i.e., polynomials of
multidegree (d, . . . , d) on X = (Pa)k with N = k · a. Then, (16) and (17) become

N
N !

(a!)k
dN
(
k(Nd− a− 1)

a

Nd
+ 1
)
=

N !

(a!)k
dN
(
N(N + 1)− N(a+ 1)

d

)
. (20)

When k = 1, i.e., N = a, (20) reduces to the formula provided in [12, Thm. 2], namely

NdN
(
Nd−N − 1

d
+ 1

)
= (N + 1)N(d− 1)dN−1 = 2

(
N + 1

2

)
(d− 1)dN−1.

Moreover, since dN is the Bézout number, the singularity ratio is

r = N

(
Nd−N − 1

d
+ 1

)
= N(N + 1)

(
1− 1

d

)
.

Thus, the singularity ratio grows quadratically in N when d ≥ 2.
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3.2 What are the multiplicities of the singular points?

The short answer is that singularities almost always have multiplicity two.

Theorem 22. Let X be a projective variety with singularities of codimension at least two. Let
E = G⊕L where G is a rank N−1 vector bundle on X and L is a line bundle on X. Let V = VG⊕VL
where VG spans G, VL spans L, and the associated map of X to P (VL) is an embedding. Assume
that at least one section of E coming from V has isolated solutions. Let ℓ be a general line on P (V ∗).
Then, the following hold:

1. the curve C of the solutions of the systems parameterized by ℓ is smooth and connected; and

2. the singularities of the systems parameterized by ℓ (which are the ramification points of the
projection C → ℓ) are of multiplicity two (and ramification index one).

Proof. The first statement was shown in Theorem 16.
Since the multiplicity two condition is an open condition, it suffices to show that this is true for

one system. Choose a general element g of VG . By the fact that VG spans G and Bertini’s Theorem,
the solution set C of g is either smooth of dimension one or empty. It cannot be empty since a
general element of V has isolated solutions. Thus, C is a union of a finite number of smooth curves
C1, . . . , Ck. By the existence of Lefschetz pencils, e.g., [20, Chap. 2.1.1], it follows that, for almost
every choice of two sections ℓ2, ℓ3 of VL, the singularities of the systems on C parameterized by{

λℓ2 + µℓ3 | [λ, µ] ∈ P1
}

are multiplicity two. Therefore, the linear P1 on P (V ∗) of systems[
g

λℓ2 + µℓ3

]
has the property that all systems parameterized by the P1 have multiplicity two solutions.

Corollary 23. Under the hypotheses of Theorem 22, the multiplicities of the components of R are
all one. Therefore, by Lemma 15, given an arbitrary point y ∈ P (V ∗) and a general x ∈ P (V ∗), the
singularities of the systems parameterized by the line containing x and y on P (V ∗) are multiplicity
two with the possible exception of the singular points of the system y.

Remark 24. These assumptions in Theorem 22 are actually quite mild. For example, the hypothe-
ses hold on PN when the degrees d1, . . . , dN satisfy d1 · · · dN > 0. More generally, the conditions
of the theorem hold on Pa1 × · · · × Pak with N = a1 + · · · + ak equations having corresponding
multidegrees d1 = (d1,1, . . . , d1,k), . . . , dN = (dN,1, . . . , dN,k) satisfying:

1. there exists i ∈ {1, . . . , N} such that di,j > 0 for every j = 1, . . . , k; and

2. a general system with these multidegrees has isolated solutions.

3.3 What is the maximum number of singularities in a fiber?

Consider the hypotheses of Theorem 22 and the curve C arising in its proof. If we knew that C was
connected, then it would immediately follow that there was at most one singular solution in a fiber
of a general pencil of systems. For instance, if besides being spanned, suppose that X was smooth
and G was ample of rank N − 1, then this would follow from a generalization of the first Lefschetz
Theorem, e.g., [15, Thm. 7.1.1]. For direct sums of line bundles, the following is much stronger.
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Theorem 25. Let X be an N -dimensional projective variety with singular set of codimension at
least two and let HX be an ample line bundle on X. Let E = L1 ⊕ · · · ⊕LN where each Lj is a line
bundle on X with Vj spanning Lj. Assume that the map of X to P (VN ) associated to LN is an
embedding on Xreg. Let V = V1 ⊕ · · · ⊕ VN and assume that, for j = 1, . . . , N − 1,(

j−1∏
i=1

c1(Li)

)
c1(Lj)

2c1(HX)N−j−1 ̸= 0 (21)

Then, there is at most one singularity for every system parameterized by a general line on P (V ∗).

Proof. A Lefschetz pencil [20, Chap. 2.1.1] has at most one singularity in a fiber. As noted above,
if the curve C in the proof of Theorem 22 was connected, we would have the requisite conclusion.
For this, one can take G = L1 ⊕ · · · ⊕ LN−1 and utilize Lemma 13.

In terms of R, the ramification locus of the map qU : U → V, Theorem 25 says that two distinct
components of R cannot have the same image under q. This yields the following.

Corollary 26. Under the hypotheses of Theorem 25, given an arbitrary point y ∈ P (V ∗) and a
general x ∈ P (V ∗), there is at most one singularity for any of the systems parameterized by the line
containing x and y on P (V ∗) with the possible exception of the singular points of the system y.

The following is an immediate consequence when applied to PN .

Corollary 27. Let E = [d1]PN ⊕· · ·⊕ [dN ]PN and V = H0(E). Then, the conditions of Theorem 25
and Corollary 26 hold if (and only if) dj > 0 for j = 1, . . . , N .

As the discussion after Lemma 13 noted, the failure of the condition imposed by (21) does not
preclude the result from still being true. Thus, this is a sufficient condition.

When considering a product of projective spaces, (21) is very natural and can be easily checked
using a computer algebra system. Similar with Remark 20, we have created a Maple worksheet for
performing this check as well.

Although (21) holds for many common situations, e.g., Corollary 27, it is interesting to consider
cases for which it does not hold. Even when using all the sections of the line bundles, the Chern
class condition (21) for connectedness can fail and/or LN can fail to be ample. The following
considers two such cases.

Example 28. The following two cases are situations in which the condition in (21) is violated
and, subsequently, the conclusion of Theorem 25 fails to be true. The cases are general pencils on
X = P1 × P1 with

1. bihomogeneous polynomials of bidegrees (d, 0) and (0, d); and

2. bihomogeneous polynomials of bidegrees (3, 0) and (2, 2).

In the first case, Theorem 18 yields that the total number of singularities of the solution set (all
double points with ramification index one) is σd = 4d(d−1) with Bézout number being d2. The case
d = 1 has a Bézout number of one (as can easily be seen directly) and σ1 = 0, i.e., no singularities,
and thus is not interesting. Using Bertini [2, 3], we obtain the following in under a second:

1. for d = 2: σ2 = 8 = 4 · 2 as predicted by the formula but the singularities arise from four
pairs, i.e., there are four fibers with singularities and each has two singular points; and
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2. for d = 3, σ3 = 24 = 8 · 3 as predicted by the formula but the singularities arise from eight
triplets, i.e., there are eight fibers with singularities and each has three singular points.

In the second case, L2 is ample and Theorem 18 yields the total number of singularities of the
solution set (all double points with ramification index one) is σ = 18 with Bézout number of the
system being 6. Using Bertini [2, 3], we obtain 14 fibers containing at least one singularity in
under a second with the following providing a summary of these 14 fibers:

• 10 of these fibers contain one singularity; and

• 4 of these fibers contain two singularities.

Note that σ = 18 = 10 + 4 · 2.

Remark 29. The second case in Example 28 shows that the assumption of connectedness in the
existence theorem for Lefschetz pencils cannot be dropped.

4 Examples

The following collects some interesting examples. The first, in Section 4.1, considers the sections
of the tangent bundle of PN twisted by [d]PN , i.e., TPN (d) = TPN ⊗C [d]PN , for d ≥ −1. This is a
example of a bundle that is not a direct sum of line bundles. It leads to systems with lower Bézout
numbers than one would expect using multihomogeneous counts.

The second, in Section 4.2 considers Alt’s nine-point path synthesis problem for four-bar link-
ages [1, 21]. This problem has had a major influence on our view of continuation and ramification
points. The realization in [4, §3.3] that 0.83% of the paths of the homotopy to solve it passed
near enough to singularities of the pencil to require precision higher than double was one of the
inspirations of this article and [12]. Therefore, the numbers of singularities for systems like this are
of particular interest to us. In particular, Table 1 compares four different formulations.

Finally, Section 4.3 considers a closely related family, namely the Alt-Burmester synthesis prob-
lems for four-bar linkages [7]. Table 2 compares two different formulations on the collection of
Alt-Burmester problems.

4.1 Twists of the tangent bundle of projective space

The tangent bundle of PN , TPN , is not a direct sum of line bundles as can be checked from the
Chern classes of the bundle computed in Remark 7. Nonetheless, it gives rise to a very interesting
class of polynomial systems.

Theorem 30. Let (x1, . . . , xN ) be coordinates on CN and let d ≥ −1 be an integer. Consider
systems of the form  p1(x)− x1q(x)

...
pN (x)− xNq(x)

 (22)

where q(x) is a homogeneous polynomial of degree d + 1 in x1, . . . , xN and each pj(x) is a poly-
nomial (not necessarily homogeneous) of degree d + 1. Each such system extends to an algebraic
section of TPN (d), the tangent bundle of PN twisted by a integer, i.e., TPN ⊗C [d]PN . Moreover, the
correspondence between these systems and the sections of TPN (d) is one-to-one and onto.
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Proof. To see this, fix coordinates (z0, . . . , zN ) on CN+1. Consider the usual map

π : CN+1 \ {(0, . . . , 0)} → PN given by (z0, . . . , zN ) → [z0, z1, . . . , zN ]

where we regard the [z0, z1, . . . , zN ] as homogeneous coordinates. The vector fields on CN+1 that
are mapped to vector fields on PN are precisely those of the form

N∑
j=0

Lj(z)
∂

∂zj
(23)

with Lj(z) homogeneous linear in the z variables. The only one of these vector fields that goes to
zero on PN is

z0
∂

∂z0
+ · · ·+ zN

∂

∂zN

which is tangent to the fibers of the map π and goes to 0.
Consider the long exact cohomology sequence associated to (7) tensored with [d]PN . On PN ,

Hj(PN , [k]PN ) = 0 for all k with 0 < j < N . Thus we have

0 → H0(PN , [d]PN ) →
N⊕
j=0

H0(PN , [d+ 1]PN ) → H0(PN , TPN (d)) → 0.

The first term is exactly the vector space of homogeneous polynomials of degree d. The second
term is the vector space of (N + 1)-tuples of homogeneous polynomials of degree d + 1, with the
map from the first to the second term given by

g(z) → (z0g(z), . . . , zNg(z)).

The third term is the sections of the algebraic bundle TPN (d). The map from the second term to
the third term is given by

(p0(z), . . . , pN (z)) → p0(z)
∂

∂z0
+ · · ·+ pN (z)

∂

∂zN
.

Exactness comes down to z0
∂
∂z0

+ · · · + zN
∂
∂zN

being the only vector field of those in (23) that is

zero on PN .
We map CN → PN by sending (x1, . . . , xN ) → [1, x1, . . . , xN ]. We will now proceed to see what

the sections p0
∂
∂z0

+ · · ·+ pN
∂
∂zN

give rise to when restricted to this CN . Given

p0(z)
∂

∂z0
+ · · ·+ pN (z)

∂

∂zN
,

we can subtract

g(z)

(
z0

∂

∂z0
+ · · ·+ zN

∂

∂zN

)
,

where g(z) is of degree d without changing the vector field on PN . In this way, we can assume that
p0(z) is homogeneous of degree d+1 in the variables z1, . . . , zN and each pj(z) for j = 1, . . . , N are
arbitrary homogeneous polynomials of degree d+ 1. Using

z0p0(z)
∂

∂z0
= −z1p0(z)

∂

∂z1
· · · − zNp0(z)

∂

∂zN
,
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we see that the algebraic sections of TPN (d) are precisely of the form

(p1(z)− z1p0(z))
∂

∂z1
+ · · ·+ (pN (z)− zNp0(z))

∂

∂zN
.

On CN , with the x coordinates obtained via xi =
zi
z0

with z0 = 1, these are exactly the systems
described by (22).

The Bézout number for TPN (d) is

BTPN (d) :=

N∑
j=0

(
N + 1

j

)
dN−j =

(d+ 1)N+1 − 1

d
=

N∑
j=0

(d+ 1)j (24)

which is precisely the number of isolated smooth solutions of a generic algebraic section of TPN (d).
In (24), the first equality follows from combining the formulae for the Chern classes of TPN , e.g.,
Remark 7, and the formula for the Chern classes of a bundle twisted by a line bundle. The solution
count of (24) is lower than the count of

(d+ 2)N = ((d+ 1) + 1)N =
N∑
j=0

(
N

j

)
(d+ 1)j

for N general degree d + 2 polynomials. In [16, pg. 145], a different, but incorrect, system of two
degree d+ 2 polynomials is stated to have the properties of the above system when N = 2.

Further,

cN−1 (TPN (d)) =

N−1∑
j=0

(N − j)

(
N + 1

j

)
dN−1−j

HN−1
1 =

(
(Nd− 1)(d+ 1)N + 1

d2

)
HN−1

1 ,

where H1 = c1([1]PN ). This follows from the same sort of algebra as the computation of the Bézout
number above. An easier computation shows that

c1(KPN ) + c1 (TPN (d)) = NdH1.

Thus, Theorem 18 shows that a general pencil of systems has

σTPN (d) := Nd

(
(Nd− 1)(d+ 1)N + 1

d2

)
+N

(d+ 1)N+1 − 1

d
= N(N + 1)(d+ 1)N (25)

singularities. In particular, the singularity ratio is

σTPN (d)

BTPN (d)
=

N(N + 1)d(d+ 1)N

(d+ 1)N+1 − 1
= N(N + 1)

d

d+ 1
+O

(
1

(d+ 1)N

)

where O
(

1
(d+1)N

)
is the usual Hardy’s O, i.e., the remainder to the approximation N(N +1)

d

d+ 1

bounded by a constant independent of d (depending on N) times
1

(d+ 1)N
.

Consider comparing this to the more general case of systems of N polynomials of degree d+ 2.
The bundle is

G =

N⊕
j=1

[d+ 2]PN
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The Bézout number is BG = (d+2)N and number of singularities is σG = (d+2)N−1N(N+1)(d+1).
We already saw that BG is larger than BTPN (d). Similarly, σG is always larger than σTPN (d) since

σG
σTPN (d)

=

(
d+ 2

d+ 1

)N−1

.

In particular,
σG
DG

σTPN (d)

DTPN (d)

= 1 +
1− 1

(d+1)N−1

(d+ 2)d
> 1.

4.2 Alt’s nine-point path synthesis problem

To keep notation simple, we use a compact description of the systems and leave details regarding
the actual systems to [21]. The first formulation of Alt’s problem consists of solving sixteen cubics
and eight quartics on P24, which will be represented by

(3H)16(4H)8 on P24.

The Freudenstein and Roth formulation, which was the starting point in [21], yields a system of
eight septics on P8, which will be represented by

(7H)8 on P8.

In [21], four new variables were added to the Freudenstein and Roth formulation along with four
new polynomials which reduced the system to four quadrics and eight quartics on P12. We represent
this by

(2H)4(4H)8 on P12.

Finally, one can view this system naturally on P6 × P6 consisting of

• two bihomogeneous polynomials of multidegree (2, 0);

• two bihomogeneous polynomials of multidegree (0, 2); and

• eight bihomogeneous polynomials of multidegree (2, 2).

This will be represented by

(2H1)
2(2H2)

2(2H1 + 2H2)
8 on P6 × P6.

With these four formulations of Alt’s problem, Table 1 summarizes the Bézout numbers (B), number
of singularities (σ), and the singularity ratio (r = B/σ).

The only nontrivial one of these is the bihomogeneous formulation. Letting [a, b] be the line
bundle of bidegree (a, b) on P6 × P6, we have

E = [2, 0]⊕2 ⊕ [0, 2]⊕2 ⊕ [2, 2]⊕8.

The total Chern class is

ct(E) = (1 + 2H1t)
2(1 + 2H2t)

2(1 + (2H1 + 2H2)t)
8.
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Thus, c1(det(E)) = c1(E) is equal to the coefficient of t in ct(E), namely 20(H1 + H2). Similarly,
c11(E) is equal to the coefficient of t11. Remembering that Hj

1H
12−j
2 equals 1 if j = 6 and 0

otherwise, we have
c11(E) = 1,089,536H5

1H
5
2 (H1 +H2).

Similarly, the Bézout number is c12(E) which is equal to 286,720 under the usual identification
for connected compact manifolds M of HdimR M (X,Z) with Z. The canonical bundle KX equals
[−7,−7] and therefore c1(KX) = −7H1−7H2. Putting everything together with Theorem 18 yields

(c1(KX) + c1(E)) c11(E) + 12c12(E) = 13(H1 +H2) · 1,089,536H5
1H

5
2 (H1 +H2) + 12 · 286,720

= 14,163,968 ·H5
1H

5
2 (H1 +H2)

2 + 3,440,640
= 14,163,968 · 2 + 3,440,640 = 31,768,576.

For all four formulations summarized in Table 1, using all sections of E in each case, the
conditions of Theorem 25 and Corollary 26 are satisfied.

4.3 Alt-Burmester systems

Alt’s nine-point path synthesis problem [1] in Section 4.2 and Burmester’s five-pose path synthesis
problem [8] can be considered as part of a family of four-bar synthesis problems called Alt-Burmester
problems [7]. This family of zero-dimensional problems is parameterized by nonnegative integer
pairs (m,n) such that 2m+n = 10 withm ≥ 1. The (m,n) synthesis problem aims to compute four-
bar linkages satisfying m poses (position and orientation) and n precision points (position only).
The reason for m ≥ 1 is that one can always trivially match any orientation at one point simply by
setting the frame of reference. In particular, the two extremes of the Alt-Burmester problems are
Burmester’s problem corresponding with (5, 0) and Alt’s problem corresponding to (1, 8), where an
orientation is added to one of the nine points to trivially set the frame of reference.

While the formulation in Section 4.2 was highly specialized to Alt’s problem, here we follow the
“standard” formulation from [7]. In this “standard” formulation, an (m,n) Alt-Burmester problem
(with 2m+ n = 10) corresponds with a system with degree structure denoted as

n∏
j=1

[(H2j−1 +H2j +H2n+1 +H2n+2)(H2j−1 +H2j +H2n+3 +H2n+4)(H2j−1 +H2j)]


·(H2n+1 +H2n+2)

m−1(H2n+3 +H2n+4)
m−1 on (P1)2n × (P2)4.

Note that 2n+8 = 3n+2(m−1). In this formulation, rotations of the coupler link at each precision
point are variables of the system, cast onto P1 × P1 for each of the n precision points via isotropic
coordinates. When n ≥ 1, the corresponding rotation variables can easily be eliminated to produce
an “alternate” formulation with degree structure

(2H1 + 2H2 + 2H3 + 2H4)
n(H1 +H2)

m−1(H3 +H4)
m−1 on (P2)4.

Version Degree Structure B σ r = σ/B

Original (3H)16(4H)8 on P24 11,019,960,576 4,275,744,703,488 388

Freudenstein-Roth (7H)8 on P8 5,764,801 355,770,576 ≈ 61.7

Total Degree (2H)4(4H)8 on P12 1,048,576 125,829,120 120

Bihomogeneous (2H1)
2(2H2)

2(2H1 + 2H2)
8 on P6 × P6 286,720 31,768,576 110.8

Table 1: Summary of different formulations of Alt’s nine-point path synthesis problem
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(m,n) Formulation B σ r = σ/B

(5, 0) Standard 36 576 16

(4, 2)
Standard 288 15,840 55
Alternate 288 13,824 48

(3, 4)
Standard 3,456 345,600 100
Alternate 3,456 237,312 ≈ 68.7

(2, 6)
Standard 46,080 6,958,080 151
Alternate 46,080 3,363,840 73

(1, 8)
Standard 645,120 134,184,960 208
Alternate 645,120 38,707,200 60

Table 2: Comparison of “standard” and “alternate” formulations of the zero-dimensional Alt-
Burmester problems

In particular, the (1, 8) “standard” and “alternate” systems provide two more presentations of
Alt’s nine-point problem. The Bézout number for both of these formulations is 645,120 which falls
between the last two entries in Table 1.

For concreteness, consider the (4, 2) problem. The “standard” formulation degree structure is

(H1 +H2 +H5 +H6)(H1 +H2 +H7 +H8)(H1 +H2)

· (H3 +H4 +H5 +H6)(H3 +H4 +H7 +H8)(H3 +H4)

· (H5 +H6)
3(H7 +H8)

3 on (P1)4 × (P2)4. (26)

with (27) providing explicit polynomials in affine coordinates for simplicity. Meanwhile, the “alter-
nate” formulation degree structure is

(2H1 + 2H2 + 2H3 + 2H4)
2(H1 +H2)

3(H3 +H4)
3 on (P2)4.

Table 2 provides the Bézout number (B), number of singularities (σ), and the singularity
ratio (r = σ/B) for each of the zero-dimensional Alt-Burmester systems. Note that the Bézout
number is the same for both the “standard” and “alternate” formulations, but the “alternate”
formulation has fewer singularities in a smaller dimensional ambient space.

5 A final question

The standard setting used in this article was that X is an N -dimensional projective variety with
dimSing (X) ≤ N − 2 and E is a rank N vector bundle spanned by a vector space V of sections
such there is at least one section s ∈ V with at least one isolated solution on X. Then, the total
number, σE , of singularities of the solution sets of systems parameterized by a general line in P (V ∗),
was computed in Theorem 18. In particular, under modest conditions, σE can be computed with
a straight-forward formula. Thus, one can compare the Bézout number, BE , with the number of
singularities, σE , by way of the singularity ratio rE = σE/BE .

Rather than considering a general pencil, suppose that one takes a pencil H = ⟨g, f⟩ such that
g ∈ P (V ∗) is general and f ∈ P (V ∗) is arbitrary. Let σE,H,f denote the number of such singularities
away from f . Clearly, σE,H,f ≤ σE , but it would be nice to have a reasonable lower bound for σE,H,f

to understand how the singularities at f impact the singularities away from f . In practice, these
two numbers are relatively close which, combined with the study in [12], justifies using σE as a
measure of quality of the homotopy H.
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Question: Is there a good upper bound (independent of the choice of f) for the defi-
ciency ratio

σE − σE,H,f

BE
?

Thinking (loosely), it might be reasonable to expect that you could lose at most the Bézout
number of singularities at f . However, this is false as shown in the following two simple examples
of three quadrics on P3. Here,

E = [2]P3 ⊕ [2]P3 ⊕ [2]P3

with BE = 8 and σE = 48. First, when f is the system (xy, xz, yz) giving the coordinate lines and g
general, σE,H,f = 33. Hence, σE − σE,H,f = 48− 33 = 15 > 8 = BE with

σE − σE,H,f

BE
=

15

8
> 1.

Similarly, when f is the system (x2 − y, xy − z, xz − y2) giving a twisted cubic and g general,
σE,H,f = 34. Hence, σE − σE,H,f = 48− 34 = 14 > 8 = BE with

σE − σE,H,f

BE
=

7

4
> 1.

Finally, let us give one substantial example. In §4.3, we gave to counts for general lines with the
same multihomogeneous structure as the Alt-Burmester problems. Let g be a general system of the
type specified in (26) and f be a general Alt-Burmester system of type (4, 2) in (P1)4 × (P2)4, i.e.,
synthesizing a four-bar linkage with four given poses and two precision points selected generically.
In particular, for simplicity, the following shows f in affine coordinates:

(pjz1 + qj − x1) (p̂j ẑ1 + q̂j − x̂1)− (p1z1 + q1 − x1) (p̂1ẑ1 + q̂1 − x̂1) for j = 2, 3, 4
(pjz2 + qj − x2) (p̂j ẑ2 + q̂j − x̂2)− (p1z2 + q1 − x2) (p̂1ẑ2 + q̂1 − x̂2) for j = 2, 3, 4

(θ1z1 + qj − x1)
(
θ̂1ẑ1 + q̂j − x̂1

)
− (p1z1 + q1 − x1) (p̂1ẑ1 + q̂1 − x̂1) for j = 5, 6

(θ2z2 + qj − x2)
(
θ̂2ẑ2 + q̂j − x̂2

)
− (p1z2 + q1 − x2) (p̂1ẑ2 + q̂1 − x̂2) for j = 5, 6

θ1θ̂1 − 1

θ2θ̂2 − 1


(27)

where

• affine variables on the four C’s are given by {θ1}, {θ̂1}, {θ2}, {θ̂2} defining rotations;

• the affine variables on the four C2’s are given by {x1, z1}, {x̂1, ẑ1}, {x2, z2}, {x̂2, ẑ2} defining
the four-bar linkage with pivots (xj , x̂j) and legs (zj , ẑj);

• eight parameters {pj , p̂j} for j = 1, . . . , 4 with pj · p̂j = 1 defining the orientations of the four
poses; and

• twelve parameters {qj , q̂j} for j = 1, . . . , 6 defining the points (poses correspond with j =
1, . . . , 4 and precision points correspond with j = 5, 6).

For a general linear homotopy (as computed in Table 2), we have BE = 288 and σE = 15,840.
Letting H = ⟨g, f⟩, Bertini [2, 3] computed in about 15.5 hours with 24 cores that σE,H,f = 15,064,
i.e, 15,064 singularities for the systems (excluding those of f) parameterized by H. Therefore

σE − σE,H,f

BE
=

15,840− 15,064

288
=

776

288
=

97

36
> 2.694.
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Hence, it would be interesting to know how large this deficiency ratio can be.
We note that the solution set of f for the “standard” formulation of the general Alt-Burmester

problem of type (4, 2) as specified above consists of the following:

• four irreducible components of dimension two

– all at “infinity” and isomorphic to the vanishing of the last two polynomials in (P1)4;

• five irreducible components of dimension one

– one corresponds with the four-bar linkage degenerating to a 2R linkage, i.e., x1 = x2,
x̂1 = x̂2, z1 = z2, ẑ1 = ẑ2,

– four arising from having one of the pivots (xj , x̂j) or legs (zj , ẑj) at “infinity”; and

• 64 nonsingular isolated solutions

– 60 “finite” (which solve the (4,2) Alt-Burmester problem as in [7]) and 4 at “infinity.”

The solution set decomposition is the same for a nonempty Zariski open set of the parameter space.
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