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Cognate linkages provide the useful property in mechanism
design of having the same motion. This paper describes an
approach for determining all coupler curve cognates for pla-
nar linkages with rotational joints. Although a prior compi-
lation of six-bar cognates due to Dijksman purported to be a
complete list, that analysis assumed, without proof, that cog-
nates only arise by permuting link rotations. Our approach
eliminates that assumption using arguments concerning the
singular foci of the coupler curve to constrain a cognate
search and then completing the analysis by solving a pre-
cision point problem. This analysis confirms that Dijksman’s
list for six-bars is comprehensive. As we further demonstrate
on an eight-bar and a ten-bar example, the method greatly
constrains the set of permutations of link rotations that can
possibly lead to cognates, thereby facilitating the discovery
of all cognates that arise in that manner. However, for these
higher order linkages, the further step of using a precision
point test to eliminate the possibility of any other cognates is
still beyond our computational capabilities.

1 Introduction

By offering alternative mechanism dimensions that
achieve the same motion, knowledge of cognates can be use-
ful in mechanical design. Roberts’s proof [[1] that every
planar four-bar coupler curve is generated by three distinct
mechanisms was the first result in cognate theory. Much
later, cognates were found for all the inversions of planar
six-bar linkages, with Table 4 of Dijksman’s book [2], based
on [3,/4]], purporting to be a complete list. For a review of all
the cognates known before the publication of that table, we
refer the reader to [5, Sec. 3.2.4] and the references in [6].

*Address all correspondence to this author.

Dijksman’s method of finding cognates included the fol-
lowing assumption [3]:

We now make the assumption that the angular ve-
locities occurring in all cognates to be found are
permuted only. .. .It is then clear that not all permu-
tations are permissible. .. In this way one can even
try to forecast the number of cognates of six-bars.

For succinctness, we introduce the following terminology.

Definition A permutation cognate is one for which the ro-
tations of its links are a permutation of the rotations of the
original linkage, both measured in the world reference frame.

Dijksman’s Conjecture All cognates for planar linkages
with rotational links are permutation cognates.

This poses the question as to whether Dijksman’s table
is really complete. In short, three issues remain unresolved:

1. Does Dijksman’s Conjecture hold for four-bar and six-
bar linkages?

2. If it does hold, has Dijksman found all permissible per-
mutations?

3. For each permissible permutation, is there only one cog-
nate (or, in one case, only one two-dimensional family
of cognates)?

Given these open issues, only two rows in Dijksman’s table
can be considered complete:

o for four-bars, Roberts [1] settled the matter using argu-
ments concerning the singular foci and nodal points of
the coupler curve, and

e Roth [7] gave a rigorous treatment of Stephenson-3 six-
bars (and certain related geared linkages) by close exam-
ination of the coefficient equations of the coupler curve.
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In addition to the above questions, we add:

4. Can we find all permutation cognates more efficiently
than exhaustive testing?

5. Does Dijksman’s Conjecture hold for higher-order link-
ages (eight-bars, ten-bars, etc.)?

In [[8,9], we have previously shown how to answer Ques-
tion 3 using a formulation wherein planar vectors are written
as complex numbers. Given a linkage type and a permuta-
tion of the angles, those papers reduce the construction of
the cognates for that permutation to solving a linear system
of equations. This system either has no solutions (meaning
that the permutation is invalid for generating cognates), has
a unique solution, or has a linear set of solutions. By au-
tomating this method, one could also answer Question 2 by
exhaustively testing every possible permutation. However,
Question 1 remains open.

The present paper answers Question 1 definitively in a
way that also lets us easily answer Question 2 without re-
sorting to exhaustive testing. Moreover, our approach gives
a highly effective answer to Question 4, thus facilitating
the construction of all permutation cognates for higher-order
linkages. The approach we use to settle Dijksman’s conjec-
ture for six-bars extends in principle to eight-bars and be-
yond, but the computations are currently beyond our capa-
bilities, so Question 5 remains open. Nevertheless, we be-
lieve our method is a big step towards ultimately tackling
that question.

Like Roberts [1]] did for four-bars, for each linkage type,
we start by determining the singular foci of the coupler curve.
To do so, we use the methods of [[10,|11f], supplemented by
techniques from numerical algebraic geometry [12] as im-
plemented in the software package Bertini [13|{14]. Since
the singular foci belong to the coupler curve, not a specific
linkage, all cognates must have the same singular foci with
the same signatures. However, the singular foci alone do not
completely determine the curve—recall that for four-bars,
Roberts also considered the nodal points. To finish the job,
our approach selects a few general points on the curve and
solves the associated curve interpolation problem using nu-
merical algebraic geometry. In this way, we find all curve
cognates not just the permutation cognates. A side benefit is
that the focal conditions already strongly limit the possible
angle permutations, which is how we address Question 4.

To save space, we refer to the companion paper [9] for
loop equations for all the six-bar inversions. Before treating
these, we review the definition of a singular focus and de-
scribe how to compute the singular foci of a linkage. After
first treating the Stephenson-2B linkage in detail, we sum-
marize our results for all six-bars, omitting Watt-2 linkages
because their coupler curves are the same as four-bars.

A caveat: throughout this paper, we restrict our attention
to general linkages of the types we study. We do not rule out
the possibility that additional curve cognates could appear in
exceptional cases.

The rest of the paper is organized as follows. Section
reviews the definition of a singular foci and describes how
to compute them, using the Stephenson-2B as an example.

Section E] summarizes the focal signatures for the four-bar,
all six-bars, and one example each of an eight-bar and a ten-
bar. It also details which permutations of the link rotations
are compatible with these signatures, which is a necessary
condition for a permutation cognate. In Section ] to com-
plete the analysis for six-bars, that is, to definitively answer
Question 1, we find all cognates by appending an appropriate
number of precision points to the focal point conditions and
solve the system using numerical algebraic geometry. We
summarize these results in Section

2 Background

The problem of finding coupler curve cognates is closely
connected to precision-point path synthesis problems. In the
case of curve cognates, we are not given a finite set of points
on the curve, but rather we wish to find all linkages that ex-
actly reproduce the whole curve.

In principle, one way to solve the curve cognate problem
is to use a complete solution to the maximal precision-point
path synthesis problem. For example, only a finite number
of distinct four-bars interpolate nine general points. Given a
four-bar curve, we could select nine general points on it and
find all four-bars interpolating them. These four-bars will
separate into groups of cognates. In [15]], complete solutions
of the nine-point problem for four-bars were computed us-
ing numerical algebraic geometry, resulting in 1442 coupler
curves that interpolate the points, each curve generated by
three cognate linkages. This accords to Roberts’s result that
four-bars are triply generated. For six-bar linkages, such an
approach becomes untenable since the precision-point prob-
lems are currently too big for current approaches.

For finding cognates, instead of choosing general points
on the coupler curve, we can choose distinguished points as-
sociated to the coupler curve in order to make the synthe-
sis problem easier. An advantageous choice is to select the
points where the coupler curve approaches infinity, which is
equivalent to finding the curve’s singular foci. This approach
is motivated by recalling that the ground pivots of a four-bar
linkage coincide with two singular foci of its coupler curve.
The maximal number of general precision points that can be
specified for the path synthesis of a four-bar with specified
ground pivots is just five, and the problem can be solved ab
initio with a 96-path homotopy [[16]]. Furthermore, since we
know the location of the third singular focus, that constraint
reduces the maximal number of general precision points to
just three, which allows one to find all cognates even more
simply. Thus, this suggests that analyzing the singular foci
of the coupler curves of six-bars and higher-order linkages
might provide significant leverage in solving for cognates.
Indeed, this will turn out to be the case, but first we must re-
view the definition of singular foci and how to compute them.

2.1 Singular foci and isotropic coordinates

The notion that conics (parabolas, ellipses, and hyper-
bolas) have focal points is a familiar one. So too might one
remember that as an ellipse is morphed into a circle, its two
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foci coalesce in to a single focus. This double focal point
at the circle’s center is an example of a singular focus, and it
clearly tells us something fundamental about the circle. Sim-
ilarly, the singular foci of coupler curves hold important in-
formation that can help us solve the riddle of curve cognates.

A general definition of singular foci can be found
in [17]], and examples of their application to linkages ap-
pear in [[18]. We will make use of the treatment found
in [[10l/11]] which greatly simplifies computations through the
use of isotropic coordinates. From a geometric viewpoint,
both treatments involve analyzing how a curve meets infin-
ity, whereas from an algebraic viewpoint, they involve ana-
lyzing the highest order terms of the coupler curve equation.
This makes sense because near infinity, when variables get
large, the highest order terms dominate the lower order ones.
A fundamental difference of [17}/18]] as compared to [[10,/11]
comes in how “infinity” is defined.

If one confines their analysis to the reals, the question
of how a coupler curve reaches infinity is vacuous: links are
finite, so the whole coupler curve must remain finite. For
example, this is true of a circle. However, if we allow the
coordinates of the curve to take on complex values, this pic-
ture completely changes. Fundamentally, this is because in
the reals, the polynomial for squared distance from the ori-
gin, x> +y? has only a single zero, (x,y) = (0,0), whereas in
complex space, any point with y = =ix is a zero. Because of
this, there are points that stretch out to infinity in the complex
plane while still satisfying a circle’s equation. The same is
true for any algebraic curve.

Let us call the two lines of points that are zero distance
from the origin the isotropic lines. Their linear equations are
x+1iy =0 and x — iy = 0. Since the fundamental property of
a rigid link is that it preserves distance, it should not be too
surprising that these lines hold a special significance. The
classical treatment of singular foci takes a one-homogeneous
approach wherein the open Euclidean plane is closed up by
adding a line at infinity, having one point on that line for
each slope a finite line can have. In a sense that can be made
precise, two distinct parallel lines intersect at the point at
infinity associated to their slope. This implies that all lines
parallel to one of the isotropic lines meets it in the same point
at infinity. These two isotropic points play a major role in the
classical theory.

A more facile way of treating singular foci, and in many
ways a more convenient way of treating nearly all problems
in planar linkages, is to use isotropic coordinates. This is al-
most identical to a complex-vector formulation of kinematics
that treats any point (x,y) in the Euclidean plane as the point
p = x+1y in the complex plane. To turn this into isotropic
coordinates, we form a second coordinate p = x — iy so that
(p, P) is just a linear change of coordinates from (x,y). When
x and y are real, p is the complex conjugate of p, but this is
no longer true when x or y has a nonzero imaginary part.

If we close up the Euclidean plane one-homogeneously,
i.e., with a single line at infinity, all the lines parallel to the
p-axis meet in one isotropic point, and all lines parallel to the
p-axis meet in the other one. But there is another way of clos-
ing up the plane that works to our advantage: add two lines at

infinity, one parallel to each coordinate direction. This two-
homogenization is done using the substitutions p = P/w and
p = P/w, and clearing denominators. The new coordinates
are written ([P,w],[P,w]) and we do not allow [P,w] = [0,0]
nor [P, w] = [0,0]. The bracket notation means that only ra-
tios matter: [a,b] and [Aa,Ab] for X # 0 are considered the
same point.

The bottom line (see [10]] for more) is that after making
this transformation, the coordinates of the singular foci are
formed as the values of p where p hits infinity (i.e., where
w = 0) and vice versa for the values of p. For the real curves
we study here, if a term ap/p* appears, so does its conju-
gate o' p*p/. This means that 7 hits infinity in the complex
conjugates of where p hits infinity, so in fact we just need to
compute the p-coordinates. To do this for plane curve given
by f(p, p) =0, make the substitution p = 1/w, clear denom-
inators, set w = 0, and solve for p. Or put more simply, just
cross out all terms of f except those with the highest power
of p and then set p = 1. The result is a simpler polynomial
g(p) = 0 whose roots are the p-coordinates of the curve’s
singular foci. As a simple example, consider the equation
(p—c)(p—c*)—r? =0, which is a real circle with center ¢
and radius r. Omitting lower-order terms in p, we are left
with (p —c)p = 0, and setting p = 1, we find that the sin-
gular focus of the circle is its center p = ¢. (More properly
speaking, it is (p, p) = (¢, c*).)

2.2 Computing singular foci

To find singular foci following the prescription above,
we need a curve’s coupler curve equation in the form
f(p,p)=0. In [10], it is shown how to carry this through us-
ing the Dixon determinant formulation from [[19]] to eliminate
rotation angles from the kinematic loop equations. In [[11]],
the singular foci are found by direct computations on the loop
equations without elimination, which yields additional infor-
mation about the rotations associated to the singular foci. To
automate this, we follow the paradigm of numerical elimina-
tion theory [20] [[14, Chap. 16] in numerical algebraic geom-
etry and use the software package Bertini [13}|14]. This
approach avoids any trouble with extraneous roots, which is a
possibility when using the Dixon determinant. Furthermore,
the information about rotations further constrains the possi-
ble cognates, making our search for cognates more efficient.

Consider an N-link mechanism which has one degree of
freedom (DOF). Thus, N must be even and the linkage has
N /2 — 1 loop equations together with an equation for the lo-
cation of the coupler point p relative to the origin. To write
relations directly in isotropic coordinates, we use a complex-
plane formulation wherein translations become addition and
rotations are multiplication by a complex number of unit
magnitude. Specifically, letting ®; be the angle of rotation
of link j with respect to ground, 6; = ¢ is its complex
rotation. Fixing link O as the ground link, there are N — 1
rotations 0; for the moving links. The loop equations and
coupler point equation can be written relative to the origin in
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the form

N—1
axo + Z a9 +anp =0,
j=1

k=1,...,N/2, (1)

where each gy is a complex vector between two points of
link j in its reference position. (Since the ay; are complex,
any offset angle that would result from choosing a differ-
ent reference orientation can be absorbed into these coeffi-
cients.) To work in Cartesian coordinates, one would take
the real and imaginary parts of these equations, but to work
in isotropic coordinates we keep them as is and merely intro-
duce the conjugate equations

N—1
ajo+ Y a;8j+ajyp=0, k=1,....N/2, (2)
j=1
along with the unit-length equations
0,0,=1, j=1,...,N—1 3)

Together, form a system of 2N — 1 equations in the
2N variables {(01,...,0y_1,p),(81,...,8y_1,p)}, describ-
ing the linkage’s 1-DOF motion.

As discussed in Section [2.1] the singular foci are the
points where the coupler curve approaches infinity in p.
Because we haven’t eliminated the rotation angles, we in-
clude them in our two-homogenization procedure by substi-
tuting p = 1/w as before while also rescaling 6; = 8;/w for
j=1,...,N— 1. Clearing denominators in (23) yields

N—1

ajow+ Y a;0j+afy =0, k=1,..,N/2, (4
j=1
00, =w, j=1,..,N—1. 5)

The singular foci are given by where the solution curve of
the system (1J4[5) intersects w = 0. It turns out that the sys-
tem obtained by merely substituting w = 0 may have addi-
tional solutions which do not arise as limits of the coupler
curve. So, instead of solving that system directly, we use a
homotopy that reveals how finite arcs of the curve approach
infinity. This is accomplished by slicing with a hyperplane
to get finitely-many points and then following the paths start-
ing from these points as the hyperplane is moved smoothly
to infinity.
Specifically, we start by appending the equation

L(W):=w—c=0, 6)

where the complex coefficient ¢ is chosen random for gener-
icity. Given all the coefficients a;; and c, the system (T[4H6)
consists of 2N polynomials in 2N unknowns that is easily
solved using Bertini for relevant sizes of N.

Once the finite solutions are known, they become start
points corresponding with + = 1 for the homotopy that de-
forms the slicing hyperplane £(w) to the hyperplane at infin-
ity w =0 as t — 0, namely

h(w,t) :=td(W)+(1—t)Ww=w—r-c=0. (7

The full set of equations for the homotopy is (TJ4]5]I7). Given
the start points for the homotopy, the solution paths can
be tracked, for example, using a user-defined homotopy in
Bertini. The endpoints at r = O are the values of p for the
singular foci. We also may observe the multiplicities of the
singular foci by the number of paths that converge to each.
Furthermore, notice that at t = 0, where w = 0, ealch corre-
sponding unit length equation (3) has become 6;6; = 0 so
that either 8; = 0 or 6]- =0 forevery j=1,...,N—1. It
is easily observed that both cannot be zero since that does
not leave enough freedoms to satisfy all the remaining equa-
tions. Therefore, the pattern of which N — 1 variables among
{0;,6;, j=1,...,N—1} is zero at each singular focus be-
comes an additional signature of the focus.

This homotopy-based approach computes the singular
foci as numerical values that are dependent on the input co-
efficients a; ;. In some cases, symbolic formulas for each sin-
gular focus can be trivially observed from the numerical val-
ues such as when a singular focus is a ground pivot. Explicit
symbolic expressions of the singular foci are not required to
find permutation cognates, but to settle the existence of any
other cognates, they become essential. One approach to de-
riving is to employ exactness recovery methods [21]] to deter-
mine symbolic expressions directly from numerical compu-
tations. Alternatively, one can use a computer algebra pack-
age, taking advantage of the knowledge of which rotations
vanish at each singular focus to simplify expressions.

2.3 Singular foci of Stephenson-2B

To illustrate the approach in Section [2.2] for computing
singular foci, we consider computing the singular foci of the
Stephenson-2B six-bar linkage, shown in Figure |1} In this

Fig. 1.

Stephenson-2B mechanism
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figure and the rest, we draw the linkage in a reference pose
where all link rotations are zero. (Remember that any offset
angle can be absorbed into the link vectors.) In any other
pose along the coupler curve, link vector a; rotates to 01a;
and similarly for the rest. Each loop equation for the link
is just a sum of these rotated vectors. Referring to the nota-
tion in Figure after making the substitutions for j and 6,
and clearing denominators, the system consisting of the loop,
coupler point, and unit length equations is

= (ap—bo) +a101 + a0, +a303 —as04
(af — b3)W+a;0; +a30, +a305 —a;04

b26, +a303 +b464 + as0s

0 = b50, + a503 + b04 + albs

p=ap+a0;+c20,

0
0
0

1=ajWw+aid; +c30,

():ej/ﬂ\jfﬂ} j=1,...,5.

To compute the start points of the homotopy, we append the
linear equation (6) and use Bertini to compute the 9 solu-
tions. Replacing (6) by (7) and tracking the homotopy paths
emanating from the 9 points, yields the singular foci. Sym-
bolic expressions for the singular foci are shown in Table []]
along with the corresponding rotations that vanished at in-
finity. Multiplicities greater than one are explicitly noted.
For example, in the first row of Table [} by x 3 means that
three paths end at by with the same set of vanishing rota-
tions. Three paths also end at ag but different sets of rota-
tions vanish for each, so the multiplicity with respect to each
set of vanishing rotations is one while the total multiplicity
of ag is three. This analysis shows that the two ground pivots
are both singular foci with multiplicity 3, but the extra infor-
mation provided by the vanishing rotations show that these
singular foci are geometrically different from each other as
well as the others. As we will see next, this shows that
every Stephenson-2B cognate linkage must have the same
ground pivots.

3 Focal signatures and permutations

For linkage type, the term focal signature consists of the
number of singular foci, the distinct patterns of vanishing
rotations at each singular focus, and the multiplicity of each
pattern. The computational approach in Section[2.2]yields all
this information. For the Stephenson-2B, this is the informa-
tion in Table[T]except the explicit symbolic formulas. It tells
us that there are five singular foci: two with multiplicity 3
and three each having multiplicity one. Furthermore, one of
the multiplicity 3 singular foci comes from a multiplicity 3
vanishing pattern, whereas the other one comes from three
distinct vanishing patterns each of multiplicity 1. Table [2]
lists the focal signature information for the four-bar and all
six-bar types. For easier reading, it only shows the vanishing
rotations in 0; for j = 1,...,N — 1 since one immediately

knows from this list that the complementary @k vanish. As

Table 1. Rotations that vanish and corresponding singular foci for
Stephenson-2B.

Vanishing ] ] o
Singular foci and multiplicity
rotations
62763794,65,61 bOX3
01,62,64,03,05 aop
91762795,63,/9\4 aop
01,62,03,04,65 aop

ap-ar—ag-cp+bg-cr
a

61793764,62,/6\5
01,64,05,0,,63
61,03,05,62,04

ag-ap—ag-br—ap-cr+bg-c»
ay—by

ap-az-bs+ag-as-br—ag-by-co+bg-by-cy
ar-by+as-by

can be observed in that table, it is possible for a singular fo-
cus to have different multiplicities with respect to different
vanishing rotations. In particular, this occurs for singular fo-
cus by of the Watt-1A and Stephenson-2A linkages.

If a cognate is a permutation cognate, the permutation
of the angles will permute the patterns of rotations that van-
ish where the coupler curve hits infinity. But this focal
signature is a generic property of the linkage, so it cannot
change. Only angle permutations that preserve the focal sig-
nature are candidates for permutation cognates. Applying
any two signature-preserving permutations in succession still
preserves the signature, so the collection of all such permu-
tations forms a group.

Preservation of the focal signature is a necessary but not
sufficient condition for an angle permutation to give a valid
cognate. The final check is to apply the methods from [J8,9]
to see if the signature-preserving permutations are consistent
with preserving the system of loop and coupler point equa-
tions. We will find that except in the case of the four-bar, the
signature-preserving permutations are a small subset of full
set of permutations among the moving links, i.e., for n > 6,
each n-link mechanism type has many fewer than (n—1)!
signature-preserving permutations. We will give the details
in the following subsections, starting with our running exam-
ple, the Stephenson-2B.

3.1 Group notation

Our discussion will benefit from using notation from the
theory of groups. A two-way symmetry, which arises from
a transposition, is denoted Z,. For example, swapping ro-
tations 0; and 6, which corresponds with the transposition
denoted 0; <+ 0;, yields a two-symmetry group action Zs.
If k independent transpositions act on distinct elements, then
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the resulting group of size 2 is denoted

Ty X -+ X U
————

k times

For example, the three transpositions 01 <> 0,, 63 <+ 04, and
05 <> 0, are applied to distinct elements so the resulting
group action is Zy X Zy X Z,, which has order 23 =38.

A three-way symmetry arises from two transpositions
that have an element in common, which is denoted S35 and
has order 3! = 6. For example, the transpositions 6; <> 0,
and 01 <> 63 have one element in common, namely 01, so this
corresponds with the three-way symmetry group S3. Finally,
the product S3 X Zj has order 3!-2 = 12 and arises from
three permutations, two which have one element in common
with the third one having distinct elements, e.g., 0 <> 0,,
0, <> 63, and 64 <> 65.

Every permutation group includes the trivial permuta-
tion where nothing is changed. We will refer to any other
permutation as nontrivial.

3.2 Valid permutations of Stephenson-2B

Using Table [T we can determine which permutations
are valid. As noted in Section [2.3] there are three types of
singular foci: ground pivot ag, ground pivot by, and the three
singular foci of multiplicity 1. Hence, all valid permutations
must keep the two ground pivots fixed, but the three singular
foci of multiplicity 1 may permute amongst themselves.

From by, one sees that 0; cannot permute with any other
rotation as 0; is the unique 0; vanishing at bg. Since 0
cannot permute and 0, is the only other rotation that ap-
pears in each of the three sets of rotations for ag, 6, also
cannot permute. Therefore, the two ground pivots have
shown that the only possible permutations are amongst 03,
04, and 05. Checking transpositions 03 <+ 04 and 04 <+ 05
separately shows that the vanishing structure for the ground
pivots and one of the other singular foci of multiplicity 1
are maintained while transposing the other two singular foci
of multiplicity 1. Hence, this yields a three-way symme-
try amongst 03, 64, and 05 showing that the group action
on the Stephenson-2B cognates corresponds with S3. Note
that since links 3 and 5 are both binary links connected be-
tween links 2 and 4, they are topologically equivalent, so the
transposition 03 <+ 05 corresponds with a relabeling of the
mechanism rather than a new cognate. Accordingly, only 3
of the 6 permutations in §3 have the potential to yield unique
mechanisms. As found in [9], these are in fact valid permu-
tation cognates.

3.3 Four-bar valid permutations

As Roberts [[1] identified, the three singular foci of the
four-bar can be permuted in any way which corresponds to
any permutation of the three rotations. Hence, the three-way
symmetry shows that the group action on the rotations of the
four-bar corresponds with S3. Considering Figure 2{a), the
transposition 0 <> 03 corresponds with relabeling so only 3

as

G‘} Abo
0
(@) (b)
Fig. 2. (a) Four-bar and (b) Stephenson-1

Fig. 3. Stephenson-2A

of the 6 permutations in S3 can produce unique mechanisms.
These are the permutation cognates found by Roberts [1].

3.4 Stephenson-1 valid permutations

The only valid nontrivial permutation of rotations for the
Stephenson-1 is the transposition 0; <+ 6,. Hence, the group
action corresponds with Z;. This action gives a permuta-
tion cognate.

3.5 Stephenson-2A valid permutations

The group of signature-preserving permutations for
Stephenson-2A is Z, X Z, generated by the two transposi-
tions 0, <> 63 and 64 <> 65 yielding permutation cognates.
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Table 2. Vanishing rotations and singular foci for the four-bar and six-bar mechanisms.

Mechanism Vanishing rotations Singular Foci and Multiplicity
01,6, ap
4-Bar 05,05 bo
01,6, (ao-az+by-bg—by-ap)/az
62,03, 64, 05 bo X 2
01,03,05 bo
Watt-1A 01,0,,05 (ap-az+ag-bz—by-b3)/as
01,03,04 (az-as-bo+ag-by-bs—bo-by-bs)/(az-as)
04,065 roots of a quadratic
62,03, 64, 05 bo X 2
01,062,604 ap
Wart 1B 01,03,0, (a2-bo—ao by +bo - b2)/az
01,03,05 (az-as-bo+ag-by-by—bo-by-ba)/(az-as)
01,0,,05 (ap-az-as+ap-as-bs+ag-bz-by—as-by-bs—by-bz-bs)/(as-as)
04,065 roots of a quadratic
01,03,65 bo
82,03, 65 bo
Stephenson-1 012,65 (a0-as +do-bs = bo-b3) /a3
01,03,04 (ao-bs+as by —bg - bs)/as
0,,63,0, (ar-as-bo+ag-by-bs—by-by-bs)/(ay-as)
04,05 roots of a cubic
0,,03,04,05 by x3
01,64,05 bo
Stephenson-2A 01,62,05 @
01,03,05 (ao-as-bay—ag-by-ba+az-by-by+by-by-bs)/(az bs+ay-b2)
01,03,04 (az-as-bo+ag-by-bs—bo-by-bs)/(az-as)
01,6,,6, (as-bo—ao-bs+bo-bs)/as
62,03, 04, 05 bo % 3
01,602,604 aop
01,62,05 ap
Stephenson-2B 01,6,,0;3 aop
01,03,0, (ag-az—ag-ca+bo-c2)/az
01,064,605 (ao-az—ap-by—ap-ca+bo-c2)/(az—b2)
01,603,065 (ap-az-ba+ag-as-by—ag-ba-cy+bo-bs-c2)/(az-ba+as-by)
01,05, 05 ao
67,03, 65 bo
04,05 co X3
Stephenson-3 0,,03,0, (as-co+bg-bs—bs-co)/as
01,0,,04 (as-co+ap-bs—bs-co)/as
01,03,05 (az-bo—ag-ba)/(az—by)
01,603,604 (az-bo-bs—ag-by-bs+az-as-co—as-by-co—az-bs-co+by-bs-co)/(as-(ay—by))
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Fig. 4. Stephenson-3

Fig. 5.

(a) Watt-1A and (b) Watt-1B

3.6 Stephenson-3 valid permutations

Considering Figure [4 Roth [7] determined that the
cognates of the Stephenson-3 mechanism are generated
by applying Roberts cognates to the four-bar formed by
links 0-1-2-3 and a skew pantograph transformation to
links 0-4-5 as discussed in [8]]. The results of the compu-
tation from Section match those previously known re-
sults as follows. First, the group of valid permutations of the
Stephenson-3 mechanism corresponds with S3 x Z, where
the S3 arises from a three-way symmetry of the rotations 6,
0,, and 63 while the Z, arises from the transposition 64 <> 0s.
Finally, as in the case of the four-bar, the group S3 can only
produce three unique mechanisms due to relabeling.

3.7 Watt-1A valid permutations

For the Watt-1A, the only signature-preserving permu-
tation is the trivial one. However, the Watt-1A is unique
amongst the six-bars as it has a two-dimensional family
of cognates.

o

Fig. 6. An eight-bar mechanism

3.8 Watt-1B valid permutations

The group of signature-preserving permutations for
Watt-1B is Z, x Z; generated by the transpositions 6, <> 03
and 04 <> 5. These yield permutation cognates.

3.9 Valid permutations of an eight-bar mechanism

Whereas our analysis of the six-bars confirms that Dijks-
man found all permutation cognates, the equivalent question
for higher-order linkages has never been addressed. An ex-
haustive check of all possible permutations for an eight-bar
would have 7! = 5040 cases to check. (The ground link is
fixed, so an n-link mechanism has (n — 1) link angles that
might permute.) The necessity of preserving the focal signa-
ture greatly reduces the task. We illustrate this fact by treat-
ing the eight-bar shown in Figure[6] followed by a ten-bar in
the next section.

For this eight-bar, the slice (6) gives 23 finite points on
the coupler curve, which are then tracked to infinity using
to find the singular foci. Nine are distinct singular foci with
multiplicity 1 corresponding to the following sets of vanish-
ing rotations:

{91,92,64,97},
{91793794’96}7
{62,63764766},

{61792395366}a
{91793794767}7
{62763764767},

{61,62,95,97},
{61,03,05,66}, (8)
{62a63a65596}'

Two more are located at the ground pivot by but with differ-
ent vanishing rotations:

{61,63,05,07;} and {6,,05,65,67}. 9)

Finally, there are two distinct singular foci that each have
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multiplicity 6 arising from the following vanishing rotations:

{64,05,66,07} and {6¢,67}. (10)

From (10), one sees that the set of rotations decomposes
into three sets which could permute amongst themselves,
namely {61,02,03}, {04,065}, and {6¢,07}. Now, (9 refines
this since 05 and 67 appear while 04 and 8¢ do not appear
showing that 04, 05, 8¢, and 67 must all not permute. More-
over, since 03 appears in both collections while 8; and 6,
only appear once, 03 must not permute yielding the only
possible permutation is the transposition 6; <> 6,. Check-
ing (8) shows that this transposition keeps the first row in-
variant while the second and third rows interchange meaning
that this is permutation preserves the focal signature. The
group action on the rotations corresponds with Z, of order 2.

By computing the focal signature, we have reduced the
complete analysis of permutation cognates from 5040 cases
to just 2. The trivial permutation and the transposition
01 <> 6, each give a unique mechanism: the original one
in Figure [6]and its cognate shown in [8| Fig. 8].

3.10 Valid permutations of a ten-bar mechanism

The final example is to determine the valid permutations
of the ten-bar linkage in [22} Fig. 15] and shown in Figure[7]
Tracking 56 paths for this ten-bar linkage produced the fol-
lowing structure regarding vanishing rotations and multiplic-
ity. There are 8 distinct singular foci with multiplicity 1 cor-
responding to the following sets of vanishing rotations:

{61,0,,03,05,087},
{61,02,64,05,07},
{92,93,95,96797}7
{92,94,95,96797},

{61,6,,03,67,03},
{61,02,64,67,03},
{92,93,96,97,98},
{92,94,96,97,98}.

(11)

There are 4 distinct singular foci each with multiplicity 2
that arise from two distinct sets of vanishing rotations with
multiplicity 1. The first one in the following list corresponds
with ground pivot by:

{61,02,04,05,00} and {62,04,05,66,09},
{01,0,,04,05,00} and {6,,04,06,03,09},
{91,92,93,98799} and {92,93,96,98799}, (12)
{61,62,63,05,80} and  {6,03,65,66,00}.

Next, there are 5 distinct singular foci that arise from a single
set of vanishing rotations of multiplicity 4. The first one in
the following list corresponds with the ground pivot cp:

{93,94,95,98,69}, {93,94,95,67,98},

{61,06,089}, {65,07,85}, {05,05,00}.  (13)

Finally, there is a singular focus that arises from the follow-
ing set of vanishing rotations of multiplicity 20:

{67,80}. (14)

This focal signature limits the possible permutation cog-
nates. First, and (T4) show that 67 and 89 must remain
fixed. Next, since 0, is the only rotation in every collection
in (TT), it also cannot permute. Of the six remaining, namely
01, 03, 04, 05, 86, and O3, the bottom row in (13) shows
that the only possible permutations must arise from the three
transpositions 01 <> 0¢, 63 <> 04, and 05 <> 63. Each of these
transpositions preserves the focal signature so that the corre-
sponding group action on the rotations is Z, X Zy X Z,. This
analysis has reduced the number of permutations to check
from 9! = 362,880 to just 4, the trivial permutation and three
transpositions.

For the 4 cases remaining, the methods described in the
companion papers [[8,9] can compute the permutation cog-
nates. The transpositions 03 <+ 04 and 05 <+ 83 along with the
combination of both of these generate three distinct cognates
of the original mechanism which are denoted f(x), g(x), and
h(x), respectively, in Figure [7] Table |3| together with
contain explicit formulas for the cognates while Table [d]lists
numerical values (rounded to four decimal places).

__apag + baby — byco — coaq _ bi _ a3
1= aa(ao—bo) y 2= 22’ V3= by’
¢ apazbs — azbobs — asbobz +asbzcy
1= )
asbs(ao — bo)
b b bs —
(= BsHasOs D5 —ds (15)
azbs bs
5 apasbs — asbobs — asbsco + asbaco + bobsbs — babsco
] = bl
asbs(ao — bo)
_ by(as —bs) _ azbs+asbs
= U T0s) 305 TAsDy
(14175 b3b5

Unlike the other signature-preserving permutations, the
transposition 0; <+ O¢ results in an inconsistent system.
Therefore, there does not exist a cognate that arises by sim-
ply permuting the angular velocities 01 and 6g.

4 Show completeness

We have shown how to find all permutation cognates. It
is much harder to show that no other type of cognate exists.
To attack this problem, we solve a special type of precision-
point path synthesis problem. For four-bars, one could settle
the question by sampling ten general points from the coupler
curve of a general four-bar, solving a path synthesis problem
for nine of these points, and checking which of these solu-
tions also interpolates the tenth point. This would give the
original linkage and all its cognates. For four-bars, this is
feasible, but for a six-bar, this would require solving a path

9 Copyright © by ASME



Table 3. Link rotations and link parameters for a ten-bar mecha-
nism (x) and three curve cognates (f(x), g(x), h(x))

Fig. 7. Original ten-bar mechanism x and three cognates f(x), g(x), and A(x).

Table 4. Ten bar linkage and cognate parameters where i = v/ —1

Original Swap 3-4 Swap 5-8 Swap 3-4 & 5-8
ap | 0.0+0.0i 0.0000 +0.0000i 0.0000 +0.0000i 0.0000+-0.0000i
by | 1.04+0.0i 2.3667 + 1.0000i 0.1509 +0.0283i 3.0667 + 1.4000i
co | 2240.1i 2.2000 +0.1000i 2.2000+0.1000i 2.2000 +0.1000i
ay | 0.5+0.3i 0.8833 +1.2100i 0.0670 + 0.0594i 1.1133 + 1.6200i
by | 04-0.7i 0.7833+0.2100i | —0.0330—0.9406i | 1.0133+0.6200i
ay | 03-0.3i 1.0100 —0.4100i 0.0538 —0.0368i 1.3400 — 0.5000¢
by | 0.4+0.5i 0.2867 —0.3933i 0.721340.8176i 0.1853 —0.8099i
az | 02-0.7i 0.1000 — 0.5000i 0.2828 —1.2069i | —0.1793 —0.8517i
b3 | —0.54+0.3i | 0.3353+0.5412i | —0.5828+0.8069i | 0.6146+ 0.8929i
as | 0.640.3i | —0.5533-0.0067i | 1.0450+0.4610i | —0.8726+0.3616i
by | —0.140.5{ | —0.2000+0.7000; | 0.1793+0.8517i | —0.2828+ 1.2069i
as | —0.640.3i | —0.6000+ 0.3000i | —0.7966 —0.5586i | —0.7966 — 0.5586i
bs | 0.7+0.3i 0.8941 —0.3235; | —0.8966 —1.6586i | —1.8260 — 1.4763i
as | 0.2+0.0i 0.4733 +0.2000i 0.0302 +0.0057i 0.6133+-0.2800¢
a7 | —0.3—0.5{ | —0.3000 —0.5000; | —0.3000 —0.5000i | —0.3000 — 0.5000i
ag | —0.1—1.1i | —1.0294—-0.9176i | 1.3000+ 0.0000: 1.4941 —0.6235i
ag | —0.9—0.1i | —0.9000 —0.1000; | —0.9000 —0.1000i | —0.9000 — 0.1000;
by | 0.6+0.5i 0.6000 + 0.5000i 0.6000 + 0.5000i 0.6000 +-0.5000¢

synthesis problem having 15 precision points which is be-
yond current computational capability.

Cognate | x f(x) g(x) h(x)
1 0, 0, 0, 0
2 0, 0, 6 6,
3 03 64 03 0,
4 04 03 04 03
Link
Rotations 5 65 05 65 Bs
6 06 06 06 06
7 67 07 67 67
8 | e 05 05 0
9 8o 89 09 89
ag ao ap ao
0 by | co+12(bo—co) | co+8a(bo—co) | co+82(bo—co)
co co o <o
. a Tiai Gian S1a1
by | bi+ai(m—1) | bi+ai(§G—1) | bi+ai(d—1)
) a Yiaz Giax S1az
by T2b2 Gobo Sob>
3 a3 —bs Goa3 Sras
Link b3 Y3by (€13 S3by
Parameters . a a3 Coay Sras
by —a3 Csbs 83b3
5 as as ag(G—1) —asa /bs
bs Y3bs Caas S3as
6 as Yide Cias d1ac
7 ar ar ar ar
8 as Yaag bs —as S3bs
9 ag ag ay ag
by by by bg.

Fortunately, by taking advantage of focal information,
we can bring the six-bar problems within range. We can
compute the singular foci and use their signature to derive
symbolic expressions for them. As one may see in Ta-
ble 2] these focal equations are much simpler than the cou-
pler curve equation. So instead of all general points, it is eas-
ier to solve a path synthesis problem whose precision points
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are the singular foci and a sufficient number of additional
general points. As an example, consider specifying singu-
lar foci F, P, F3 for the four-bar. Then, Table 2]tells us that
ag = Fy, by = F>, and

Fia, + (F, — Fi)by = Fzas.

These three conditions and their conjugate counterparts
(@y = F, etc.) are six independent linear conditions. Conse-
quently, the determination of all four-bar path cognates can
be accomplished by adding just three more general precision
points and then checking the solutions against a fourth one.
This is much simpler than solving a nine-point problem.

For six-bars, we proceed similarly. The first step is
to check how many independent conditions are imposed by
specifying the singular foci. Let x be the set of link pa-
rameters, x = (ao, bo, . ..), and suppose that S(x) is map that
gives the singular foci. Choose a general (i.e., random)
set of parameters x*. Then all cognates to x* must satisfy
S(x) — S(x*) = 0. Let JS(x*) be the Jacobian matrix of S
evaluated at x*. By [20, Lemma 3], assigning the singular
foci imposes rank JS(x*) conditions on the link parameters.
Accordingly, we only need to specify k = 15 — rank JS(x*)
additional precision points to obtain an exactly constrained
path synthesis problem. The k points are randomly sampled
from the original coupler curve to ensure genericity. The
second column in Table [3] lists &, the remaining degrees of
freedom, for the four-bar and six-bar linkages.

When forming the path synthesis problems, for the four-
bar and six-bars, we may write the j™ entry of S(x) form
Si(x) = pj(x)/q(x). Clearing the denominator yields a
polynomial of the form p;(x) —S5;(x*) - ¢;(x) = 0 for each
singular focus.

Methods in numerical algebraic geometry [[12l/14] can be
used to both sample random points from the coupler curve
and solve the resulting path synthesis problem for four-bar
and six-bar linkages. In particular, our experiments utilized
regeneration [23|[24] to solve the path synthesis problems
with the resulting finite number of nondegenerate linkages
summarized in Table 5}

Due to degrees of freedom counting, each nondegener-
ate linkage is a cognate of the original linkage if its coupler
curve also passes through one additional randomly selected
point on the coupler curve. If this additional check results in
a unique cognate linkage, then the completeness test verifies
that there is indeed a unique cognate per valid assignment
of singular foci. This was indeed the case for the four-bar
(confirming Roberts’s result [[1]]) and the Stephenson-3 (con-
firming Roth’s result [[7]). The same was true for the Watt-
1B, Stephenson-1, Stephenson-2A, and Stephenson-2B six-
bar linkages which proves that Dijksman’s corresponding list
of cognates is complete.

For the Watt-1A, Section states that there is only
the trivial assignment of the singular foci and there is a two-
dimensional family of cognates. One natural way to parame-
terize this two-dimensional family is by the ground pivot ag
which, in isotropic coordinates, corresponds with the two

Table 5. Number of points on the coupler curve (k), which is the
degrees of freedom after specifying the singualr foci, and number of
nondegenerate solutions of the k-point problem after specifying the
singular foci.

Mechanism k points | # solutions
4-Bar 3 4
Watt-1A 5 958
Watt-1B 2 34

Stephenson-1 2 32
Stephenson-2A 5 3344
Stephenson-2B 5 3472

Stephenson-3 5 3430

variables (ag,do). Hence, one first fixes this ground pivot and
then applies the completeness test to verify that there indeed
is a unique cognate proving that Dijksman’s corresponding
list of cognates is complete. We note that this computation
first required the filtering of degenerate components before
checking at an additional random point on the coupler curve.

5 Conclusion

Permutation cognates are those that arise by permuting
link rotation angles. Dijksman conjectured that all planar
cognates are permutation cognates and compiled a list of
them for all six-bar planar mechanisms. He did not show
how to make sure the list is exhaustive or how to general-
ize his approach to higher-order linkages. We have shown
that analyzing the vanishing rotations corresponding to the
singular foci of a mechanism type produces a short list of
permutations that are compatible with preserving these focal
signatures. This reproduces the result known for four-bars
and also reproduces Dijksman’s list for six-bars, confirming
that he found all permutation cognates. Testing an eight-bar
example, our method reveals that just one nontrivial permu-
tation preserves the focal signatures, and indeed, it yields a
path cognate. For a ten-bar example, our method reveals that
three independent transpositions of rotations preserve the fo-
cal signatures, but the further step of deriving cognates using
these transpositions shows that one of them is inconsistent.
Thus, this linkage type is shown to have exactly four permu-
tation cognates (counting the original linkage).

Since its ground link is fixed, an n-bar linkage has
(n—1)! possible ways to permute its rotations. Restricting
one’s search to just permutation cognates, our method pro-
vides an extreme reduction in the number of permutations to
check compared to a naive approach of checking all possible
permutations. For the eight-bar we studied, the reduction is
from 7! = 5040 to just one transposition. For the ten-bar, it
reduces the cases from 9! = 362,880 to just 3 transpositions.

For six-bars, we were able to check Dijksman’s Con-
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jecture by computing all cognates that match a given assign-
ment of singular foci by adding to the focal conditions a min-
imally sufficient number of precision points sampled gener-
ically from the coupler curve and solving the resulting path
synthesis problem. Without the focal conditions, one would
be faced with a 15-point path synthesis problem, which is
currently impossible to solve completely. With the focal con-
ditions, one needs to add only 2 or 5 precision points (de-
pending on the linkage type). These smaller problems are
feasible, and we find in every case that only permutation cog-
nates result. This confirms Dijkman’s Conjecture for general
six-bars, confirming that the list of permutation cognates is
in fact the complete list of all possible path cognates.

While our methodology has proven effective for finding
all permutation cognates for higher-order linkages, we are
presently not able to solve the path synthesis problems that
would confirm Dijksman’s Conjecture for eight-bars or be-
yond due to computational limitations.
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